Group sparse autoencoder

Unsupervised feature extraction is gaining a lot of research attention following its success to represent any kind of noisy data. Owing to the presence of a lot of training parameters, these feature learning models are prone to overfitting. Different regularization methods have been explored in the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Image and vision computing Ročník 60; s. 64 - 74
Hlavní autoři: Sankaran, Anush, Vatsa, Mayank, Singh, Richa, Majumdar, Angshul
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2017
Témata:
ISSN:0262-8856, 1872-8138
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Unsupervised feature extraction is gaining a lot of research attention following its success to represent any kind of noisy data. Owing to the presence of a lot of training parameters, these feature learning models are prone to overfitting. Different regularization methods have been explored in the literature to avoid overfitting in deep learning models. In this research, we consider autoencoder as the feature learning architecture and propose ℓ2,1-norm based regularization to improve its learning capacity, called as Group Sparse AutoEncoder (GSAE). ℓ2,1-norm is based on the postulate that the features from the same class will have a common sparsity pattern in the feature space. We present the learning algorithm for group sparse encoding using majorization–minimization approach. The performance of the proposed algorithm is also studied on three baseline image datasets: MNIST, CIFAR-10, and SVHN. Further, using GSAE, we propose a novel deep learning based image representation for minutia detection from latent fingerprints. Latent fingerprints contain only a partial finger region, very noisy ridge patterns, and depending on the surface it is deposited, contain significant background noise. We formulate the problem of minutia extraction as a two-class classification problem and learn the descriptor using the novel formulation of GSAE. Experimental results on two publicly available latent fingerprint datasets show that the proposed algorithm yields state-of-the-art results for automated minutia extraction. •Group Sparse AutoEncoder (GSAE) learns better discriminative features compared to an unsupervised autoencoder.•Class label based ℓ2,1-regularization is incorporated to squared error reconstruction loss function using a majorization-minimization approach.•The proposed GSAE is used to learn minutia representation from noisy latent fingerprint images.•Results on standard image datasets, MNIST, CIFAR-10, and SVHN and latent fingerprint image datasets, NIST SD-27 and MOLF, show effectiveness of the proposed GSAE feature extraction approach.
AbstractList Unsupervised feature extraction is gaining a lot of research attention following its success to represent any kind of noisy data. Owing to the presence of a lot of training parameters, these feature learning models are prone to overfitting. Different regularization methods have been explored in the literature to avoid overfitting in deep learning models. In this research, we consider autoencoder as the feature learning architecture and propose ℓ2,1-norm based regularization to improve its learning capacity, called as Group Sparse AutoEncoder (GSAE). ℓ2,1-norm is based on the postulate that the features from the same class will have a common sparsity pattern in the feature space. We present the learning algorithm for group sparse encoding using majorization–minimization approach. The performance of the proposed algorithm is also studied on three baseline image datasets: MNIST, CIFAR-10, and SVHN. Further, using GSAE, we propose a novel deep learning based image representation for minutia detection from latent fingerprints. Latent fingerprints contain only a partial finger region, very noisy ridge patterns, and depending on the surface it is deposited, contain significant background noise. We formulate the problem of minutia extraction as a two-class classification problem and learn the descriptor using the novel formulation of GSAE. Experimental results on two publicly available latent fingerprint datasets show that the proposed algorithm yields state-of-the-art results for automated minutia extraction. •Group Sparse AutoEncoder (GSAE) learns better discriminative features compared to an unsupervised autoencoder.•Class label based ℓ2,1-regularization is incorporated to squared error reconstruction loss function using a majorization-minimization approach.•The proposed GSAE is used to learn minutia representation from noisy latent fingerprint images.•Results on standard image datasets, MNIST, CIFAR-10, and SVHN and latent fingerprint image datasets, NIST SD-27 and MOLF, show effectiveness of the proposed GSAE feature extraction approach.
Author Singh, Richa
Majumdar, Angshul
Sankaran, Anush
Vatsa, Mayank
Author_xml – sequence: 1
  givenname: Anush
  surname: Sankaran
  fullname: Sankaran, Anush
  email: anushs@iiitd.ac.in
– sequence: 2
  givenname: Mayank
  orcidid: 0000-0001-5952-2274
  surname: Vatsa
  fullname: Vatsa, Mayank
  email: mayank@iiitd.ac.in
– sequence: 3
  givenname: Richa
  surname: Singh
  fullname: Singh, Richa
  email: rsingh@iiitd.ac.in
– sequence: 4
  givenname: Angshul
  surname: Majumdar
  fullname: Majumdar, Angshul
  email: angshul@iiitd.ac.in
BookMark eNqFj0FLwzAYhoNMsJvePXjYH2j90jZJ40GQ4aYw8KLn0CZfIGU2JekG_nsz6smDXr7vPbzPC8-SLAY_ICF3FAoKlN_3hftsTy4WJVBRAC0A2AXJaCPKvKFVsyAZlDzlhvErsoyxBwABQmbkdhf8cVzHsQ0R1-1x8jhobzBck0vbHiLe_PwV-dg-v29e8v3b7nXztM91BXzKO7SGY1d13EgJzOgyRQYgrTBWWIGdsTWlHNMVspSMa8tlzQEl012lqxV5mHd18DEGtEq7qZ2cH6bQuoOioM6Oqlezozo7KqAqOSa4_gWPIdXC13_Y44xhEjs5DCpql7zRuIB6Usa7vwe-AcSrb4I
CitedBy_id crossref_primary_10_1049_ipr2_12113
crossref_primary_10_1109_TIP_2018_2840880
crossref_primary_10_1080_09715010_2017_1408433
crossref_primary_10_1109_TII_2019_2938890
crossref_primary_10_1016_j_neucom_2019_04_090
crossref_primary_10_1016_j_asoc_2025_113378
crossref_primary_10_1016_j_eswa_2019_04_012
crossref_primary_10_1016_j_cam_2023_115532
crossref_primary_10_1016_j_jvcir_2018_11_035
crossref_primary_10_1007_s11063_020_10223_w
crossref_primary_10_1109_TASE_2022_3222759
crossref_primary_10_1109_ACCESS_2020_2972132
crossref_primary_10_1109_TITS_2018_2886280
crossref_primary_10_1007_s12065_020_00424_6
crossref_primary_10_1007_s10916_017_0814_4
crossref_primary_10_1007_s11042_017_5174_z
crossref_primary_10_1007_s00500_020_04717_x
crossref_primary_10_1109_JSTARS_2025_3580654
crossref_primary_10_1016_j_neucom_2020_02_051
crossref_primary_10_1109_TGRS_2021_3139931
crossref_primary_10_1109_TIFS_2023_3280742
crossref_primary_10_3390_cells8060521
crossref_primary_10_1002_int_21948
crossref_primary_10_3390_app13127055
crossref_primary_10_1016_j_asoc_2018_09_030
crossref_primary_10_3390_jcp3040037
crossref_primary_10_1371_journal_pone_0203192
crossref_primary_10_1016_j_neunet_2018_07_016
crossref_primary_10_1016_j_neucom_2018_07_050
crossref_primary_10_1049_2024_3179667
crossref_primary_10_1016_j_ins_2018_06_043
Cites_doi 10.1038/nature14539
10.1016/j.imavis.2006.02.007
10.1007/BF02551274
10.1109/TIP.2015.2487860
10.1162/neco.2008.12-07-661
10.1162/neco.1996.8.7.1341
10.1109/TIFS.2015.2446438
10.1162/neco.2006.18.7.1527
10.1109/TPAMI.2012.155
10.1109/TPAMI.2010.52
10.1109/ACCESS.2015.2428631
10.1049/ip-vis:20031078
10.1016/j.patcog.2016.04.014
10.1126/science.1127647
10.1109/TIT.2013.2245716
10.1109/TPAMI.2008.128
10.1162/neco.1992.4.4.473
10.1016/0893-6080(89)90020-8
10.1109/ACCESS.2014.2349879
10.1561/2200000006
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2017.01.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
EndPage 74
ExternalDocumentID 10_1016_j_imavis_2017_01_005
S0262885617300136
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-befd6eb3b6d9905dc23b65009f7df7f7ebdf4116ef41792956cf69460e95cb3c3
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399517800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0262-8856
IngestDate Sat Nov 29 01:53:27 EST 2025
Tue Nov 18 22:54:55 EST 2025
Fri Feb 23 02:23:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Group sparsity
Latent fingerprint
Supervised autoencoder
Minutia extraction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-befd6eb3b6d9905dc23b65009f7df7f7ebdf4116ef41792956cf69460e95cb3c3
ORCID 0000-0001-5952-2274
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_imavis_2017_01_005
crossref_primary_10_1016_j_imavis_2017_01_005
elsevier_sciencedirect_doi_10_1016_j_imavis_2017_01_005
PublicationCentury 2000
PublicationDate April 2017
2017-04-00
PublicationDateYYYYMMDD 2017-04-01
PublicationDate_xml – month: 04
  year: 2017
  text: April 2017
PublicationDecade 2010
PublicationTitle Image and vision computing
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Goodfellow, Warde-Farley, Mirza, Courville, Bengio (bb0060) 2013
Hong, Yu, Wan, Tao, Wang (bb0080) 2015; 24
Hinton, Salakhutdinov (bb0165) 2006; 313
Maltoni, Maio, Jain, Prabhakar (bb0200) 2009
Cybenko (bb0020) 1989; 2
Hornik, Stinchcombe, White (bb0025) 1989; 2
Sutskever, Hinton (bb0030) 2008; 20
Wan, Zeiler, Zhang, Cun, Fergus (bb0065) 2013
Netzer, Wang, Coates, Bissacco, Wu, Ng (bb0105) 2011
Fingerprint minutiae from latent and matching tenprint images, NIST Special Database 27. Available
Sankaran, Pandey, Vatsa, Singh (bb0235) 2014
NBIS (NIST Biometric Image Software), Developed by National Institute of Standards and Technology (NIST)
CASIA-Fingerprint V5, Chinese Academy of Sciences Institute of Automation (CASIA) Fingerprint Image Database Version 5.0.
Lee, Gallagher, Tu (bb0195) 2016
Hinton, Osindero, Teh (bb0055) 2006; 18
Jia, Yang, Zang, Zhang, Tian (bb0255) 2012
Bengio, Lamblin, Popovici, Larochelle (bb0035) 2007; 19
.
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bb0045) 2014; 15
Nie, Huang, Cai, Ding (bb0135) 2010
Zheng, Yang (bb0085) 2006; 24
Fraz ao, Alexandre (bb0070) 2014
NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (FIGS), NIST Special Database 14.
Sang, Jin, Wan (bb0120) 2014; vol. I
Rifai, Vincent, Muller, Glorot, Bengio (bb0050) 2011
Ortega-Garcia, Fierrez-Aguilar, Simon, Gonzalez, Faundez-Zanuy, Espinosa, Satue, Hernaez, Igarza, Vivaracho, Escudero, Moro (bb0250) 2003; 150
Sankaran, Dhamecha, Vatsa, Singh (bb0220) 2011
LeCun, Cortes (bb0095) 2010
Sankaran, Vatsa, Singh (bb0115) 2015; 3
Yang, Shen, Ma, Huang, Zhou (bb0140) 2011; vol. 22
Bengio (bb0015) 2009; 2
LeCun, Bengio, Hinton (bb0005) 2015; 521
Sankaran, Goswami, Vatsa, Singh, Majumdar (bb0265) 2017; 61
Krizhevsky, Hinton (bb0100) 2009
Davenport, Baraniuk, Scott (bb0155) 2006; vol 5
Majumdar, Ward (bb0130) 2012
Mairal (bb0090) 2013
MarcAurelio Ranzato, Chopra, LeCun (bb0010) 2007
Boyd, Parikh, Chu, Peleato, Eckstein (bb0150) 2011; 3
Feng, Zhou, Jain (bb0210) 2013; 35
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bb0175) 2010; 11
Nowlan, Hinton (bb0040) 1992; 4
Swersky, Ranzato, Buchman, Marlin, Freitas (bb0180) 2011
Hong, Yu, Tao, Wang (bb0075) 2015; 62
Blumensath (bb0145) 2013; 59
Chen, Weinberger, Sha, Bengio (bb0170) 2014
Sankaran, Vatsa, Singh (bb0205) 2014; 2
Torralba, Fergus, Freeman (bb0160) 2008; 30
Cappelli, Ferrara, Maltoni (bb0230) 2010; 32
Gao, Zhang, Jia, Lu, Zhang (bb0125) 2015; 10
J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: the all convolutional net, arXiv preprint arXiv:1412.6806.
Wolpert (bb0185) 1996; 8
Cybenko (10.1016/j.imavis.2017.01.005_bb0020) 1989; 2
MarcAurelio Ranzato (10.1016/j.imavis.2017.01.005_bb0010) 2007
Goodfellow (10.1016/j.imavis.2017.01.005_bb0060) 2013
Maltoni (10.1016/j.imavis.2017.01.005_bb0200) 2009
Wolpert (10.1016/j.imavis.2017.01.005_bb0185) 1996; 8
10.1016/j.imavis.2017.01.005_bb0260
Cappelli (10.1016/j.imavis.2017.01.005_bb0230) 2010; 32
Ortega-Garcia (10.1016/j.imavis.2017.01.005_bb0250) 2003; 150
Sutskever (10.1016/j.imavis.2017.01.005_bb0030) 2008; 20
Nie (10.1016/j.imavis.2017.01.005_bb0135) 2010
Sankaran (10.1016/j.imavis.2017.01.005_bb0115) 2015; 3
Jia (10.1016/j.imavis.2017.01.005_bb0255) 2012
Sankaran (10.1016/j.imavis.2017.01.005_bb0205) 2014; 2
Bengio (10.1016/j.imavis.2017.01.005_bb0015) 2009; 2
Davenport (10.1016/j.imavis.2017.01.005_bb0155) 2006; vol 5
LeCun (10.1016/j.imavis.2017.01.005_bb0095) 2010
Srivastava (10.1016/j.imavis.2017.01.005_bb0045) 2014; 15
Swersky (10.1016/j.imavis.2017.01.005_bb0180) 2011
Nowlan (10.1016/j.imavis.2017.01.005_bb0040) 1992; 4
Chen (10.1016/j.imavis.2017.01.005_bb0170) 2014
Sankaran (10.1016/j.imavis.2017.01.005_bb0235) 2014
Netzer (10.1016/j.imavis.2017.01.005_bb0105) 2011
Sankaran (10.1016/j.imavis.2017.01.005_bb0220) 2011
10.1016/j.imavis.2017.01.005_bb0245
LeCun (10.1016/j.imavis.2017.01.005_bb0005) 2015; 521
10.1016/j.imavis.2017.01.005_bb0240
Lee (10.1016/j.imavis.2017.01.005_bb0195) 2016
Boyd (10.1016/j.imavis.2017.01.005_bb0150) 2011; 3
Blumensath (10.1016/j.imavis.2017.01.005_bb0145) 2013; 59
Bengio (10.1016/j.imavis.2017.01.005_bb0035) 2007; 19
Hong (10.1016/j.imavis.2017.01.005_bb0080) 2015; 24
Yang (10.1016/j.imavis.2017.01.005_bb0140) 2011; vol. 22
10.1016/j.imavis.2017.01.005_bb0110
Hinton (10.1016/j.imavis.2017.01.005_bb0055) 2006; 18
Gao (10.1016/j.imavis.2017.01.005_bb0125) 2015; 10
Majumdar (10.1016/j.imavis.2017.01.005_bb0130) 2012
Rifai (10.1016/j.imavis.2017.01.005_bb0050) 2011
Vincent (10.1016/j.imavis.2017.01.005_bb0175) 2010; 11
10.1016/j.imavis.2017.01.005_bb0190
Sankaran (10.1016/j.imavis.2017.01.005_bb0265) 2017; 61
Zheng (10.1016/j.imavis.2017.01.005_bb0085) 2006; 24
Hong (10.1016/j.imavis.2017.01.005_bb0075) 2015; 62
Hornik (10.1016/j.imavis.2017.01.005_bb0025) 1989; 2
Torralba (10.1016/j.imavis.2017.01.005_bb0160) 2008; 30
Krizhevsky (10.1016/j.imavis.2017.01.005_bb0100) 2009
Hinton (10.1016/j.imavis.2017.01.005_bb0165) 2006; 313
Feng (10.1016/j.imavis.2017.01.005_bb0210) 2013; 35
Fraz ao (10.1016/j.imavis.2017.01.005_bb0070) 2014
Sang (10.1016/j.imavis.2017.01.005_bb0120) 2014; vol. I
Wan (10.1016/j.imavis.2017.01.005_bb0065) 2013
Mairal (10.1016/j.imavis.2017.01.005_bb0090) 2013
References_xml – volume: 24
  start-page: 819
  year: 2006
  end-page: 826
  ident: bb0085
  article-title: Supervised locality pursuit embedding for pattern classification
  publication-title: Image Vis. Comput.
– start-page: 1058
  year: 2013
  end-page: 1066
  ident: bb0065
  article-title: Regularization of neural networks using dropconnect
  publication-title: International Conference on Machine Learning
– volume: 62
  start-page: 3742
  year: 2015
  end-page: 3751
  ident: bb0075
  article-title: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval
  publication-title: IEEE Trans. Ind. Electron.
– volume: vol. 22
  start-page: 1589
  year: 2011
  ident: bb0140
  article-title: L2, 1-norm regularized discriminative feature selection for unsupervised learning
  publication-title: International Joint Conference on Artificial Intelligence
– volume: 32
  start-page: 2128
  year: 2010
  end-page: 2141
  ident: bb0230
  article-title: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2013
  ident: bb0060
  article-title: Maxout networks
  publication-title: International Conference on Machine Learning
– year: 2010
  ident: bb0095
  article-title: MNIST Handwritten Digit Database
– start-page: 5
  year: 2011
  ident: bb0105
  article-title: Reading digits in natural images with unsupervised feature learning
  publication-title: NIPS Workshop on Deep Learning and Unsupervised Feature Learning
– start-page: 3421
  year: 2012
  end-page: 3424
  ident: bb0130
  article-title: Synthesis and analysis prior algorithms for joint-sparse recovery
  publication-title: IEEE International Conference on Acoustics, Speech and Signal Processing
– volume: 30
  start-page: 1958
  year: 2008
  end-page: 1970
  ident: bb0160
  article-title: 80 million tiny images: a large data set for nonparametric object and scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 521
  start-page: 436
  year: 2015
  end-page: 444
  ident: bb0005
  article-title: Deep learning
  publication-title: Nature
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bb0015
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
– reference: CASIA-Fingerprint V5, Chinese Academy of Sciences Institute of Automation (CASIA) Fingerprint Image Database Version 5.0.
– start-page: 833
  year: 2011
  end-page: 840
  ident: bb0050
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
  publication-title: International Conference on Machine Learning
– year: 2016
  ident: bb0195
  article-title: Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree
  publication-title: International Conference on Artificial Intelligence and Statistics
– volume: 61
  start-page: 674
  year: 2017
  end-page: 685
  ident: bb0265
  article-title: Class sparsity signature based restricted Boltzmann machine
  publication-title: Pattern Recogn.
– reference: NIST 8-Bit Gray Scale Images of Fingerprint Image Groups (FIGS), NIST Special Database 14.
– start-page: 1
  year: 2014
  end-page: 7
  ident: bb0235
  article-title: On latent fingerprint minutiae extraction using stacked denoising sparse autoencoders
  publication-title: IEEE International Joint Conference on Biometrics
– year: 2007
  ident: bb0010
  article-title: Efficient learning of sparse representations with an energy-based model
  publication-title: Advances in Neural Information Processing Systems
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bb0025
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
– volume: 2
  start-page: 982
  year: 2014
  end-page: 1004
  ident: bb0205
  article-title: Latent fingerprint matching: a survey
  publication-title: IEEE Access
– start-page: 3001
  year: 2012
  end-page: 3004
  ident: bb0255
  article-title: A cross-device matching fingerprint database from multi-type sensors
  publication-title: International Conference on Pattern Recognition
– volume: 8
  start-page: 1341
  year: 1996
  end-page: 1390
  ident: bb0185
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural computation
– volume: 35
  start-page: 925
  year: 2013
  end-page: 940
  ident: bb0210
  article-title: Orientation field estimation for latent fingerprint enhancement
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2011
  end-page: 6
  ident: bb0220
  article-title: On matching latent to latent fingerprints
  publication-title: Proceedings of International Joint Conference on Biometrics
– volume: 59
  start-page: 3466
  year: 2013
  end-page: 3474
  ident: bb0145
  article-title: Compressed sensing with nonlinear observations and related nonlinear optimization problems
  publication-title: IEEE Trans. Inf. Theory
– volume: 2
  start-page: 303
  year: 1989
  end-page: 314
  ident: bb0020
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Syst.
– volume: 4
  start-page: 473
  year: 1992
  end-page: 493
  ident: bb0040
  article-title: Simplifying neural networks by soft weight-sharing
  publication-title: Neural Comput.
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bb0150
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends® Mach. Learn.
– start-page: 282
  year: 2014
  end-page: 289
  ident: bb0070
  article-title: Dropall: generalization of two convolutional neural network regularization methods
  publication-title: Image Analysis and Recognition
– volume: 20
  start-page: 2629
  year: 2008
  end-page: 2636
  ident: bb0030
  article-title: Deep, narrow sigmoid belief networks are universal approximators
  publication-title: Neural Comput.
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: bb0165
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– reference: NBIS (NIST Biometric Image Software), Developed by National Institute of Standards and Technology (NIST),
– reference: Fingerprint minutiae from latent and matching tenprint images, NIST Special Database 27. Available:
– volume: 19
  start-page: 153
  year: 2007
  ident: bb0035
  article-title: Greedy layerwise training of deep networks
  publication-title: Advances in neural information processing systems
– volume: 3
  start-page: 653
  year: 2015
  end-page: 665
  ident: bb0115
  article-title: Multisensor optical and latent fingerprint database
  publication-title: IEEE Access
– year: 2009
  ident: bb0100
  article-title: Learning Multiple Layers of Features from Tiny Images
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bb0045
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 150
  start-page: 395
  year: 2003
  end-page: 401
  ident: bb0250
  article-title: MCYT baseline corpus: a bimodal biometric database
  publication-title: IEE Proceedings on Vision, Image and Signal Processing
– volume: vol. I
  start-page: 521
  year: 2014
  end-page: 531
  ident: bb0120
  article-title: Discriminative feature learning for action recognition using a stacked denoising autoencoder
  publication-title: Intelligent Data Analysis and Its Applications
– volume: 18
  start-page: 1527
  year: 2006
  end-page: 1554
  ident: bb0055
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
– volume: 10
  start-page: 2108
  year: 2015
  end-page: 2118
  ident: bb0125
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forensics Secur.
– start-page: 1813
  year: 2010
  end-page: 1821
  ident: bb0135
  article-title: Efficient and robust feature selection via joint L2, 1-norms minimization
  publication-title: Advances in Neural Information Processing Systems
– reference: J.T. Springenberg, A. Dosovitskiy, T. Brox, M. Riedmiller, Striving for simplicity: the all convolutional net, arXiv preprint arXiv:1412.6806.
– reference: .
– start-page: 1201
  year: 2011
  end-page: 1208
  ident: bb0180
  article-title: On autoencoders and score matching for energy based models
  publication-title: International Conference on Machine Learning
– start-page: 1476
  year: 2014
  end-page: 1484
  ident: bb0170
  article-title: Marginalized denoising auto-encoders for nonlinear representations
  publication-title: International Conference on Machine Learning
– volume: vol 5
  year: 2006
  ident: bb0155
  article-title: Controlling False Alarms with Support Vector Machines
  publication-title: International Conference on Acoustics, Speech and Signal Processing, 2006
– year: 2009
  ident: bb0200
  article-title: Handbook of Fingerprint Recognition
– volume: 24
  start-page: 5659
  year: 2015
  end-page: 5670
  ident: bb0080
  article-title: Multimodal deep autoencoder for human pose recovery
  publication-title: IEEE Trans. Image Process.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bb0175
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– start-page: 2283
  year: 2013
  end-page: 2291
  ident: bb0090
  article-title: Stochastic majorization–minimization algorithms for large-scale optimization
  publication-title: Advances in Neural Information Processing Systems
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.imavis.2017.01.005_bb0045
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.imavis.2017.01.005_bb0190
– start-page: 1201
  year: 2011
  ident: 10.1016/j.imavis.2017.01.005_bb0180
  article-title: On autoencoders and score matching for energy based models
– start-page: 1
  year: 2011
  ident: 10.1016/j.imavis.2017.01.005_bb0220
  article-title: On matching latent to latent fingerprints
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  ident: 10.1016/j.imavis.2017.01.005_bb0005
  article-title: Deep learning
  publication-title: Nature
  doi: 10.1038/nature14539
– ident: 10.1016/j.imavis.2017.01.005_bb0245
– start-page: 833
  year: 2011
  ident: 10.1016/j.imavis.2017.01.005_bb0050
  article-title: Contractive auto-encoders: explicit invariance during feature extraction
– volume: 19
  start-page: 153
  year: 2007
  ident: 10.1016/j.imavis.2017.01.005_bb0035
  article-title: Greedy layerwise training of deep networks
  publication-title: Advances in neural information processing systems
– volume: 24
  start-page: 819
  issue: 8
  year: 2006
  ident: 10.1016/j.imavis.2017.01.005_bb0085
  article-title: Supervised locality pursuit embedding for pattern classification
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2006.02.007
– start-page: 1476
  year: 2014
  ident: 10.1016/j.imavis.2017.01.005_bb0170
  article-title: Marginalized denoising auto-encoders for nonlinear representations
– volume: 2
  start-page: 303
  issue: 4
  year: 1989
  ident: 10.1016/j.imavis.2017.01.005_bb0020
  article-title: Approximation by superpositions of a sigmoidal function
  publication-title: Math. Control Signals Syst.
  doi: 10.1007/BF02551274
– start-page: 1
  year: 2014
  ident: 10.1016/j.imavis.2017.01.005_bb0235
  article-title: On latent fingerprint minutiae extraction using stacked denoising sparse autoencoders
– year: 2013
  ident: 10.1016/j.imavis.2017.01.005_bb0060
  article-title: Maxout networks
– volume: 24
  start-page: 5659
  issue: 12
  year: 2015
  ident: 10.1016/j.imavis.2017.01.005_bb0080
  article-title: Multimodal deep autoencoder for human pose recovery
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2487860
– volume: vol. 22
  start-page: 1589
  year: 2011
  ident: 10.1016/j.imavis.2017.01.005_bb0140
  article-title: L2, 1-norm regularized discriminative feature selection for unsupervised learning
– volume: 20
  start-page: 2629
  issue: 11
  year: 2008
  ident: 10.1016/j.imavis.2017.01.005_bb0030
  article-title: Deep, narrow sigmoid belief networks are universal approximators
  publication-title: Neural Comput.
  doi: 10.1162/neco.2008.12-07-661
– start-page: 1813
  year: 2010
  ident: 10.1016/j.imavis.2017.01.005_bb0135
  article-title: Efficient and robust feature selection via joint L2, 1-norms minimization
– volume: 8
  start-page: 1341
  issue: 7
  year: 1996
  ident: 10.1016/j.imavis.2017.01.005_bb0185
  article-title: The lack of a priori distinctions between learning algorithms
  publication-title: Neural computation
  doi: 10.1162/neco.1996.8.7.1341
– ident: 10.1016/j.imavis.2017.01.005_bb0240
– ident: 10.1016/j.imavis.2017.01.005_bb0110
– volume: 10
  start-page: 2108
  issue: 10
  year: 2015
  ident: 10.1016/j.imavis.2017.01.005_bb0125
  article-title: Single sample face recognition via learning deep supervised autoencoders
  publication-title: IEEE Trans. Inf. Forensics Secur.
  doi: 10.1109/TIFS.2015.2446438
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.imavis.2017.01.005_bb0150
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends® Mach. Learn.
– volume: 11
  start-page: 3371
  year: 2010
  ident: 10.1016/j.imavis.2017.01.005_bb0175
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  ident: 10.1016/j.imavis.2017.01.005_bb0055
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Comput.
  doi: 10.1162/neco.2006.18.7.1527
– volume: vol 5
  year: 2006
  ident: 10.1016/j.imavis.2017.01.005_bb0155
  article-title: Controlling False Alarms with Support Vector Machines
– volume: 35
  start-page: 925
  issue: 4
  year: 2013
  ident: 10.1016/j.imavis.2017.01.005_bb0210
  article-title: Orientation field estimation for latent fingerprint enhancement
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2012.155
– volume: 32
  start-page: 2128
  issue: 12
  year: 2010
  ident: 10.1016/j.imavis.2017.01.005_bb0230
  article-title: Minutia cylinder-code: a new representation and matching technique for fingerprint recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.52
– start-page: 2283
  year: 2013
  ident: 10.1016/j.imavis.2017.01.005_bb0090
  article-title: Stochastic majorization–minimization algorithms for large-scale optimization
– volume: 3
  start-page: 653
  year: 2015
  ident: 10.1016/j.imavis.2017.01.005_bb0115
  article-title: Multisensor optical and latent fingerprint database
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2015.2428631
– volume: 150
  start-page: 395
  issue: 6
  year: 2003
  ident: 10.1016/j.imavis.2017.01.005_bb0250
  article-title: MCYT baseline corpus: a bimodal biometric database
  publication-title: IEE Proceedings on Vision, Image and Signal Processing
  doi: 10.1049/ip-vis:20031078
– volume: 61
  start-page: 674
  year: 2017
  ident: 10.1016/j.imavis.2017.01.005_bb0265
  article-title: Class sparsity signature based restricted Boltzmann machine
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.04.014
– start-page: 3421
  year: 2012
  ident: 10.1016/j.imavis.2017.01.005_bb0130
  article-title: Synthesis and analysis prior algorithms for joint-sparse recovery
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.imavis.2017.01.005_bb0165
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 59
  start-page: 3466
  issue: 6
  year: 2013
  ident: 10.1016/j.imavis.2017.01.005_bb0145
  article-title: Compressed sensing with nonlinear observations and related nonlinear optimization problems
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2013.2245716
– start-page: 282
  year: 2014
  ident: 10.1016/j.imavis.2017.01.005_bb0070
  article-title: Dropall: generalization of two convolutional neural network regularization methods
– year: 2009
  ident: 10.1016/j.imavis.2017.01.005_bb0100
– start-page: 5
  year: 2011
  ident: 10.1016/j.imavis.2017.01.005_bb0105
  article-title: Reading digits in natural images with unsupervised feature learning
– start-page: 1058
  year: 2013
  ident: 10.1016/j.imavis.2017.01.005_bb0065
  article-title: Regularization of neural networks using dropconnect
– volume: 30
  start-page: 1958
  issue: 11
  year: 2008
  ident: 10.1016/j.imavis.2017.01.005_bb0160
  article-title: 80 million tiny images: a large data set for nonparametric object and scene recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.128
– year: 2007
  ident: 10.1016/j.imavis.2017.01.005_bb0010
  article-title: Efficient learning of sparse representations with an energy-based model
– year: 2016
  ident: 10.1016/j.imavis.2017.01.005_bb0195
  article-title: Generalizing pooling functions in convolutional neural networks: mixed, gated, and tree
– volume: 4
  start-page: 473
  issue: 4
  year: 1992
  ident: 10.1016/j.imavis.2017.01.005_bb0040
  article-title: Simplifying neural networks by soft weight-sharing
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.4.473
– volume: vol. I
  start-page: 521
  year: 2014
  ident: 10.1016/j.imavis.2017.01.005_bb0120
  article-title: Discriminative feature learning for action recognition using a stacked denoising autoencoder
– volume: 62
  start-page: 3742
  issue: 6
  year: 2015
  ident: 10.1016/j.imavis.2017.01.005_bb0075
  article-title: Image-based three-dimensional human pose recovery by multiview locality-sensitive sparse retrieval
  publication-title: IEEE Trans. Ind. Electron.
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.imavis.2017.01.005_bb0025
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 3001
  year: 2012
  ident: 10.1016/j.imavis.2017.01.005_bb0255
  article-title: A cross-device matching fingerprint database from multi-type sensors
– year: 2010
  ident: 10.1016/j.imavis.2017.01.005_bb0095
– year: 2009
  ident: 10.1016/j.imavis.2017.01.005_bb0200
– ident: 10.1016/j.imavis.2017.01.005_bb0260
– volume: 2
  start-page: 982
  year: 2014
  ident: 10.1016/j.imavis.2017.01.005_bb0205
  article-title: Latent fingerprint matching: a survey
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2014.2349879
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.imavis.2017.01.005_bb0015
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends Mach. Learn.
  doi: 10.1561/2200000006
SSID ssj0007079
Score 2.4059265
Snippet Unsupervised feature extraction is gaining a lot of research attention following its success to represent any kind of noisy data. Owing to the presence of a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 64
SubjectTerms Group sparsity
Latent fingerprint
Minutia extraction
Supervised autoencoder
Title Group sparse autoencoder
URI https://dx.doi.org/10.1016/j.imavis.2017.01.005
Volume 60
WOSCitedRecordID wos000399517800008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6hlAMc2hJALbTIB27IyO_1HiPUqu2h4lBQbtY-aQJxIj9Q-ffMetZ2RKtAD1wsy9pdP2Y0Mzv-5htC3lOmrHCZn0qZ-InguZ-HJvB5SLnlwmMqwGYT9Po6n8_ZZ9eMs-7aCdCyzO_u2Oa_ihqugbBt6ewjxD0sChfgHIQORxA7HP9J8JheAkNR1foDb5u1papUDoTrwtDLlYXq2Jw51pZ3yPK26d2Yzbjw8juvuCMYaOsha_yVNzXHKp9fMGYYD3Nvh0r9Mc-9bFcKMdyz8lt962CILs0ArmtEp6A1ijIwnTmygPemE1sBONuHbOTOi2LrnXv2GVMFy4-LleVQsMg62rGmBunoj_p_8H-4qQE82OPSlgWuUthViiAsOi7bvYimDMzb3uzybH41OGVLBIjpNnyLvoqyg_rdf5qHo5StyOPmkOy7LYM3Q1G_IE90OSUHbvvgOeNcT8nzLW7Jl-So0wMP9cDb0oNX5Mv52c2nC9-1wfAl7OcaX2ijMi1ikSkIHVIlIzhNITY2VBlqqBbKJGGYaWO7yUWw4ZUmY0kWaJZKEcv4NZmU61IfES-VMRMiThINYZ2RTHBuko4zEXYBCc-OSdy_diEdR7xtVfKj2PXRj4k_zNogR8pfxtP-ixYuzsP4rQA12TnzzSPv9JY8G3X5hEyaqtWn5Kn82Szq6p3Tkd99U3Qp
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Group+sparse+autoencoder&rft.jtitle=Image+and+vision+computing&rft.au=Sankaran%2C+Anush&rft.au=Vatsa%2C+Mayank&rft.au=Singh%2C+Richa&rft.au=Majumdar%2C+Angshul&rft.date=2017-04-01&rft.issn=0262-8856&rft.volume=60&rft.spage=64&rft.epage=74&rft_id=info:doi/10.1016%2Fj.imavis.2017.01.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_imavis_2017_01_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon