Low-level structure feature extraction for image processing via stacked sparse denoising autoencoder
•We use deep learning for image processing by extracting image feature.•The extraction has good performance in noisy or low-light circumstance.•We optimize TV and L0 smoothing filter by the proposed feature extraction.•The features can extract image structure features regardless the inputs directly....
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 243; S. 12 - 20 |
|---|---|
| Hauptverfasser: | , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
21.06.2017
|
| Schlagworte: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •We use deep learning for image processing by extracting image feature.•The extraction has good performance in noisy or low-light circumstance.•We optimize TV and L0 smoothing filter by the proposed feature extraction.•The features can extract image structure features regardless the inputs directly.
In this paper, we propose a novel low-level structure feature extraction for image processing based on deep neural network, stacked sparse denoising autoencoder (SSDA). The current image processing methods via deep learning are directly building and learning the end-to-end mappings between the input/output. Instead, we advocate the analysis of the first layer learning features from input data. With the learned low-level structure features, we improve two edge-preserving filters that are key to image processing tasks such as denoising, High Dynamic Range (HDR) compression and details enhancement. Due to the validity and superiority of the proposed feature extraction, the results computed by the two improved filters do not suffer from the drawbacks including halos, edge blurring, noise amplification and over-enhancement. More importantly, we demonstrate that the features trained from natural images are not specific and can extract the structure features of infrared images. Hence, it is feasible to handle tasks by using the trained features directly. |
|---|---|
| AbstractList | •We use deep learning for image processing by extracting image feature.•The extraction has good performance in noisy or low-light circumstance.•We optimize TV and L0 smoothing filter by the proposed feature extraction.•The features can extract image structure features regardless the inputs directly.
In this paper, we propose a novel low-level structure feature extraction for image processing based on deep neural network, stacked sparse denoising autoencoder (SSDA). The current image processing methods via deep learning are directly building and learning the end-to-end mappings between the input/output. Instead, we advocate the analysis of the first layer learning features from input data. With the learned low-level structure features, we improve two edge-preserving filters that are key to image processing tasks such as denoising, High Dynamic Range (HDR) compression and details enhancement. Due to the validity and superiority of the proposed feature extraction, the results computed by the two improved filters do not suffer from the drawbacks including halos, edge blurring, noise amplification and over-enhancement. More importantly, we demonstrate that the features trained from natural images are not specific and can extract the structure features of infrared images. Hence, it is feasible to handle tasks by using the trained features directly. |
| Author | Bi, Duyan He, Linyuan Li, Cheng Shiping, Ma Gao, Shan Fan, Zunlin |
| Author_xml | – sequence: 1 givenname: Zunlin orcidid: 0000-0003-2226-9505 surname: Fan fullname: Fan, Zunlin email: 18191261397@163.com organization: Air Force Engineering University, Aeronautics and Astronautics Engineering College, No. 1 Baling Road, Baqiao District, Xi'an, Shaanxi 710038, China – sequence: 2 givenname: Duyan surname: Bi fullname: Bi, Duyan organization: Air Force Engineering University, Aeronautics and Astronautics Engineering College, No. 1 Baling Road, Baqiao District, Xi'an, Shaanxi 710038, China – sequence: 3 givenname: Linyuan surname: He fullname: He, Linyuan organization: Air Force Engineering University, Aeronautics and Astronautics Engineering College, No. 1 Baling Road, Baqiao District, Xi'an, Shaanxi 710038, China – sequence: 4 givenname: Ma surname: Shiping fullname: Shiping, Ma organization: Air Force Engineering University, Aeronautics and Astronautics Engineering College, No. 1 Baling Road, Baqiao District, Xi'an, Shaanxi 710038, China – sequence: 5 givenname: Shan surname: Gao fullname: Gao, Shan organization: Air Force Engineering University, Aeronautics and Astronautics Engineering College, No. 1 Baling Road, Baqiao District, Xi'an, Shaanxi 710038, China – sequence: 6 givenname: Cheng surname: Li fullname: Li, Cheng organization: Air Force Aviation University, Nanhu Road, Nanguan District, Changchun, Jilin 130022, China |
| BookMark | eNqFkMtOwzAQRS1UJErhD1jkBxJsJ3USFkio4iVVYgNryxmPK5c0rmynwN_jtqxYwGoWM-dq7jknk8ENSMgVowWjTFyviwFHcJuCU1YXlBdUiBMyZU3N84Y3YkKmtOXznJeMn5HzENY0HTLeToleuo-8xx32WYh-hDh6zAyqw8TP6BVE64bMOJ_ZjVphtvUOMAQ7rLKdVYlS8I46C1vlA2YaB2cPSzVGhwM4jf6CnBrVB7z8mTPy9nD_unjKly-Pz4u7ZQ4lFTHvgFNdG9ZRXnXU8DkwoxTvsFJCt3Reg1BUU1aCNmCYbhtWsRY7oRArxrGckeqYC96F4NHIrU9P-y_JqNybkmt5NCX3piTlMplK2M0vDGxU-9qpvu3_g2-PMKZiO4teBrCpN2rrEaLUzv4d8A1K9I0u |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_2991846 crossref_primary_10_1002_cpe_6155 crossref_primary_10_1186_s12911_019_0765_4 crossref_primary_10_1007_s11831_025_10260_5 crossref_primary_10_1016_j_apacoust_2020_107391 crossref_primary_10_1007_s10916_017_0814_4 crossref_primary_10_1109_ACCESS_2019_2956508 crossref_primary_10_1109_TMM_2021_3096088 crossref_primary_10_3390_su17146284 crossref_primary_10_1016_j_neucom_2017_07_017 crossref_primary_10_1155_2021_6687146 crossref_primary_10_1016_j_neucom_2020_02_051 crossref_primary_10_1007_s11042_018_6811_x crossref_primary_10_1016_j_knosys_2020_105484 crossref_primary_10_1186_s12911_020_1113_4 crossref_primary_10_1080_03007995_2020_1837763 crossref_primary_10_1016_j_asoc_2018_10_035 crossref_primary_10_1109_ACCESS_2017_2771621 crossref_primary_10_1016_j_chb_2018_08_039 crossref_primary_10_1016_j_infrared_2017_08_015 crossref_primary_10_1109_TMI_2021_3077187 crossref_primary_10_3390_s20082179 crossref_primary_10_1016_j_epsr_2023_109300 crossref_primary_10_1109_ACCESS_2018_2889327 |
| Cites_doi | 10.1145/566654.566574 10.1090/S0002-9947-1952-0047179-6 10.1145/1360612.1360666 10.1016/j.patcog.2016.06.008 10.1016/j.neucom.2016.08.098 10.1016/j.neucom.2016.12.038 10.1016/j.infrared.2015.11.006 10.1109/TIP.2015.2487860 10.1016/j.neucom.2016.12.027 10.1109/TIP.2016.2579306 10.1088/2040-8978/18/8/085706 10.1016/j.neucom.2015.08.127 10.1109/TPAMI.2012.213 10.1109/TPAMI.2015.2439281 10.1137/060649781 10.1016/j.acha.2007.09.003 10.1016/0167-2789(92)90242-F |
| ContentType | Journal Article |
| Copyright | 2017 |
| Copyright_xml | – notice: 2017 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2017.02.066 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 20 |
| ExternalDocumentID | 10_1016_j_neucom_2017_02_066 S0925231217303909 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-bc20d7f1b024b0f25c1faa2be4a6d9057c6a0d013cdfcf1d981419eb6aee412e3 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000399511900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 03:02:48 EST 2025 Tue Nov 18 21:49:07 EST 2025 Fri Feb 23 02:30:22 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Pattern recognition Image processing Spatial filter Image enhancement |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-bc20d7f1b024b0f25c1faa2be4a6d9057c6a0d013cdfcf1d981419eb6aee412e3 |
| ORCID | 0000-0003-2226-9505 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2017_02_066 crossref_citationtrail_10_1016_j_neucom_2017_02_066 elsevier_sciencedirect_doi_10_1016_j_neucom_2017_02_066 |
| PublicationCentury | 2000 |
| PublicationDate | 2017-06-21 |
| PublicationDateYYYYMMDD | 2017-06-21 |
| PublicationDate_xml | – month: 06 year: 2017 text: 2017-06-21 day: 21 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Yosinski, Clune, Bengio, Lipson (bib0020) 2014 Liu, Wang, Liu, Zeng, Liu, Alsaadi (bib0001) 2017; 234 li, Zhao, Yang, Wu, Zhuang, Ling, Wang (bib0004) 2016; 25 Rudin, Osher, Fatemi (bib0016) 1992; 60 Agostinelli, Anderson, Lee (bib0012) 2013 Fan, Bi, Gao, He, Ding (bib0023) 2016; 18 Hong, Yu, Wan, Tao, Wang (bib0010) 2015; 24 Dong, Loy, He, Tang (bib0007) 2016; 38 Hong, Yu, Tao, Wang (bib0011) 2015; 62 Farbman, Fattal, Lischinski, Szeliski (bib0017) 2008; 27 Zhu, Wang, Bai, Yao, Bai (bib0009) 2016; 204 Xu, Lu, Xu, Jia (bib0018) 2010; 30 Duffin, Schaeffer (bib0024) 1952; 72 Zhang, Wu (bib0005) 2016 Easley, Labate, Lim (bib0022) 2008; 25 Gou, Labate (bib0021) 2007; 39 Xu, Ren, Liu, Jia (bib0013) 2014 Fan, Bi, He, Ma (bib0025) 2016; 74 Yu, Yang, Gao, Tao (bib0003) 2016; 99 He, Sun, Tang (bib0019) 2013; 35 Sun, Zhang, An, Fan, Zhang, Wang, Dai (bib0006) 2016; vol. 9916 Sun, Zhang, Zhang, Hu (bib0008) 2017; 230 Lore, Akintayo, Sarkar (bib0014) 2016; 61 Durand, Dorsey (bib0015) 2002; 21 Tan, Tang, Zhou, Luo, Kang, Li (bib0002) 2017; 228 Durand (10.1016/j.neucom.2017.02.066_bib0015) 2002; 21 Agostinelli (10.1016/j.neucom.2017.02.066_bib0012) 2013 Xu (10.1016/j.neucom.2017.02.066_bib0018) 2010; 30 li (10.1016/j.neucom.2017.02.066_bib0004) 2016; 25 Sun (10.1016/j.neucom.2017.02.066_bib0008) 2017; 230 Lore (10.1016/j.neucom.2017.02.066_bib0014) 2016; 61 Fan (10.1016/j.neucom.2017.02.066_bib0023) 2016; 18 Duffin (10.1016/j.neucom.2017.02.066_bib0024) 1952; 72 Hong (10.1016/j.neucom.2017.02.066_bib0010) 2015; 24 Tan (10.1016/j.neucom.2017.02.066_bib0002) 2017; 228 Dong (10.1016/j.neucom.2017.02.066_bib0007) 2016; 38 Yu (10.1016/j.neucom.2017.02.066_bib0003) 2016; 99 Sun (10.1016/j.neucom.2017.02.066_bib0006) 2016; vol. 9916 Zhu (10.1016/j.neucom.2017.02.066_bib0009) 2016; 204 Xu (10.1016/j.neucom.2017.02.066_bib0013) 2014 Fan (10.1016/j.neucom.2017.02.066_bib0025) 2016; 74 Liu (10.1016/j.neucom.2017.02.066_bib0001) 2017; 234 Easley (10.1016/j.neucom.2017.02.066_bib0022) 2008; 25 He (10.1016/j.neucom.2017.02.066_bib0019) 2013; 35 Gou (10.1016/j.neucom.2017.02.066_bib0021) 2007; 39 Zhang (10.1016/j.neucom.2017.02.066_bib0005) 2016 Rudin (10.1016/j.neucom.2017.02.066_bib0016) 1992; 60 Farbman (10.1016/j.neucom.2017.02.066_bib0017) 2008; 27 Hong (10.1016/j.neucom.2017.02.066_bib0011) 2015; 62 Yosinski (10.1016/j.neucom.2017.02.066_bib0020) 2014 |
| References_xml | – start-page: 1790 year: 2014 end-page: 1798 ident: bib0013 article-title: Deep convolutional neural network for image deconvolution publication-title: Proceedings of Advances in Neural Information Processing Systems 27 – volume: 25 start-page: 25 year: 2008 end-page: 46 ident: bib0022 article-title: Sparse directional image representation using the discrete shearlet transforms publication-title: Appl. Comput. Harmonic Anal. – volume: 99 start-page: 1 year: 2016 end-page: 11 ident: bib0003 article-title: Deep multimodal distance metric learning using click constraints for image ranking publication-title: IEEE Trans. Cybern. – volume: 204 start-page: 41 year: 2016 end-page: 50 ident: bib0009 article-title: Deep learning representation using autoencoder for 3D shape retrieval publication-title: Neurocomputing – volume: 72 start-page: 341 year: 1952 end-page: 366 ident: bib0024 article-title: A class of nonharmonic Fourier series publication-title: Trans. Am. Math. Soc. – volume: 25 start-page: 3919 year: 2016 end-page: 3930 ident: bib0004 article-title: DeepSaliency: multi-task deep neural network model for salient object detection publication-title: IEEE Trans. Image Process. – volume: 38 start-page: 295 year: 2016 end-page: 307 ident: bib0007 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 24 start-page: 5659 year: 2015 end-page: 5670 ident: bib0010 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans. Image Process. – volume: 62 start-page: 3742 year: 2015 end-page: 3751 ident: bib0011 article-title: Image-based 3D human pose recovery by multi-view locality sensitive sparse retrieval publication-title: IEEE Trans. Ind. Electron. – volume: 74 start-page: 44 year: 2016 end-page: 52 ident: bib0025 article-title: Noise suppression and details enhancement for infrared image via novel prior publication-title: Infrared Phys. Technol. – volume: vol. 9916 year: 2016 ident: bib0006 article-title: Fast and accurate image denoising via a deep convolutional-pairs network publication-title: Advances in Multimedia Information Processing, PCM 2016. Lecture Notes in Computer Science – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: bib0001 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – start-page: 3320 year: 2014 end-page: 3328 ident: bib0020 article-title: How transferable are features in deep neural networks? publication-title: Proceedings of Advances in Neural Information Processing Systems 27 – start-page: 2499 year: 2016 end-page: 2503 ident: bib0005 article-title: Fast depth image denoising and enhancement using a deep convolutional network publication-title: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing – volume: 27 start-page: 15 year: 2008 end-page: 19 ident: bib0017 article-title: Edge preserving decompositions for multi-scale tone and detail manipulation publication-title: ACM Trans. Graph. – volume: 35 start-page: 1397 year: 2013 end-page: 1409 ident: bib0019 article-title: Guided image filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 60 start-page: 259 year: 1992 end-page: 268 ident: bib0016 article-title: Nonlinear total variation based noise removal algorithms publication-title: Phys. D: Nonlinear Phenom. – volume: 228 start-page: 165 year: 2017 end-page: 175 ident: bib0002 article-title: Photograph aesthetical evaluation and classification with deep convolutional neural networks publication-title: Neurocomputing – volume: 61 start-page: 650 year: 2016 end-page: 662 ident: bib0014 article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. – start-page: 1493 year: 2013 end-page: 1501 ident: bib0012 article-title: Adaptive multi-column deep neural networks with application to robust image denoising publication-title: Proceedings of Advances in Neural Information Processing Systems 26 – volume: 30 start-page: 174 year: 2010 ident: bib0018 article-title: Image smoothing via publication-title: ACM Trans. Graph. – volume: 21 start-page: 257 year: 2002 end-page: 266 ident: bib0015 article-title: Fast bilateral filtering for the display of high-dynamic-range images publication-title: ACM Trans. Graph. – volume: 230 start-page: 374 year: 2017 end-page: 381 ident: bib0008 article-title: Generalized extreme learning machine autoencoder and a new deep neural network publication-title: Neurocomputing – volume: 39 start-page: 298 year: 2007 end-page: 318 ident: bib0021 article-title: Optimally sparse multidimensional representation using shearlets publication-title: SIAM J. Math. Anal. – volume: 18 year: 2016 ident: bib0023 article-title: Adaptive enhancement for infrared image using shearlet frame publication-title: J. Opt. – start-page: 3320 year: 2014 ident: 10.1016/j.neucom.2017.02.066_bib0020 article-title: How transferable are features in deep neural networks? – volume: 21 start-page: 257 issue: 3 year: 2002 ident: 10.1016/j.neucom.2017.02.066_bib0015 article-title: Fast bilateral filtering for the display of high-dynamic-range images publication-title: ACM Trans. Graph. doi: 10.1145/566654.566574 – volume: 99 start-page: 1 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0003 article-title: Deep multimodal distance metric learning using click constraints for image ranking publication-title: IEEE Trans. Cybern. – volume: 72 start-page: 341 year: 1952 ident: 10.1016/j.neucom.2017.02.066_bib0024 article-title: A class of nonharmonic Fourier series publication-title: Trans. Am. Math. Soc. doi: 10.1090/S0002-9947-1952-0047179-6 – volume: 27 start-page: 15 issue: 3 year: 2008 ident: 10.1016/j.neucom.2017.02.066_bib0017 article-title: Edge preserving decompositions for multi-scale tone and detail manipulation publication-title: ACM Trans. Graph. doi: 10.1145/1360612.1360666 – volume: vol. 9916 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0006 article-title: Fast and accurate image denoising via a deep convolutional-pairs network – volume: 61 start-page: 650 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0014 article-title: LLNet: a deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.008 – volume: 30 start-page: 174 issue: 6 year: 2010 ident: 10.1016/j.neucom.2017.02.066_bib0018 article-title: Image smoothing via L0 gradient minimization publication-title: ACM Trans. Graph. – volume: 228 start-page: 165 year: 2017 ident: 10.1016/j.neucom.2017.02.066_bib0002 article-title: Photograph aesthetical evaluation and classification with deep convolutional neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.08.098 – volume: 234 start-page: 11 year: 2017 ident: 10.1016/j.neucom.2017.02.066_bib0001 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – start-page: 2499 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0005 article-title: Fast depth image denoising and enhancement using a deep convolutional network – volume: 74 start-page: 44 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0025 article-title: Noise suppression and details enhancement for infrared image via novel prior publication-title: Infrared Phys. Technol. doi: 10.1016/j.infrared.2015.11.006 – start-page: 1493 year: 2013 ident: 10.1016/j.neucom.2017.02.066_bib0012 article-title: Adaptive multi-column deep neural networks with application to robust image denoising – volume: 24 start-page: 5659 issue: 12 year: 2015 ident: 10.1016/j.neucom.2017.02.066_bib0010 article-title: Multimodal deep autoencoder for human pose recovery publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2015.2487860 – volume: 62 start-page: 3742 issue: 6 year: 2015 ident: 10.1016/j.neucom.2017.02.066_bib0011 article-title: Image-based 3D human pose recovery by multi-view locality sensitive sparse retrieval publication-title: IEEE Trans. Ind. Electron. – start-page: 1790 year: 2014 ident: 10.1016/j.neucom.2017.02.066_bib0013 article-title: Deep convolutional neural network for image deconvolution – volume: 230 start-page: 374 year: 2017 ident: 10.1016/j.neucom.2017.02.066_bib0008 article-title: Generalized extreme learning machine autoencoder and a new deep neural network publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.027 – volume: 25 start-page: 3919 issue: 8 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0004 article-title: DeepSaliency: multi-task deep neural network model for salient object detection publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2016.2579306 – volume: 18 issue: 8 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0023 article-title: Adaptive enhancement for infrared image using shearlet frame publication-title: J. Opt. doi: 10.1088/2040-8978/18/8/085706 – volume: 204 start-page: 41 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0009 article-title: Deep learning representation using autoencoder for 3D shape retrieval publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.127 – volume: 35 start-page: 1397 year: 2013 ident: 10.1016/j.neucom.2017.02.066_bib0019 article-title: Guided image filtering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2012.213 – volume: 38 start-page: 295 issue: 2 year: 2016 ident: 10.1016/j.neucom.2017.02.066_bib0007 article-title: Image super-resolution using deep convolutional networks publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2015.2439281 – volume: 39 start-page: 298 issue: 1 year: 2007 ident: 10.1016/j.neucom.2017.02.066_bib0021 article-title: Optimally sparse multidimensional representation using shearlets publication-title: SIAM J. Math. Anal. doi: 10.1137/060649781 – volume: 25 start-page: 25 issue: 1 year: 2008 ident: 10.1016/j.neucom.2017.02.066_bib0022 article-title: Sparse directional image representation using the discrete shearlet transforms publication-title: Appl. Comput. Harmonic Anal. doi: 10.1016/j.acha.2007.09.003 – volume: 60 start-page: 259 year: 1992 ident: 10.1016/j.neucom.2017.02.066_bib0016 article-title: Nonlinear total variation based noise removal algorithms publication-title: Phys. D: Nonlinear Phenom. doi: 10.1016/0167-2789(92)90242-F |
| SSID | ssj0017129 |
| Score | 2.3686154 |
| Snippet | •We use deep learning for image processing by extracting image feature.•The extraction has good performance in noisy or low-light circumstance.•We optimize TV... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 12 |
| SubjectTerms | Deep learning Image enhancement Image processing Pattern recognition Spatial filter |
| Title | Low-level structure feature extraction for image processing via stacked sparse denoising autoencoder |
| URI | https://dx.doi.org/10.1016/j.neucom.2017.02.066 |
| Volume | 243 |
| WOSCitedRecordID | wos000399511900002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBYh3cNedh9rd0EPewselnyR_RhGSzdKGbQbYS9GtqQtIXVCGmftv9hP3jmSfGEtu8FeTFAsW-h8Oj76dC6EvE7x9M_ANpVpKYPYJCyQJoblLgyYr1yWqfW2-HQiTk-z2Sz_MBp9b2NhdktR19nVVb7-r6KGNhA2hs7-hbi7h0ID_AahwxXEDtc_EvzJ6luwRFegicsNiycERtv8nRPQxBtfHBzdC-cX6LGzdrECyBns5hLJBVjZagKqZnOJUVX1am7_lM12hWkvlXfoXbSJnxp4gC0O4WmH6QVmX1AItY5mOHJE6-cGM3P0zLxVec11D9Fj7ZmC66ZvPPuKFba_uNiiIU_BrFMd73mKmwE0joXkSQAmplPI2ungTHAb3T5U0jyOBmq2vd_p3PDWT4FjJRZvat2gXxAOyWZnTX_KvG2_5Wc4EBwHA40X5RgRusdFkmdjsjd9dzh7351MCcZd_kY_8DYc0_oM3nzX7ebOwIQ5f0Du-b0HnTrMPCQjXT8i99u6HtSr-cdEdRCiHYSohxDtIUQBQtRCiPYQogAh6iFEHYRoByE6gNAT8vHo8PztceCrcQQVbCu3QVnxUAnDSrDqytDwpGJGSl7qWKYqB7O_SmWoYEdRKVMZpvKMxSzXZSq1jhnX0VMyrle1fkYozxNhjC7DSMWxlDozYZmoRMWiYqVSyT6J2kkrKp-qHiumLIvWJ3FRuKkucKqLkBcw1fsk6HqtXaqW39wvWnkU3tx0ZmQBEPplz4N_7vmc3O3XxgsyBiHql-ROtdvOLzevPNZ-AJf-q5s |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Low-level+structure+feature+extraction+for+image+processing+via+stacked+sparse+denoising+autoencoder&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Fan%2C+Zunlin&rft.au=Bi%2C+Duyan&rft.au=He%2C+Linyuan&rft.au=Shiping%2C+Ma&rft.date=2017-06-21&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=243&rft.spage=12&rft.epage=20&rft_id=info:doi/10.1016%2Fj.neucom.2017.02.066&rft.externalDocID=S0925231217303909 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |