An almost optimal algorithm for Voronoi diagrams of non-disjoint line segments
This paper presents an almost optimal algorithm that computes the Voronoi diagram of a set S of n line segments that may intersect or cross each other. If there are k intersections among the input segments in S, our algorithm takes O(nα(n)logn+k) time, where α(⋅) denotes the inverse of the Ackerman...
Saved in:
| Published in: | Computational geometry : theory and applications Vol. 52; pp. 34 - 43 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.02.2016
|
| Subjects: | |
| ISSN: | 0925-7721 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | This paper presents an almost optimal algorithm that computes the Voronoi diagram of a set S of n line segments that may intersect or cross each other. If there are k intersections among the input segments in S, our algorithm takes O(nα(n)logn+k) time, where α(⋅) denotes the inverse of the Ackermann function. The best known running time prior to this work was O((n+k)logn). Since the lower bound of the problem is shown to be Ω(nlogn+k) in the worst case, our algorithm is worst-case optimal for k=Ω(nα(n)logn), and is only a factor of α(n) away from any optimal-time algorithm, which is still unknown. For the purpose, we also present an improved algorithm that computes the medial axis or the Voronoi diagram of a polygon with holes. |
|---|---|
| ISSN: | 0925-7721 |
| DOI: | 10.1016/j.comgeo.2015.11.002 |