Fast hierarchical clustering of local density peaks via an association degree transfer method

Density Peak clustering (DPC) as a novel algorithm can fast identify density peaks. But it comes along with two drawbacks: its allocation strategy may produce some non-adjacent associations that may lead to poor clustering results and even cause the malfunction of its cluster center selection method...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 455; pp. 401 - 418
Main Authors: Guan, Junyi, Li, Sheng, He, Xiongxiong, Zhu, Jinhui, Chen, Jiajia
Format: Journal Article
Language:English
Published: Elsevier B.V 30.09.2021
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Density Peak clustering (DPC) as a novel algorithm can fast identify density peaks. But it comes along with two drawbacks: its allocation strategy may produce some non-adjacent associations that may lead to poor clustering results and even cause the malfunction of its cluster center selection method to mistakenly identify cluster centers; it may perform poorly with its high complex O(n2) when comes to large-scale data. Herein, a fast hierarchical clustering of local density peaks via an association degree transfer method (FHC-LDP) is proposed. To avoid DPC’s drawbacks caused by non-adjacent associations, FHC-LDP only considers the association between neighbors and design an association degree transfer method to evaluate the association between points that are not neighbors. FHC-LDP can fast identify local density peaks as sub-cluster centers to generate sub-clusters automatically and evaluate the similarity between sub-clusters. Then, by analyzing the similarity of sub-cluster centers, a hierarchical structure of sub-clusters is built. FHC-LDP replaces DPC’s cluster center selection method with a bottom-up hierarchical approach to ensure sub-clusters in each cluster are most similar. In FHC-LDP, only neighbor information of data is required, so by using a fast KNN algorithm, FHC-LDP can run about O(nlog(n)). Experimental results demonstrate FHC-LDP is remarkably superior to traditional clustering algorithms and other variants of DPC in recognizing cluster structure and running speed.
AbstractList Density Peak clustering (DPC) as a novel algorithm can fast identify density peaks. But it comes along with two drawbacks: its allocation strategy may produce some non-adjacent associations that may lead to poor clustering results and even cause the malfunction of its cluster center selection method to mistakenly identify cluster centers; it may perform poorly with its high complex O(n2) when comes to large-scale data. Herein, a fast hierarchical clustering of local density peaks via an association degree transfer method (FHC-LDP) is proposed. To avoid DPC’s drawbacks caused by non-adjacent associations, FHC-LDP only considers the association between neighbors and design an association degree transfer method to evaluate the association between points that are not neighbors. FHC-LDP can fast identify local density peaks as sub-cluster centers to generate sub-clusters automatically and evaluate the similarity between sub-clusters. Then, by analyzing the similarity of sub-cluster centers, a hierarchical structure of sub-clusters is built. FHC-LDP replaces DPC’s cluster center selection method with a bottom-up hierarchical approach to ensure sub-clusters in each cluster are most similar. In FHC-LDP, only neighbor information of data is required, so by using a fast KNN algorithm, FHC-LDP can run about O(nlog(n)). Experimental results demonstrate FHC-LDP is remarkably superior to traditional clustering algorithms and other variants of DPC in recognizing cluster structure and running speed.
Author Guan, Junyi
Zhu, Jinhui
He, Xiongxiong
Li, Sheng
Chen, Jiajia
Author_xml – sequence: 1
  givenname: Junyi
  surname: Guan
  fullname: Guan, Junyi
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
– sequence: 2
  givenname: Sheng
  surname: Li
  fullname: Li, Sheng
  email: shengli@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
– sequence: 3
  givenname: Xiongxiong
  surname: He
  fullname: He, Xiongxiong
  email: hxx@zjut.edu.cn
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
– sequence: 4
  givenname: Jinhui
  surname: Zhu
  fullname: Zhu, Jinhui
  email: 2512016@zju.edu.cn
  organization: Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China
– sequence: 5
  givenname: Jiajia
  surname: Chen
  fullname: Chen, Jiajia
  organization: College of Information Engineering, Zhejiang University of Technology, Hangzhou 310023, China
BookMark eNqFkMFKAzEQhoMoWKtv4CEvsGuSbXa3HgQpVgXBix4lzCaTNnWblCQt9O3dWk8e9DQwzPfzz3dBTn3wSMg1ZyVnvL5ZlR63OqxLwQQvmSxZw0_IiLeNKFrR1qdkxKZCFqLi4pxcpLRijDdcTEfkYw4p06XDCFEvnYae6n6bMkbnFzRY2ofDzqBPLu_pBuEz0Z0DCp5CSkE7yC744WAREWmO4JPFSNeYl8FckjMLfcKrnzkm7_OHt9lT8fL6-Dy7fyl0xepcdF1rjayFqaSeSGGEabUG6CphrORmymwjm65tAcAiGgEta5iorRSiszViNSa3x1wdQ0oRrdIufxcbCrlecaYOotRKHUWpgyjFpBpEDfDkF7yJbg1x_x92d8RweGw3CFRJO_QajYuoszLB_R3wBUGkigA
CitedBy_id crossref_primary_10_1016_j_ins_2024_120439
crossref_primary_10_3390_ijgi12010024
crossref_primary_10_1109_ACCESS_2022_3227936
crossref_primary_10_1007_s11063_022_10972_w
crossref_primary_10_1016_j_inffus_2023_102137
crossref_primary_10_1049_ipr2_12594
crossref_primary_10_1109_TPAMI_2022_3213574
crossref_primary_10_1016_j_neucom_2024_127703
crossref_primary_10_1016_j_eswa_2021_116143
crossref_primary_10_1109_TNNLS_2025_3547362
crossref_primary_10_1016_j_asoc_2024_112432
crossref_primary_10_1007_s40747_022_00798_3
crossref_primary_10_3390_e25050782
crossref_primary_10_1016_j_ins_2022_03_027
crossref_primary_10_1109_TKDE_2023_3266451
crossref_primary_10_1016_j_knosys_2022_108501
crossref_primary_10_1016_j_patcog_2022_109273
crossref_primary_10_3390_electronics14030481
crossref_primary_10_1016_j_ins_2023_119516
crossref_primary_10_1371_journal_pone_0328933
crossref_primary_10_1016_j_knosys_2022_109374
crossref_primary_10_1016_j_ipm_2024_104031
crossref_primary_10_1108_K_07_2023_1309
crossref_primary_10_1007_s44336_024_00008_3
crossref_primary_10_1109_TETCI_2024_3452687
crossref_primary_10_1109_TSUSC_2024_3387727
crossref_primary_10_1109_ACCESS_2024_3518497
crossref_primary_10_1016_j_ins_2022_03_091
crossref_primary_10_3390_e24040476
crossref_primary_10_1016_j_asoc_2024_111355
crossref_primary_10_1016_j_asoc_2024_112347
crossref_primary_10_1016_j_engappai_2025_111981
crossref_primary_10_1093_comjnl_bxae022
crossref_primary_10_1109_ACCESS_2022_3217769
crossref_primary_10_1109_TKDE_2025_3533040
crossref_primary_10_1109_TKDE_2024_3486221
crossref_primary_10_1038_s41598_025_92509_4
crossref_primary_10_1016_j_engappai_2024_108883
crossref_primary_10_1016_j_patcog_2022_109238
crossref_primary_10_1007_s10489_023_05243_7
crossref_primary_10_1016_j_ins_2023_01_144
crossref_primary_10_1016_j_eswa_2023_121860
crossref_primary_10_1007_s10489_022_03583_4
crossref_primary_10_1007_s11227_023_05688_0
crossref_primary_10_1016_j_asoc_2024_111419
crossref_primary_10_1109_TII_2024_3435420
crossref_primary_10_1016_j_ins_2024_120811
crossref_primary_10_3390_app122412812
Cites_doi 10.1016/j.knosys.2016.02.001
10.1007/s13042-017-0648-x
10.1109/34.400568
10.1145/331499.331504
10.1109/T-C.1971.223083
10.1016/j.patcog.2005.09.012
10.1016/j.patcog.2007.04.010
10.1038/nmeth.3583
10.1016/S0167-7152(96)00213-1
10.1109/TPAMI.2002.1033218
10.1109/ACV.1994.341300
10.1126/science.aaa8415
10.1016/j.knosys.2017.07.010
10.1007/BF02289588
10.1007/3-540-28349-8_2
10.1007/s00521-016-2300-1
10.1016/j.neucom.2018.07.043
10.1109/TPAMI.2014.2307881
10.1016/j.ins.2018.03.031
10.1016/j.trit.2016.12.005
10.1016/j.ins.2016.03.011
10.1126/science.1242072
10.1109/TPAMI.2007.1153
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.05.071
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 418
ExternalDocumentID 10_1016_j_neucom_2021_05_071
S0925231221008249
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-bb8fd562d35c452d2d8ccaab32df51d90f757b88aaafeed2a807026f522bf6ee3
ISICitedReferencesCount 58
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000672808100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Tue Nov 18 22:23:56 EST 2025
Sat Nov 29 07:13:57 EST 2025
Fri Feb 23 02:43:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords 99-00
Density peak
KNN
00-01
Clustering
Hierarchical clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-bb8fd562d35c452d2d8ccaab32df51d90f757b88aaafeed2a807026f522bf6ee3
PageCount 18
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2021_05_071
crossref_primary_10_1016_j_neucom_2021_05_071
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_05_071
PublicationCentury 2000
PublicationDate 2021-09-30
PublicationDateYYYYMMDD 2021-09-30
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-30
  day: 30
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Keysers, Deselaers, Gollan, Ney (b0150) 2007; 29
Chang (b0195) 2008; 41
MacQueen (b0025) 1967; 1
Rong (b0090) 2018
Huang, Jin, Zhou (b0120) 2014; 36
Wang (b0050) 2017; 2
Veenman, Reinders, Backer (b0190) 2002; 24
Juanying (b0060) 2016; 354
Cheng (b0115) 1995; 17
Mingjing (b0065) 2018; 9
Jain, Murty, Flynn (b0010) 1999; 31
Vinh, Epps, Bailey (b0165) 2010; 11
Beygelzimer, Kakade, Langford (b0100) 2006
Johnson (b0030) 1967; 32
Wang, Wei, Tse (b0080) 2018; 315
Shi (b0045) 2017; 28
Rodriguez, Laio (b0040) 2014; 344
Franti, Virmajoki (b0160) 2006; 39
F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, IEEE (1994) 138–142 doi:10.1109/ACV.1994.341300.
Jordan, Mitchell (b0015) 2015; 349
Yewang (b0095) 2020; 187
Gionis, Mannila, Tsaparas (b0170) 2007; 1
Pizzagalli, Gonzalez, Krause (b0070) 2019; 5
Gower, Ross (b0105) 1969; 18
Liu, Wang, Yu (b0055) 2018; 450
K. Bache, M. Lichman, Uci machine learning repository, http://archive.ics.uci.edu/ml.
Jain, Law (b0110) 2005
Wang (b0085) 2020
Du, Ding, Jia (b0130) 2016; 99
Lewis, Yang, Rose, Li (b0145) 2004; 5
L. Zelnik-manor, P. Perona, Self-tuning spectral clustering, Neural Information processing Systems (2004) 1601–1608.
Ester (b0035) 1996; 96
B.M.R., et al, Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection, Statistics & Probability Letters 35 (1) (1997) 33–42. doi:10.1016/S0167-7152(96)00213-1
L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with matched background similarity, Computer Vision and Pattern Recognition (CVPR).
Zahn (b0175) 1971; 100
P. Berkhin, A survey of clustering data mining techniques, Grouping Multidimensional Data. Springer, Berlin, Heidelberg (2006) 25–71 doi:10.1007/3-540-28349-8_2
Wiwie, Baumbach, Röttger (b0020) 2015; 12
Liu, Zhengming, Fang (b0075) 2017; 133
Y. LeCun, C. Cortes, Mnist handwritten digit database, http://yann.lecun.com/exdb/mnist/.
Ester (10.1016/j.neucom.2021.05.071_b0035) 1996; 96
Liu (10.1016/j.neucom.2021.05.071_b0075) 2017; 133
Zahn (10.1016/j.neucom.2021.05.071_b0175) 1971; 100
Rong (10.1016/j.neucom.2021.05.071_b0090) 2018
Gionis (10.1016/j.neucom.2021.05.071_b0170) 2007; 1
Chang (10.1016/j.neucom.2021.05.071_b0195) 2008; 41
Beygelzimer (10.1016/j.neucom.2021.05.071_b0100) 2006
Rodriguez (10.1016/j.neucom.2021.05.071_b0040) 2014; 344
Wang (10.1016/j.neucom.2021.05.071_b0080) 2018; 315
10.1016/j.neucom.2021.05.071_b0155
Franti (10.1016/j.neucom.2021.05.071_b0160) 2006; 39
Johnson (10.1016/j.neucom.2021.05.071_b0030) 1967; 32
Lewis (10.1016/j.neucom.2021.05.071_b0145) 2004; 5
Jordan (10.1016/j.neucom.2021.05.071_b0015) 2015; 349
Jain (10.1016/j.neucom.2021.05.071_b0110) 2005
10.1016/j.neucom.2021.05.071_b0135
Jain (10.1016/j.neucom.2021.05.071_b0010) 1999; 31
Liu (10.1016/j.neucom.2021.05.071_b0055) 2018; 450
Mingjing (10.1016/j.neucom.2021.05.071_b0065) 2018; 9
Vinh (10.1016/j.neucom.2021.05.071_b0165) 2010; 11
Shi (10.1016/j.neucom.2021.05.071_b0045) 2017; 28
Wang (10.1016/j.neucom.2021.05.071_b0085) 2020
Pizzagalli (10.1016/j.neucom.2021.05.071_b0070) 2019; 5
Keysers (10.1016/j.neucom.2021.05.071_b0150) 2007; 29
Yewang (10.1016/j.neucom.2021.05.071_b0095) 2020; 187
MacQueen (10.1016/j.neucom.2021.05.071_b0025) 1967; 1
Gower (10.1016/j.neucom.2021.05.071_b0105) 1969; 18
Veenman (10.1016/j.neucom.2021.05.071_b0190) 2002; 24
10.1016/j.neucom.2021.05.071_b0185
10.1016/j.neucom.2021.05.071_b0125
10.1016/j.neucom.2021.05.071_b0005
Juanying (10.1016/j.neucom.2021.05.071_b0060) 2016; 354
Du (10.1016/j.neucom.2021.05.071_b0130) 2016; 99
10.1016/j.neucom.2021.05.071_b0180
Huang (10.1016/j.neucom.2021.05.071_b0120) 2014; 36
Wiwie (10.1016/j.neucom.2021.05.071_b0020) 2015; 12
10.1016/j.neucom.2021.05.071_b0140
Wang (10.1016/j.neucom.2021.05.071_b0050) 2017; 2
Cheng (10.1016/j.neucom.2021.05.071_b0115) 1995; 17
References_xml – volume: 12
  start-page: 1033
  year: 2015
  end-page: 1038
  ident: b0020
  article-title: Comparing the performance of biomedical clustering methods
  publication-title: Nature Methods
– volume: 133
  start-page: 208
  year: 2017
  end-page: 220
  ident: b0075
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowledge-Based Systems
– volume: 32
  start-page: 241
  year: 1967
  end-page: 254
  ident: b0030
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
– reference: B.M.R., et al, Connectivity of the mutual k-nearest-neighbor graph in clustering and outlier detection, Statistics & Probability Letters 35 (1) (1997) 33–42. doi:10.1016/S0167-7152(96)00213-1
– volume: 29
  start-page: 1422
  year: 2007
  end-page: 1435
  ident: b0150
  article-title: Deformation models for image recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: P. Berkhin, A survey of clustering data mining techniques, Grouping Multidimensional Data. Springer, Berlin, Heidelberg (2006) 25–71 doi:10.1007/3-540-28349-8_2
– reference: L. Wolf, T. Hassner, I. Maoz, Face recognition in unconstrained videos with matched background similarity, Computer Vision and Pattern Recognition (CVPR).
– volume: 9
  start-page: 1335
  year: 2018
  end-page: 1349
  ident: b0065
  article-title: Density peaks clustering using geodesic distances
  publication-title: International Journal of Machine Learning and Cybernetics
– start-page: 1
  year: 2020
  end-page: 14
  ident: b0085
  article-title: Mcdpc: multi-center density peak clustering
  publication-title: Neural Computing and Applications
– start-page: 1
  year: 2005
  end-page: 10
  ident: b0110
  article-title: Data clustering: A user’s dilemma
  publication-title: International conference on pattern recognition and machine intelligence
– volume: 5
  start-page: 361
  year: 2004
  end-page: 397
  ident: b0145
  article-title: Rcv1: A new benchmark collection for text categorization research
  publication-title: Journal of Machine Learning Research
– volume: 344
  start-page: 1492
  year: 2014
  end-page: 1496
  ident: b0040
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
– volume: 11
  start-page: 2837
  year: 2010
  end-page: 2854
  ident: b0165
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: Journal of Machine Learning Research
– volume: 187
  year: 2020
  ident: b0095
  article-title: Fast density peak clustering for large scale data based on knn
  publication-title: Knowledge-Based Systems
– volume: 24
  start-page: 1273
  year: 2002
  end-page: 1280
  ident: b0190
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: L. Zelnik-manor, P. Perona, Self-tuning spectral clustering, Neural Information processing Systems (2004) 1601–1608.
– volume: 36
  start-page: 1936
  year: 2014
  end-page: 1949
  ident: b0120
  article-title: Active learning by querying informative and representative examples
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– reference: K. Bache, M. Lichman, Uci machine learning repository, http://archive.ics.uci.edu/ml.
– volume: 31
  start-page: 264
  year: 1999
  end-page: 323
  ident: b0010
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys (CSUR)
– year: 2018
  ident: b0090
  article-title: A novel hierarchical clustering algorithm based on density peaks for complex datasets
  publication-title: Complexity
– volume: 41
  start-page: 191
  year: 2008
  end-page: 203
  ident: b0195
  article-title: Dit-YanYeung, Robust path-based spectral clustering
  publication-title: Pattern Recognition
– volume: 96
  start-page: 226
  year: 1996
  end-page: 231
  ident: b0035
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– volume: 28
  start-page: 29
  year: 2017
  end-page: 39
  ident: b0045
  article-title: A novel clustering-based image segmentation via density peaks algorithm with mid-level feature
  publication-title: Neural Computing and Applications
– reference: Y. LeCun, C. Cortes, Mnist handwritten digit database, http://yann.lecun.com/exdb/mnist/.
– volume: 17
  start-page: 790
  year: 1995
  end-page: 799
  ident: b0115
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 97
  year: 2006
  end-page: 104
  ident: b0100
  article-title: Cover trees for nearest neighbor
  publication-title: Proceedings of the 23rd International Conference on Machine Learning
– volume: 18
  start-page: 54
  year: 1969
  end-page: 64
  ident: b0105
  article-title: Minimum spanning trees and single linkage cluster analysis
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– volume: 99
  start-page: 135
  year: 2016
  end-page: 145
  ident: b0130
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowledge-Based Systems
– volume: 354
  start-page: 19
  year: 2016
  end-page: 40
  ident: b0060
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted k-nearest neighbors
  publication-title: Information Sciences
– volume: 1
  start-page: 281
  year: 1967
  end-page: 297
  ident: b0025
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– reference: F. Samaria, A. Harter, Parameterisation of a stochastic model for human face identification, Proceedings of 1994 IEEE Workshop on Applications of Computer Vision, IEEE (1994) 138–142 doi:10.1109/ACV.1994.341300.
– volume: 450
  start-page: 200
  year: 2018
  end-page: 226
  ident: b0055
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Information Sciences
– volume: 315
  start-page: 486
  year: 2018
  end-page: 495
  ident: b0080
  article-title: Clustering by defining and merging candidates of cluster centers via independence and affinity
  publication-title: Neurocomputing
– volume: 5
  start-page: eaax3770
  year: 2019
  ident: b0070
  article-title: A trainable clustering algorithm based on shortest paths from density peaks, Science
  publication-title: Advances
– volume: 1
  start-page: 4
  year: 2007
  ident: b0170
  article-title: Clustering aggregation
  publication-title: ACM ttransactions on Knowledge Discovery from Data (tkdd)
– volume: 100
  start-page: 68
  year: 1971
  end-page: 86
  ident: b0175
  article-title: Graph-theoretical methods for detecting and describing gestalt clusters
  publication-title: IEEE Transactions on Computers
– volume: 39
  start-page: 761
  year: 2006
  end-page: 775
  ident: b0160
  article-title: Iterative shrinking method for clustering problems
  publication-title: Pattern Recognition
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: b0015
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
– volume: 2
  start-page: 26
  year: 2017
  end-page: 30
  ident: b0050
  article-title: Density peaks clustering based integrate framework for multi-document summarization
  publication-title: CAAI Transactions on Intelligence Technology
– start-page: 97
  year: 2006
  ident: 10.1016/j.neucom.2021.05.071_b0100
  article-title: Cover trees for nearest neighbor
– volume: 99
  start-page: 135
  issue: 1
  year: 2016
  ident: 10.1016/j.neucom.2021.05.071_b0130
  article-title: Study on density peaks clustering based on k-nearest neighbors and principal component analysis
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2016.02.001
– ident: 10.1016/j.neucom.2021.05.071_b0135
– volume: 96
  start-page: 226
  issue: 34
  year: 1996
  ident: 10.1016/j.neucom.2021.05.071_b0035
  article-title: A density-based algorithm for discovering clusters in large spatial databases with noise
  publication-title: Kdd
– volume: 9
  start-page: 1335
  issue: 8
  year: 2018
  ident: 10.1016/j.neucom.2021.05.071_b0065
  article-title: Density peaks clustering using geodesic distances
  publication-title: International Journal of Machine Learning and Cybernetics
  doi: 10.1007/s13042-017-0648-x
– volume: 17
  start-page: 790
  issue: 8
  year: 1995
  ident: 10.1016/j.neucom.2021.05.071_b0115
  article-title: Mean shift, mode seeking, and clustering
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/34.400568
– volume: 5
  start-page: 361
  year: 2004
  ident: 10.1016/j.neucom.2021.05.071_b0145
  article-title: Rcv1: A new benchmark collection for text categorization research
  publication-title: Journal of Machine Learning Research
– volume: 1
  start-page: 281
  issue: 14
  year: 1967
  ident: 10.1016/j.neucom.2021.05.071_b0025
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability
– volume: 31
  start-page: 264
  issue: 3
  year: 1999
  ident: 10.1016/j.neucom.2021.05.071_b0010
  article-title: Data clustering: a review
  publication-title: ACM Computing Surveys (CSUR)
  doi: 10.1145/331499.331504
– volume: 100
  start-page: 68
  issue: 1
  year: 1971
  ident: 10.1016/j.neucom.2021.05.071_b0175
  article-title: Graph-theoretical methods for detecting and describing gestalt clusters
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/T-C.1971.223083
– start-page: 1
  year: 2005
  ident: 10.1016/j.neucom.2021.05.071_b0110
  article-title: Data clustering: A user’s dilemma
– volume: 187
  year: 2020
  ident: 10.1016/j.neucom.2021.05.071_b0095
  article-title: Fast density peak clustering for large scale data based on knn
  publication-title: Knowledge-Based Systems
– volume: 39
  start-page: 761
  issue: 5
  year: 2006
  ident: 10.1016/j.neucom.2021.05.071_b0160
  article-title: Iterative shrinking method for clustering problems
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2005.09.012
– volume: 41
  start-page: 191
  issue: 1
  year: 2008
  ident: 10.1016/j.neucom.2021.05.071_b0195
  article-title: Dit-YanYeung, Robust path-based spectral clustering
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2007.04.010
– volume: 12
  start-page: 1033
  issue: 11
  year: 2015
  ident: 10.1016/j.neucom.2021.05.071_b0020
  article-title: Comparing the performance of biomedical clustering methods
  publication-title: Nature Methods
  doi: 10.1038/nmeth.3583
– ident: 10.1016/j.neucom.2021.05.071_b0125
  doi: 10.1016/S0167-7152(96)00213-1
– volume: 24
  start-page: 1273
  issue: 9
  year: 2002
  ident: 10.1016/j.neucom.2021.05.071_b0190
  article-title: A maximum variance cluster algorithm
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2002.1033218
– ident: 10.1016/j.neucom.2021.05.071_b0185
  doi: 10.1109/ACV.1994.341300
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 10.1016/j.neucom.2021.05.071_b0015
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– volume: 133
  start-page: 208
  year: 2017
  ident: 10.1016/j.neucom.2021.05.071_b0075
  article-title: Adaptive density peak clustering based on k-nearest neighbors with aggregating strategy
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2017.07.010
– volume: 32
  start-page: 241
  issue: 3
  year: 1967
  ident: 10.1016/j.neucom.2021.05.071_b0030
  article-title: Hierarchical clustering schemes
  publication-title: Psychometrika
  doi: 10.1007/BF02289588
– year: 2018
  ident: 10.1016/j.neucom.2021.05.071_b0090
  article-title: A novel hierarchical clustering algorithm based on density peaks for complex datasets
  publication-title: Complexity
– ident: 10.1016/j.neucom.2021.05.071_b0155
– ident: 10.1016/j.neucom.2021.05.071_b0180
– ident: 10.1016/j.neucom.2021.05.071_b0005
  doi: 10.1007/3-540-28349-8_2
– volume: 5
  start-page: eaax3770
  issue: 10
  year: 2019
  ident: 10.1016/j.neucom.2021.05.071_b0070
  article-title: A trainable clustering algorithm based on shortest paths from density peaks, Science
  publication-title: Advances
– volume: 28
  start-page: 29
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2021.05.071_b0045
  article-title: A novel clustering-based image segmentation via density peaks algorithm with mid-level feature
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2300-1
– volume: 315
  start-page: 486
  year: 2018
  ident: 10.1016/j.neucom.2021.05.071_b0080
  article-title: Clustering by defining and merging candidates of cluster centers via independence and affinity
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.07.043
– volume: 36
  start-page: 1936
  issue: 10
  year: 2014
  ident: 10.1016/j.neucom.2021.05.071_b0120
  article-title: Active learning by querying informative and representative examples
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2014.2307881
– volume: 18
  start-page: 54
  issue: 1
  year: 1969
  ident: 10.1016/j.neucom.2021.05.071_b0105
  article-title: Minimum spanning trees and single linkage cluster analysis
  publication-title: Journal of the Royal Statistical Society: Series C (Applied Statistics)
– volume: 450
  start-page: 200
  year: 2018
  ident: 10.1016/j.neucom.2021.05.071_b0055
  article-title: Shared-nearest-neighbor-based clustering by fast search and find of density peaks
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2018.03.031
– volume: 11
  start-page: 2837
  year: 2010
  ident: 10.1016/j.neucom.2021.05.071_b0165
  article-title: Information theoretic measures for clusterings comparison: Variants, properties, normalization and correction for chance
  publication-title: Journal of Machine Learning Research
– ident: 10.1016/j.neucom.2021.05.071_b0140
– volume: 1
  start-page: 4
  year: 2007
  ident: 10.1016/j.neucom.2021.05.071_b0170
  article-title: Clustering aggregation
– volume: 2
  start-page: 26
  issue: 1
  year: 2017
  ident: 10.1016/j.neucom.2021.05.071_b0050
  article-title: Density peaks clustering based integrate framework for multi-document summarization
  publication-title: CAAI Transactions on Intelligence Technology
  doi: 10.1016/j.trit.2016.12.005
– volume: 354
  start-page: 19
  year: 2016
  ident: 10.1016/j.neucom.2021.05.071_b0060
  article-title: Robust clustering by detecting density peaks and assigning points based on fuzzy weighted k-nearest neighbors
  publication-title: Information Sciences
  doi: 10.1016/j.ins.2016.03.011
– start-page: 1
  year: 2020
  ident: 10.1016/j.neucom.2021.05.071_b0085
  article-title: Mcdpc: multi-center density peak clustering
  publication-title: Neural Computing and Applications
– volume: 344
  start-page: 1492
  issue: 6191
  year: 2014
  ident: 10.1016/j.neucom.2021.05.071_b0040
  article-title: Clustering by fast search and find of density peaks
  publication-title: Science
  doi: 10.1126/science.1242072
– volume: 29
  start-page: 1422
  issue: 8
  year: 2007
  ident: 10.1016/j.neucom.2021.05.071_b0150
  article-title: Deformation models for image recognition
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2007.1153
SSID ssj0017129
Score 2.542643
Snippet Density Peak clustering (DPC) as a novel algorithm can fast identify density peaks. But it comes along with two drawbacks: its allocation strategy may produce...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 401
SubjectTerms Clustering
Density peak
Hierarchical clustering
KNN
Title Fast hierarchical clustering of local density peaks via an association degree transfer method
URI https://dx.doi.org/10.1016/j.neucom.2021.05.071
Volume 455
WOSCitedRecordID wos000672808100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZu4e97NaNdTf0sLfgEiuWZT-G0bKNUQbtIC_DyJa0psvckMQh-xP9zT1HF9uQsXaDvYjgWJbQ-Xz06fhcCHk3Sg2cfAS6SnEsYYY5IBOmIsN5Zqq0gv-spD-L09NsOs2_DAbXIRZmMxd1nW23-eK_ihqugbAxdPYvxN0-FC7AbxA6tCB2aO8k-BO5Wg-xwrX9RmDzf8wbTIfg_Zvt7jVU6LgOBHyh5Y_VcGNDs4aykxXcACdxjSUkgNjqpS813eeyNq9HZatCeHvD5CeOoxBjrX0BMOjDP-pfs9b9x_oQnF1ov29aYyxemsLQ37fYdBbtxnaf1RfNrG-jYHFwqAiGs53gGWeBZDwCeumUsXb6NxPMRrb3FXTCeU_FJt744XbrxGnvnY3A2SQuj2rdoFcQTspmaBVxt_G17ohnOBWcCcNUR3AgvUf2meA5aMn9ycfj6af2u5SImcve6KcegjGtx-DuWL8nOz0Cc_6YPPQnDzpxiHlCBrp-Sh6Fqh7UK_kD8g0BRPsAoh2A6JWhFkDUA4haAFEAEJU17QGIOgDRACDqAPSMfD05Pn__IfJFOKIKTpPrqCwzo4AkqzGvEs4UUxm89LIcM2V4rPKREVyUWSalNMC3mMxgE2GpAV5fmlTr8XOyV1_V-gWhisGzhAECmfMkVpVMucylYIlMtTQ5OyTjsFpF5TPUY6GUeRFcES8Lt8YFrnEx4gWs8SGJ2l4Ll6HllvtFEEThWaZjjwVg5489X_5zz1fkQfdavCZ762Wj35D71WY9Wy3fepDdAJhMpbY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fast+hierarchical+clustering+of+local+density+peaks+via+an+association+degree+transfer+method&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Guan%2C+Junyi&rft.au=Li%2C+Sheng&rft.au=He%2C+Xiongxiong&rft.au=Zhu%2C+Jinhui&rft.date=2021-09-30&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=455&rft.spage=401&rft.epage=418&rft_id=info:doi/10.1016%2Fj.neucom.2021.05.071&rft.externalDocID=S0925231221008249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon