Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology
The paper proposes a novel metaheuristic Socio Evolution & Learning Optimization Algorithm (SELO) inspired by the social learning behaviour of humans organized as families in a societal setup. This population based stochastic methodology can be categorized under the very recent and upcoming clas...
Gespeichert in:
| Veröffentlicht in: | Future generation computer systems Jg. 81; S. 252 - 272 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.04.2018
|
| Schlagworte: | |
| ISSN: | 0167-739X, 1872-7115 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The paper proposes a novel metaheuristic Socio Evolution & Learning Optimization Algorithm (SELO) inspired by the social learning behaviour of humans organized as families in a societal setup. This population based stochastic methodology can be categorized under the very recent and upcoming class of optimization algorithms—the socio-inspired algorithms. It is the social tendency of humans to adapt to mannerisms and behaviours of other individuals through observation. SELO mimics the socio-evolution and learning of parents and children constituting a family. Individuals organized as family groups (parents and children) interact with one another and other distinct families to attain some individual goals. In the process, these family individuals learn from one another as well as from individuals from other families in the society. This helps them to evolve, improve their intelligence and collectively achieve shared goals. The proposed optimization algorithm models this de-centralized learning which may result in the overall improvement of each individual’s behaviour and associated goals and ultimately the entire societal system. SELO shows good performance on finding the global optimum solution for the unconstrained optimization problems. The problem solving success of SELO is evaluated using 50 well-known boundary-constrained benchmark test problems. The paper compares the results of SELO with few other population based evolutionary algorithms which are popular across scientific and real-world applications. SELO’s performance is also compared to another very recent socio-inspired methodology—the Ideology algorithm. Results indicate that SELO demonstrates comparable performance to other comparison algorithms. This gives ground to the authors to further establish the effectiveness of this metaheuristic by solving purposeful and real world problems. |
|---|---|
| AbstractList | The paper proposes a novel metaheuristic Socio Evolution & Learning Optimization Algorithm (SELO) inspired by the social learning behaviour of humans organized as families in a societal setup. This population based stochastic methodology can be categorized under the very recent and upcoming class of optimization algorithms—the socio-inspired algorithms. It is the social tendency of humans to adapt to mannerisms and behaviours of other individuals through observation. SELO mimics the socio-evolution and learning of parents and children constituting a family. Individuals organized as family groups (parents and children) interact with one another and other distinct families to attain some individual goals. In the process, these family individuals learn from one another as well as from individuals from other families in the society. This helps them to evolve, improve their intelligence and collectively achieve shared goals. The proposed optimization algorithm models this de-centralized learning which may result in the overall improvement of each individual’s behaviour and associated goals and ultimately the entire societal system. SELO shows good performance on finding the global optimum solution for the unconstrained optimization problems. The problem solving success of SELO is evaluated using 50 well-known boundary-constrained benchmark test problems. The paper compares the results of SELO with few other population based evolutionary algorithms which are popular across scientific and real-world applications. SELO’s performance is also compared to another very recent socio-inspired methodology—the Ideology algorithm. Results indicate that SELO demonstrates comparable performance to other comparison algorithms. This gives ground to the authors to further establish the effectiveness of this metaheuristic by solving purposeful and real world problems. |
| Author | Satapathy, Suresh Chandra Kumar, Meeta Kulkarni, Anand J. |
| Author_xml | – sequence: 1 givenname: Meeta surname: Kumar fullname: Kumar, Meeta email: meeta.kumar@sitpune.edu.in organization: Symbiosis Institute of Technology, Symbiosis International University, Pune, MH 412 115, India – sequence: 2 givenname: Anand J. surname: Kulkarni fullname: Kulkarni, Anand J. email: anand.kulkarni@sitpune.edu.in, kulk0003@uwindsor.ca organization: Symbiosis Institute of Technology, Symbiosis International University, Pune, MH 412 115, India – sequence: 3 givenname: Suresh Chandra surname: Satapathy fullname: Satapathy, Suresh Chandra email: sureshsatapathy@ieee.org organization: Department of Computer Science and Engineering, PVP Siddhartha Institute of Technology, Vijayawada, AP, India |
| BookMark | eNqFkE1LAzEQhoNUsFb_gYc9eds1yWa_ehBK8QsKHlTwIIRsdtKm7G5KkhbqrzfbetGDngZe3meYec7RqDc9IHRFcEIwyW_Widr6rYWEYlKEKMEZPUFjUhY0LgjJRmgcakVcpNX7GTp3bo1xaKZkjD5ejNQmgp1pt16bPrqOWhC21_0yMhuvO_0pDrlol8Zqv-qm0SxyAxTr3m20heZnsQO_Mo1pzXJ_gU6VaB1cfs8Jeru_e50_xovnh6f5bBHLFOc-ruuSCVorDIqVGcuzRrC8AMiFzJWikhKBy5IVjNYZYSmrhkINtMpklSmo0gmaHvdKa5yzoLjU_nCNt0K3nGA-eOJrfvTEB09DGjwFmP2CN1Z3wu7_w26PGITHdhosd1JDL6EJSqTnjdF_L_gC5KSJng |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_127416 crossref_primary_10_1016_j_matcom_2023_06_015 crossref_primary_10_1016_j_cma_2025_118318 crossref_primary_10_1109_ACCESS_2019_2923468 crossref_primary_10_3390_biomimetics9090509 crossref_primary_10_1007_s00366_020_01258_7 crossref_primary_10_1016_j_cosrev_2024_100647 crossref_primary_10_1155_2022_3343505 crossref_primary_10_1016_j_egyr_2020_11_250 crossref_primary_10_1109_ACCESS_2020_3026821 crossref_primary_10_1007_s00366_020_01133_5 crossref_primary_10_1007_s40747_020_00189_6 crossref_primary_10_1109_ACCESS_2024_3365700 crossref_primary_10_1007_s10489_022_03438_y crossref_primary_10_1016_j_jocs_2023_101978 crossref_primary_10_1016_j_future_2019_02_028 crossref_primary_10_1038_s41598_024_56926_1 crossref_primary_10_1016_j_asoc_2021_108126 crossref_primary_10_3390_math12172604 crossref_primary_10_1007_s13042_025_02624_x crossref_primary_10_1038_s41598_024_75123_8 crossref_primary_10_1007_s40747_023_01069_5 crossref_primary_10_1002_cpe_7971 crossref_primary_10_1016_j_asoc_2020_106325 crossref_primary_10_1002_cpe_7612 crossref_primary_10_1007_s10586_025_05140_3 crossref_primary_10_1007_s13369_020_05292_x crossref_primary_10_1111_exsy_12854 crossref_primary_10_1038_s41598_024_69010_5 crossref_primary_10_1007_s10586_025_05121_6 crossref_primary_10_1016_j_cogsys_2024_101237 crossref_primary_10_1007_s11227_018_2639_4 crossref_primary_10_1016_j_knosys_2022_108320 crossref_primary_10_1186_s40537_023_00864_8 crossref_primary_10_1002_er_5163 crossref_primary_10_1109_TITS_2023_3257484 crossref_primary_10_1007_s11227_021_03943_w crossref_primary_10_1016_j_eswa_2022_117444 crossref_primary_10_3390_su14159428 crossref_primary_10_3390_polym14153097 crossref_primary_10_1007_s10115_025_02498_z crossref_primary_10_1016_j_ijhydene_2019_12_189 crossref_primary_10_3846_jcem_2023_20399 crossref_primary_10_32604_cmc_2023_040775 crossref_primary_10_2478_jaiscr_2024_0012 crossref_primary_10_3390_fractalfract5010002 crossref_primary_10_1007_s00366_020_01025_8 crossref_primary_10_1007_s00500_023_08575_1 crossref_primary_10_1016_j_engappai_2019_08_025 crossref_primary_10_32604_cmc_2023_036865 crossref_primary_10_1016_j_eswa_2020_113702 crossref_primary_10_1371_journal_pone_0263387 crossref_primary_10_1109_ACCESS_2022_3156593 crossref_primary_10_3390_math11040851 crossref_primary_10_1016_j_heliyon_2024_e37819 crossref_primary_10_1016_j_asoc_2025_113527 crossref_primary_10_1016_j_eswa_2023_120602 crossref_primary_10_1155_2021_9210050 crossref_primary_10_1007_s10462_021_10078_0 crossref_primary_10_1109_ACCESS_2020_3030950 crossref_primary_10_1002_2050_7038_12552 crossref_primary_10_1007_s12559_022_09998_y crossref_primary_10_1007_s00366_021_01530_4 crossref_primary_10_1007_s12652_022_04332_8 crossref_primary_10_1016_j_aej_2025_02_046 crossref_primary_10_1016_j_cie_2021_107250 crossref_primary_10_1007_s00366_021_01591_5 crossref_primary_10_1007_s42235_025_00674_z crossref_primary_10_1007_s10586_024_04881_x crossref_primary_10_1038_s41598_025_94260_2 crossref_primary_10_1051_e3sconf_202018401069 crossref_primary_10_1007_s12597_024_00763_3 crossref_primary_10_1016_j_knosys_2024_111616 crossref_primary_10_3390_biomimetics9100603 crossref_primary_10_1371_journal_pone_0251204 crossref_primary_10_1007_s11831_022_09766_z crossref_primary_10_1038_s41598_023_38778_3 crossref_primary_10_1016_j_knosys_2022_108664 crossref_primary_10_1109_ACCESS_2019_2958279 crossref_primary_10_1109_ACCESS_2020_3043174 crossref_primary_10_1016_j_eswa_2023_122638 crossref_primary_10_1016_j_egyr_2020_05_011 crossref_primary_10_1007_s10462_024_10729_y crossref_primary_10_1016_j_knosys_2025_113548 crossref_primary_10_1109_ACCESS_2022_3144431 crossref_primary_10_1007_s10586_023_04221_5 crossref_primary_10_3390_app131810247 crossref_primary_10_1007_s11227_023_05851_7 crossref_primary_10_1007_s00366_021_01371_1 crossref_primary_10_1016_j_engappai_2024_109370 crossref_primary_10_3390_biomimetics9120727 crossref_primary_10_1007_s11831_022_09780_1 crossref_primary_10_3390_biomimetics9080500 crossref_primary_10_1007_s10586_025_05170_x crossref_primary_10_3390_biomimetics9040205 crossref_primary_10_1007_s11831_020_09481_7 crossref_primary_10_1016_j_jer_2024_05_008 crossref_primary_10_1016_j_jocs_2022_101886 crossref_primary_10_3390_pr11051380 crossref_primary_10_1109_ACCESS_2019_2918753 crossref_primary_10_1016_j_eswa_2025_129195 crossref_primary_10_3390_su132212771 crossref_primary_10_1007_s40747_021_00283_3 crossref_primary_10_1007_s00500_023_08090_3 crossref_primary_10_1016_j_engappai_2019_07_001 crossref_primary_10_1007_s11831_023_09897_x crossref_primary_10_1007_s11831_022_09872_y crossref_primary_10_1002_cpe_6165 crossref_primary_10_1371_journal_pone_0329705 crossref_primary_10_1016_j_engappai_2022_105069 crossref_primary_10_1049_cit2_12316 crossref_primary_10_1109_ACCESS_2023_3327732 crossref_primary_10_3390_electronics11121919 crossref_primary_10_1016_j_future_2018_07_057 crossref_primary_10_1016_j_cie_2021_107739 crossref_primary_10_1007_s10462_024_11008_6 crossref_primary_10_3389_fenrg_2022_1028423 crossref_primary_10_3390_biomimetics9090561 crossref_primary_10_1016_j_knosys_2025_113169 crossref_primary_10_1007_s10586_025_05358_1 crossref_primary_10_1080_01430750_2020_1789740 crossref_primary_10_3390_su15064982 crossref_primary_10_1007_s00500_021_05886_z crossref_primary_10_1007_s10462_024_10723_4 crossref_primary_10_1016_j_engappai_2022_105592 crossref_primary_10_1080_0952813X_2022_2115144 crossref_primary_10_1007_s00366_020_00994_0 crossref_primary_10_1007_s00500_022_07041_8 crossref_primary_10_1016_j_cma_2023_116199 crossref_primary_10_1016_j_cie_2023_109300 crossref_primary_10_1007_s10489_020_01947_2 crossref_primary_10_1007_s00521_024_09879_5 crossref_primary_10_1109_ACCESS_2021_3117567 crossref_primary_10_1007_s10462_023_10498_0 crossref_primary_10_1016_j_chaos_2023_113672 crossref_primary_10_1007_s00521_024_10009_4 crossref_primary_10_1007_s10462_023_10446_y crossref_primary_10_1038_s41598_024_79577_8 crossref_primary_10_1007_s10462_023_10403_9 crossref_primary_10_1007_s10586_024_04293_x crossref_primary_10_1093_jcde_qwad108 crossref_primary_10_1016_j_engappai_2019_103300 crossref_primary_10_1038_s41598_024_53064_6 crossref_primary_10_1515_mt_2020_0075 crossref_primary_10_1007_s00500_023_08033_y crossref_primary_10_1007_s11042_025_20607_6 crossref_primary_10_1093_jcde_qwac013 crossref_primary_10_1007_s12065_020_00508_3 crossref_primary_10_3390_su141710673 crossref_primary_10_1007_s10115_025_02463_w crossref_primary_10_3390_math9233011 crossref_primary_10_1007_s12008_024_02174_6 crossref_primary_10_1007_s42235_023_00469_0 crossref_primary_10_3390_axioms11120675 crossref_primary_10_1016_j_matcom_2021_09_014 crossref_primary_10_1007_s13201_022_01865_3 crossref_primary_10_1038_s41598_025_16513_4 crossref_primary_10_1002_ima_22388 crossref_primary_10_1109_ACCESS_2019_2918406 crossref_primary_10_3233_JIFS_211408 crossref_primary_10_1016_j_engappai_2020_103505 crossref_primary_10_1016_j_engappai_2023_106959 crossref_primary_10_1016_j_eswa_2022_119246 crossref_primary_10_1007_s00500_019_03852_4 crossref_primary_10_1088_1742_6596_1950_1_012063 crossref_primary_10_3390_sym13122364 crossref_primary_10_1016_j_future_2018_05_037 crossref_primary_10_1016_j_heliyon_2024_e26187 crossref_primary_10_1007_s10462_024_11035_3 crossref_primary_10_1007_s11831_024_10217_0 crossref_primary_10_3390_biomimetics9060361 crossref_primary_10_1007_s00500_021_06229_8 crossref_primary_10_1080_15567036_2020_1747575 crossref_primary_10_1007_s11831_022_09801_z crossref_primary_10_1007_s00500_023_07929_z crossref_primary_10_1007_s00521_024_10694_1 crossref_primary_10_1016_j_knosys_2020_105709 crossref_primary_10_1007_s11227_023_05260_w crossref_primary_10_1109_ACCESS_2022_3200386 |
| Cites_doi | 10.3233/AIC-140652 10.7763/IJMLC.2012.V2.146 10.1007/978-3-642-04317-8_1 10.1023/A:1008202821328 10.1109/TEVC.2006.872133 10.1037/0012-1649.28.6.1006 10.1016/j.asoc.2009.09.006 10.1016/j.asoc.2014.08.024 10.1007/s13042-014-0272-y 10.1109/4235.930318 10.1007/s10898-007-9149-x 10.2307/2348448 10.1155/2013/438152 10.1109/TEVC.2009.2014613 10.1016/j.ins.2011.08.006 10.1016/0304-4076(94)90038-8 10.1016/j.asoc.2013.12.005 10.1002/9780470640425.app1 10.1016/S1672-6529(09)60240-7 10.1109/TEVC.2005.857610 10.1109/4235.585893 10.1016/j.swevo.2013.11.003 10.1162/evco.2007.15.1.1 10.1016/j.asoc.2007.05.007 10.1016/j.ins.2008.02.014 10.1080/10508400802394906 10.1007/s40747-016-0022-8 10.1023/A:1021251113462 10.1109/TEVC.2009.2033580 10.1109/ICEC.1994.349983 10.1126/science.220.4598.671 10.1109/MCI.2006.329691 10.1016/S1665-6423(13)71558-X 10.1016/j.procs.2010.04.153 10.1016/j.swevo.2014.10.002 10.1007/s10462-009-9137-2 10.1109/TEVC.2003.814902 10.1016/j.cad.2011.07.003 10.1016/j.swevo.2014.02.002 10.1016/j.ins.2015.08.004 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2017.10.052 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 272 |
| ExternalDocumentID | 10_1016_j_future_2017_10_052 S0167739X17317259 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-bb84a2bf0ef485465da467ee6ac6ff2c21a0884742b5143495da4be295c95fe93 |
| ISICitedReferencesCount | 187 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423652200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Sat Nov 29 02:59:44 EST 2025 Tue Nov 18 22:15:41 EST 2025 Fri Feb 23 02:30:16 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Metaheuristic Socio-inspired optimization Unconstrained optimization Cultural evolution Nature-inspired computing Evolutionary algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-bb84a2bf0ef485465da467ee6ac6ff2c21a0884742b5143495da4be295c95fe93 |
| PageCount | 21 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_future_2017_10_052 crossref_primary_10_1016_j_future_2017_10_052 elsevier_sciencedirect_doi_10_1016_j_future_2017_10_052 |
| PublicationCentury | 2000 |
| PublicationDate | April 2018 2018-04-00 |
| PublicationDateYYYYMMDD | 2018-04-01 |
| PublicationDate_xml | – month: 04 year: 2018 text: April 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Kirkpatrick, Gelatt, Vecchi (b15) 1983; 220 Storn, Price (b30) 1997; 11 Talbi (b2) 2009 R.G. Reynolds, W. Sverdlik, Problem solving using cultural algorithms, in: Evolutionary Computation, IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference, Orlando, FL, USA, 1994, pp. 645–650. Eisenberg (b62) 2008; 17 Krink, Filipic, Fogel (b73) 2004 Brooks, Morgan (b13) 1995; 44 Hassanien, Emary (b9) 2016 Lv, He, Li, Cheng, Luo, Zhang (b44) 2010; 1 Moosavian (b50) 2015; 20 Nanda, Panda (b6) 2014; 16 S. Surjanovic, D. Bingham, British Columbia, 2015. Goffe, Ferrier, Rogers (b14) 1994; 60 Karaboga, Basturk (b29) 2008; 8 Xie, Lv, Liu, Zhang, Luo, Cheng (b45) 2010 Marini, Walczak (b22) 2015 Gendreau, Potvin (b19) 2010 Geem (b16) 2010 Zhang, Luo, Wang (b76) 2008; 178 Koppen, Wolpert, Macready (b56) 2001; 5 Kulkarni, Durugkar, Kumar (b70) 2013 Emami, Derakhshan (b51) 2015; 28 Hosseini, Al Khaled (b39) 2014; 24 Bonabeau, Dorigo, Theraulaz (b8) 1999 Fister Jr., Yang, Fister, Brest, Fister (b5) 2013 Bandura, Walters (b64) 1977 Kashan (b41) 2011; 43 Ahmadi-Javid (b46) 2011 Brest, Greiner, Boskovic, Mernik, Zumer (b33) 2006; 10 Yang (b3) 2010 Kulkarni, Tai (b59) 2010; 10 Yang (b71) 2010 Xu, Cui, Zeng (b43) 2010; vol. 6466 (Accessed 15 December 2016). Karaboga, Basturk (b28) 2007; 39 Biswas, Mishra, Tiwari, Misra (b12) 2013 Filho, de Lima Neto, Lins, Nascimento, Lima (b11) 2009 Lam, Li (b18) 2010; 14 Neri, Tirronen (b31) 2010; 33 Atashpaz-Gargari, Lucas (b38) 2007 Kashan (b42) 2014; 16 Ray, Liew (b37) 2003; 7 Goldberg, Deb (b66) 1991 Brownlee (b4) 2011 Satapathy, Naik (b53) 2016; 2 Bandura (b63) 1962 M. Molga, C. Smutnicki, Test functions for optimization needs, 2005, pp. 101. Zang, Zhang, Hapeshi (b7) 2010; 7 Liang, Qin, Suganthan, Baskar (b23) 2006; 10 Dorigo, Birattari, Stutzle (b10) 2006; 1 Edward (b58) 1978 Civicioglu (b35) 2013; 219 Kashan (b40) 2009 M.G.H. Omran, M. Clerc, 2011. Clerc, Maurice, Standard particle swarm optimization, 2012, 15 pages, <hal-00764996>. Igel, Hansen, Roth (b27) 2007; 15 Rao, Savsani, Vakharia (b47) 2012; 183 Liu, Chu, Song, Xue, Lu (b52) 2016; 326 Kuo, Lin (b69) 2013; 11 Kulkarni, Krishnasamy, Abraham (b48) 2016 Kumar (b68) 2012; 2 Wolpert, Macready (b55) 1997; 1 Huan, Kulkarni, Kanesan (b54) 2016 Civicioglu, Besdok (b61) 2013; 39 Yang (b17) 2009; vol. 191 Moosavian, Roodsari (b21) 2014; 17 Zhang, Sanderson (b32) 2009; 13 Pencheva, Atanassov, Shannon (b67) 2009; 13 Deshpande, Phatnani, Kulkarni (b77) 2013 Ho, Pepyne (b57) 2002; 115 Kennedy, Eberhart (b20) 1995 Maccoby (b65) 1992; 28 Kulkarni, Shabir (b49) 2016; 7 Jamil, Yang (b72) 2013; 4 (Accessed 15 January 2017). Hansen (b26) 2006; vol. 192 Qin, Ponnuthurai (b34) 2005 Luke (b1) 2013 Hechter, Horne (b60) 2009 Neri (10.1016/j.future.2017.10.052_b31) 2010; 33 Ray (10.1016/j.future.2017.10.052_b37) 2003; 7 Deshpande (10.1016/j.future.2017.10.052_b77) 2013 Atashpaz-Gargari (10.1016/j.future.2017.10.052_b38) 2007 Nanda (10.1016/j.future.2017.10.052_b6) 2014; 16 Bandura (10.1016/j.future.2017.10.052_b64) 1977 Dorigo (10.1016/j.future.2017.10.052_b10) 2006; 1 Brownlee (10.1016/j.future.2017.10.052_b4) 2011 Eisenberg (10.1016/j.future.2017.10.052_b62) 2008; 17 Bandura (10.1016/j.future.2017.10.052_b63) 1962 Bonabeau (10.1016/j.future.2017.10.052_b8) 1999 Kirkpatrick (10.1016/j.future.2017.10.052_b15) 1983; 220 Kashan (10.1016/j.future.2017.10.052_b40) 2009 Yang (10.1016/j.future.2017.10.052_b17) 2009; vol. 191 Maccoby (10.1016/j.future.2017.10.052_b65) 1992; 28 Geem (10.1016/j.future.2017.10.052_b16) 2010 Xu (10.1016/j.future.2017.10.052_b43) 2010; vol. 6466 Xie (10.1016/j.future.2017.10.052_b45) 2010 Pencheva (10.1016/j.future.2017.10.052_b67) 2009; 13 Civicioglu (10.1016/j.future.2017.10.052_b35) 2013; 219 Kennedy (10.1016/j.future.2017.10.052_b20) 1995 Luke (10.1016/j.future.2017.10.052_b1) 2013 Kulkarni (10.1016/j.future.2017.10.052_b59) 2010; 10 Moosavian (10.1016/j.future.2017.10.052_b50) 2015; 20 10.1016/j.future.2017.10.052_b36 Marini (10.1016/j.future.2017.10.052_b22) 2015 Storn (10.1016/j.future.2017.10.052_b30) 1997; 11 Civicioglu (10.1016/j.future.2017.10.052_b61) 2013; 39 Hassanien (10.1016/j.future.2017.10.052_b9) 2016 Zhang (10.1016/j.future.2017.10.052_b76) 2008; 178 Kashan (10.1016/j.future.2017.10.052_b41) 2011; 43 Yang (10.1016/j.future.2017.10.052_b3) 2010 Fister Jr. (10.1016/j.future.2017.10.052_b5) 2013 Lv (10.1016/j.future.2017.10.052_b44) 2010; 1 Kashan (10.1016/j.future.2017.10.052_b42) 2014; 16 Wolpert (10.1016/j.future.2017.10.052_b55) 1997; 1 Brooks (10.1016/j.future.2017.10.052_b13) 1995; 44 Igel (10.1016/j.future.2017.10.052_b27) 2007; 15 Emami (10.1016/j.future.2017.10.052_b51) 2015; 28 Hansen (10.1016/j.future.2017.10.052_b26) 2006; vol. 192 Filho (10.1016/j.future.2017.10.052_b11) 2009 Edward (10.1016/j.future.2017.10.052_b58) 1978 Liu (10.1016/j.future.2017.10.052_b52) 2016; 326 Zang (10.1016/j.future.2017.10.052_b7) 2010; 7 10.1016/j.future.2017.10.052_b24 10.1016/j.future.2017.10.052_b25 Jamil (10.1016/j.future.2017.10.052_b72) 2013; 4 Moosavian (10.1016/j.future.2017.10.052_b21) 2014; 17 10.1016/j.future.2017.10.052_b74 Liang (10.1016/j.future.2017.10.052_b23) 2006; 10 Lam (10.1016/j.future.2017.10.052_b18) 2010; 14 10.1016/j.future.2017.10.052_b75 Goldberg (10.1016/j.future.2017.10.052_b66) 1991 Huan (10.1016/j.future.2017.10.052_b54) 2016 Kumar (10.1016/j.future.2017.10.052_b68) 2012; 2 Qin (10.1016/j.future.2017.10.052_b34) 2005 Koppen (10.1016/j.future.2017.10.052_b56) 2001; 5 Ahmadi-Javid (10.1016/j.future.2017.10.052_b46) 2011 Zhang (10.1016/j.future.2017.10.052_b32) 2009; 13 Krink (10.1016/j.future.2017.10.052_b73) 2004 Yang (10.1016/j.future.2017.10.052_b71) 2010 Kulkarni (10.1016/j.future.2017.10.052_b49) 2016; 7 Ho (10.1016/j.future.2017.10.052_b57) 2002; 115 Biswas (10.1016/j.future.2017.10.052_b12) 2013 Karaboga (10.1016/j.future.2017.10.052_b29) 2008; 8 Kulkarni (10.1016/j.future.2017.10.052_b70) 2013 Talbi (10.1016/j.future.2017.10.052_b2) 2009 Goffe (10.1016/j.future.2017.10.052_b14) 1994; 60 Brest (10.1016/j.future.2017.10.052_b33) 2006; 10 Karaboga (10.1016/j.future.2017.10.052_b28) 2007; 39 Gendreau (10.1016/j.future.2017.10.052_b19) 2010 Satapathy (10.1016/j.future.2017.10.052_b53) 2016; 2 Kulkarni (10.1016/j.future.2017.10.052_b48) 2016 Hechter (10.1016/j.future.2017.10.052_b60) 2009 Kuo (10.1016/j.future.2017.10.052_b69) 2013; 11 Rao (10.1016/j.future.2017.10.052_b47) 2012; 183 Hosseini (10.1016/j.future.2017.10.052_b39) 2014; 24 |
| References_xml | – volume: 8 start-page: 687 year: 2008 end-page: 697 ident: b29 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. – volume: 15 start-page: 1 year: 2007 end-page: 28 ident: b27 article-title: Covariance matrix adaptation for multi-objective optimization publication-title: Evol. Comput. – volume: 7 start-page: 427 year: 2016 end-page: 441 ident: b49 article-title: Solving 0–1 knapsack problem using cohort intelligence algorithm publication-title: Int. J. Mach. Learn. Cybern. – year: 2010 ident: b3 publication-title: Nature-Inspired Metaheuristic Algorithms – year: 2013 ident: b5 publication-title: A Brief Review of Nature-Inspired Algorithms for Optimization – volume: 1 start-page: 1377 year: 2010 end-page: 1386 ident: b44 article-title: Election campaign optimization algorithm publication-title: Procedia Comput. Sci. – start-page: 69 year: 1991 end-page: 93 ident: b66 article-title: A comparative analysis of selection schemes used in genetic algorithms publication-title: Foundations of Genetic Algorithms, Vol. 1 – volume: 39 start-page: 459 year: 2007 end-page: 471 ident: b28 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. – volume: 39 start-page: 1 year: 2013 end-page: 32 ident: b61 article-title: A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms publication-title: Artif. Intell. Rev. – year: 2013 ident: b12 article-title: Physics-inspired optimization algorithms: a survey publication-title: J. Optim. – volume: 17 start-page: 14 year: 2014 end-page: 24 ident: b21 article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks publication-title: Swarm Evol. Comput. – volume: 13 start-page: 945 year: 2009 end-page: 958 ident: b32 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. – year: 1978 ident: b58 publication-title: The Stable Society: Its Structure and Control: Towards a Social Cybernetics – start-page: 1396 year: 2013 end-page: 1400 ident: b70 article-title: Cohort intelligence: a self supervised learning behavior publication-title: Systems, Man, and Cybernetics, SMC, IEEE International Conference – reference: M. Molga, C. Smutnicki, Test functions for optimization needs, 2005, pp. 101. – volume: 24 start-page: 1078 year: 2014 end-page: 1094 ident: b39 article-title: A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research publication-title: Appl. Soft Comput. – volume: 178 start-page: 3043 year: 2008 end-page: 3074 ident: b76 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Inform. Sci. – start-page: 4661 year: 2007 end-page: 4667 ident: b38 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition publication-title: Evolutionary Computation, CEC, 2007 IEEE Congress – volume: 326 start-page: 315 year: 2016 end-page: 333 ident: b52 article-title: Social learning optimization (SLO) algorithm paradigm and its application in QoS-aware cloud service composition publication-title: Inform. Sci. – volume: 16 start-page: 1 year: 2014 end-page: 18 ident: b6 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evol. Comput. – volume: 17 start-page: 588 year: 2008 end-page: 594 ident: b62 article-title: The peer assumption: A review of the nurture assumption publication-title: J. Learn. Sci. – year: 2013 ident: b1 publication-title: Essentials of Metaheuristics, Lulu – reference: M.G.H. Omran, M. Clerc, 2011. – volume: 7 start-page: S232 year: 2010 end-page: S237 ident: b7 article-title: A review of nature-inspired algorithms publication-title: J. Bionic Eng. – year: 1999 ident: b8 publication-title: Swarm Intelligence: From Natural to Artificial Systems, No. 1 – volume: 44 start-page: 241 year: 1995 end-page: 257 ident: b13 article-title: Optimization using simulated annealing publication-title: Statistician – volume: vol. 6466 start-page: 583 year: 2010 end-page: 590 ident: b43 article-title: Social emotional optimization algorithm for nonlinear constrained optimization problems publication-title: Swarm, Evolutionary, and Memetic Computing, SEMCCO 2010 – volume: 115 start-page: 549 year: 2002 end-page: 570 ident: b57 article-title: Simple explanation of the no-free-lunch theorem and its implications publication-title: J. Optim. Theory Appl. – start-page: 1785 year: 2005 end-page: 1791 ident: b34 article-title: Self-adaptive differential evolution algorithm for numerical optimization publication-title: Evolutionary Computation (CEC), 2005 IEEE Congress, Vol. 2 – volume: 10 start-page: 759 year: 2010 end-page: 771 ident: b59 article-title: Probability collectives: a multi-agent approach for solving combinatorial optimization problems publication-title: Appl. Soft Comput. – start-page: 261 year: 2010 end-page: 266 ident: b71 article-title: Appendix A: test problems in optimization publication-title: Eng. Optim. – volume: 183 start-page: 1 year: 2012 end-page: 15 ident: b47 article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. – volume: 219 start-page: 8121 year: 2013 end-page: 8144 ident: b35 article-title: Backtracking search optimization algorithm for numerical optimization problems publication-title: Appl. Math. Comput. – volume: 20 start-page: 14 year: 2015 end-page: 22 ident: b50 article-title: Soccer league competition algorithm for solving knapsack problems publication-title: Swarm Evol. Comput. – year: 1962 ident: b63 article-title: Social learning through imitation publication-title: Nebraska Symposium on Motivation – volume: 1 start-page: 67 year: 1997 end-page: 82 ident: b55 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 1942 year: 1995 end-page: 1948 ident: b20 article-title: Particle swarm optimization publication-title: Proceedings of IEEE International Conference on Neural Networks, Vol. 4 – reference: S. Surjanovic, D. Bingham, British Columbia, 2015. – year: 2011 ident: b4 publication-title: Clever Algorithms: Nature-Inspired Programming Recipes – start-page: 1 year: 2016 end-page: 32 ident: b54 article-title: Ideology algorithm: a socio-inspired optimization methodology publication-title: Neural Comput. Appl. – volume: 1 start-page: 28 year: 2006 end-page: 39 ident: b10 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. – volume: 28 start-page: 591 year: 2015 end-page: 603 ident: b51 article-title: Election algorithm: a new socio-politically inspired strategy publication-title: AI Commun. – reference: . (Accessed 15 January 2017). – volume: 13 start-page: 257 year: 2009 end-page: 264 ident: b67 article-title: Modelling of a roulette wheel selection operator in genetic algorithms using generalized nets publication-title: Int. J. Bioautomation – start-page: 186 year: 2013 end-page: 190 ident: b77 article-title: Constraint handling in firefly algorithm publication-title: Cybernetics, CYBCONF, 2013 IEEE International Conference – volume: 7 start-page: 386 year: 2003 end-page: 396 ident: b37 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. – year: 2009 ident: b2 publication-title: Metaheuristics: From Design to Implementation, Vol. 74 – start-page: 153 year: 2015 end-page: 165 ident: b22 article-title: Particle swarm optimization (PSO) publication-title: A Tutorial, Chemometrics and Intelligent Laboratory Systems, Vol. 149 – volume: vol. 191 start-page: 1 year: 2009 end-page: 14 ident: b17 article-title: Harmony search as a metaheuristic algorithm publication-title: Music-Inspired Harmony Search Algorithm – year: 2010 ident: b19 publication-title: HandBook of Metaheuristics, Vol. 2 – reference: . (Accessed 15 December 2016). – volume: 16 start-page: 171 year: 2014 end-page: 200 ident: b42 article-title: League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships publication-title: Appl. Soft Comput. – year: 2009 ident: b60 publication-title: Theories of Social Order: A Reader – volume: 11 start-page: 341 year: 1997 end-page: 359 ident: b30 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – reference: R.G. Reynolds, W. Sverdlik, Problem solving using cultural algorithms, in: Evolutionary Computation, IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference, Orlando, FL, USA, 1994, pp. 645–650. – volume: 10 start-page: 646 year: 2006 end-page: 657 ident: b33 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. – year: 2010 ident: b16 article-title: State-of-the-art in the structure of harmony search algorithm publication-title: Recent Advances in Harmony Search Algorithm, Studies in Computational Intelligence – reference: Clerc, Maurice, Standard particle swarm optimization, 2012, 15 pages, <hal-00764996>. – year: 2016 ident: b9 publication-title: Swarm Intelligence: Principles, Advances, and Applications – volume: 60 start-page: 65 year: 1994 end-page: 99 ident: b14 article-title: Global optimization of statistical functions with simulated annealing publication-title: J. Econometrics – volume: 10 start-page: 281 year: 2006 end-page: 295 ident: b23 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. – start-page: 332 year: 2004 end-page: 339 ident: b73 article-title: Noisy optimization problems-a particular challenge for differential evolution? publication-title: Congress on Evolutionary Computation, CEC2004, Vol. 1 – volume: 4 start-page: 150 year: 2013 end-page: 194 ident: b72 article-title: A literature survey of benchmark functions for global optimisation problems publication-title: Int. J. Math. Model. Numer. Optim. – volume: 2 start-page: 173 year: 2016 end-page: 203 ident: b53 article-title: Social group optimization (SGO): a new population evolutionary optimization technique publication-title: Complex Intel. Syst. – year: 1977 ident: b64 publication-title: Social Learning Theory – start-page: 261 year: 2009 end-page: 277 ident: b11 article-title: Fish school search publication-title: Nature-Inspired Algorithms for Optimisation, Vol. 193 – volume: 220 start-page: 671 year: 1983 end-page: 680 ident: b15 article-title: Optimization by simulated annealing publication-title: Science – start-page: 43 year: 2009 end-page: 48 ident: b40 article-title: League championship algorithm: a new algorithm for numerical function optimization publication-title: International Conference on Soft Computing and Pattern Recognition, SOCPAR09 – volume: 33 start-page: 61 year: 2010 end-page: 106 ident: b31 article-title: Recent advances in differential evolution: a survey and experimental analysis publication-title: Artif. Intell. Rev. – volume: 5 start-page: 295 year: 2001 end-page: 296 ident: b56 article-title: Remarks on a recent paper on the “no free lunch” theorems publication-title: IEEE Trans. Evol. Comput. – volume: 43 start-page: 1769 year: 2011 end-page: 1792 ident: b41 article-title: An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA) publication-title: Comput. Aided Des. – volume: 11 start-page: 510 year: 2013 end-page: 522 ident: b69 article-title: Cultural evolution algorithm for global optimizations and its applications publication-title: J. Appl. Res. Technol. – volume: 14 start-page: 381 year: 2010 end-page: 399 ident: b18 article-title: Chemical-reaction-inspired metaheuristic for optimization publication-title: IEEE Trans. Evol. Comput. – start-page: 2586 year: 2011 end-page: 2592 ident: b46 article-title: Anarchic society optimization: A human-inspired method publication-title: Evolutionary Computation, CEC, 2011 IEEE Congress – volume: vol. 192 start-page: 75 year: 2006 end-page: 102 ident: b26 article-title: The CMA evolution strategy: a comparing review publication-title: Towards a New Evolutionary Computation – volume: 28 start-page: 1006 year: 1992 end-page: 1017 ident: b65 article-title: The role of parents in the socialization of children: An historical overview publication-title: Dev. Psychol. – start-page: 370 year: 2010 end-page: 373 ident: b45 article-title: Constrained optimization with election campaign algorithm publication-title: Industrial Mechatronics and Automation (ICIMA), 2nd International Conference, Vol. 1 – start-page: 1 year: 2016 end-page: 134 ident: b48 publication-title: Cohort Intelligence: A Socio-Inspired Optimization Method, Vol. 114 – volume: 2 start-page: 365 year: 2012 ident: b68 article-title: Blending roulette wheel selection & rank selection in genetic algorithms publication-title: Int. J. Mach. Learn. Comput. – start-page: 2586 year: 2011 ident: 10.1016/j.future.2017.10.052_b46 article-title: Anarchic society optimization: A human-inspired method – volume: 28 start-page: 591 issue: 3 year: 2015 ident: 10.1016/j.future.2017.10.052_b51 article-title: Election algorithm: a new socio-politically inspired strategy publication-title: AI Commun. doi: 10.3233/AIC-140652 – start-page: 1 year: 2016 ident: 10.1016/j.future.2017.10.052_b54 article-title: Ideology algorithm: a socio-inspired optimization methodology publication-title: Neural Comput. Appl. – ident: 10.1016/j.future.2017.10.052_b24 – volume: 2 start-page: 365 issue: 4 year: 2012 ident: 10.1016/j.future.2017.10.052_b68 article-title: Blending roulette wheel selection & rank selection in genetic algorithms publication-title: Int. J. Mach. Learn. Comput. doi: 10.7763/IJMLC.2012.V2.146 – year: 2010 ident: 10.1016/j.future.2017.10.052_b16 article-title: State-of-the-art in the structure of harmony search algorithm doi: 10.1007/978-3-642-04317-8_1 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.future.2017.10.052_b30 article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 10 start-page: 646 issue: 6 year: 2006 ident: 10.1016/j.future.2017.10.052_b33 article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2006.872133 – volume: 28 start-page: 1006 issue: 6 year: 1992 ident: 10.1016/j.future.2017.10.052_b65 article-title: The role of parents in the socialization of children: An historical overview publication-title: Dev. Psychol. doi: 10.1037/0012-1649.28.6.1006 – volume: vol. 192 start-page: 75 year: 2006 ident: 10.1016/j.future.2017.10.052_b26 article-title: The CMA evolution strategy: a comparing review – volume: 10 start-page: 759 issue: 3 year: 2010 ident: 10.1016/j.future.2017.10.052_b59 article-title: Probability collectives: a multi-agent approach for solving combinatorial optimization problems publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.09.006 – volume: vol. 6466 start-page: 583 year: 2010 ident: 10.1016/j.future.2017.10.052_b43 article-title: Social emotional optimization algorithm for nonlinear constrained optimization problems – volume: vol. 191 start-page: 1 year: 2009 ident: 10.1016/j.future.2017.10.052_b17 article-title: Harmony search as a metaheuristic algorithm – volume: 24 start-page: 1078 year: 2014 ident: 10.1016/j.future.2017.10.052_b39 article-title: A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.08.024 – volume: 7 start-page: 427 issue: 3 year: 2016 ident: 10.1016/j.future.2017.10.052_b49 article-title: Solving 0–1 knapsack problem using cohort intelligence algorithm publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-014-0272-y – year: 2010 ident: 10.1016/j.future.2017.10.052_b3 – year: 2009 ident: 10.1016/j.future.2017.10.052_b2 – volume: 5 start-page: 295 issue: 3 year: 2001 ident: 10.1016/j.future.2017.10.052_b56 article-title: Remarks on a recent paper on the “no free lunch” theorems publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.930318 – volume: 219 start-page: 8121 issue: 15 year: 2013 ident: 10.1016/j.future.2017.10.052_b35 article-title: Backtracking search optimization algorithm for numerical optimization problems publication-title: Appl. Math. Comput. – volume: 39 start-page: 459 year: 2007 ident: 10.1016/j.future.2017.10.052_b28 article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm publication-title: J. Global Optim. doi: 10.1007/s10898-007-9149-x – volume: 13 start-page: 257 issue: 4 year: 2009 ident: 10.1016/j.future.2017.10.052_b67 article-title: Modelling of a roulette wheel selection operator in genetic algorithms using generalized nets publication-title: Int. J. Bioautomation – volume: 44 start-page: 241 issue: 2 year: 1995 ident: 10.1016/j.future.2017.10.052_b13 article-title: Optimization using simulated annealing publication-title: Statistician doi: 10.2307/2348448 – year: 2013 ident: 10.1016/j.future.2017.10.052_b12 article-title: Physics-inspired optimization algorithms: a survey publication-title: J. Optim. doi: 10.1155/2013/438152 – volume: 13 start-page: 945 issue: 5 year: 2009 ident: 10.1016/j.future.2017.10.052_b32 article-title: JADE: adaptive differential evolution with optional external archive publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2014613 – volume: 183 start-page: 1 issue: 1 year: 2012 ident: 10.1016/j.future.2017.10.052_b47 article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems publication-title: Inform. Sci. doi: 10.1016/j.ins.2011.08.006 – year: 2013 ident: 10.1016/j.future.2017.10.052_b1 – volume: 60 start-page: 65 issue: 1–2 year: 1994 ident: 10.1016/j.future.2017.10.052_b14 article-title: Global optimization of statistical functions with simulated annealing publication-title: J. Econometrics doi: 10.1016/0304-4076(94)90038-8 – volume: 16 start-page: 171 year: 2014 ident: 10.1016/j.future.2017.10.052_b42 article-title: League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.12.005 – start-page: 261 year: 2010 ident: 10.1016/j.future.2017.10.052_b71 article-title: Appendix A: test problems in optimization publication-title: Eng. Optim. doi: 10.1002/9780470640425.app1 – volume: 7 start-page: S232 issue: Suppl. year: 2010 ident: 10.1016/j.future.2017.10.052_b7 article-title: A review of nature-inspired algorithms publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(09)60240-7 – year: 1999 ident: 10.1016/j.future.2017.10.052_b8 – start-page: 153 year: 2015 ident: 10.1016/j.future.2017.10.052_b22 article-title: Particle swarm optimization (PSO) – year: 1977 ident: 10.1016/j.future.2017.10.052_b64 – start-page: 1396 year: 2013 ident: 10.1016/j.future.2017.10.052_b70 article-title: Cohort intelligence: a self supervised learning behavior – volume: 10 start-page: 281 issue: 3 year: 2006 ident: 10.1016/j.future.2017.10.052_b23 article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2005.857610 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 10.1016/j.future.2017.10.052_b55 article-title: No free lunch theorems for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.585893 – start-page: 332 year: 2004 ident: 10.1016/j.future.2017.10.052_b73 article-title: Noisy optimization problems-a particular challenge for differential evolution? – volume: 16 start-page: 1 year: 2014 ident: 10.1016/j.future.2017.10.052_b6 article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2013.11.003 – ident: 10.1016/j.future.2017.10.052_b75 – start-page: 4661 year: 2007 ident: 10.1016/j.future.2017.10.052_b38 article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition – volume: 15 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.future.2017.10.052_b27 article-title: Covariance matrix adaptation for multi-objective optimization publication-title: Evol. Comput. doi: 10.1162/evco.2007.15.1.1 – volume: 8 start-page: 687 issue: 1 year: 2008 ident: 10.1016/j.future.2017.10.052_b29 article-title: On the performance of artificial bee colony (ABC) algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2007.05.007 – year: 1978 ident: 10.1016/j.future.2017.10.052_b58 – year: 1962 ident: 10.1016/j.future.2017.10.052_b63 article-title: Social learning through imitation – start-page: 261 year: 2009 ident: 10.1016/j.future.2017.10.052_b11 article-title: Fish school search – ident: 10.1016/j.future.2017.10.052_b74 – volume: 178 start-page: 3043 issue: 15 year: 2008 ident: 10.1016/j.future.2017.10.052_b76 article-title: Differential evolution with dynamic stochastic selection for constrained optimization publication-title: Inform. Sci. doi: 10.1016/j.ins.2008.02.014 – volume: 17 start-page: 588 issue: 4 year: 2008 ident: 10.1016/j.future.2017.10.052_b62 article-title: The peer assumption: A review of the nurture assumption publication-title: J. Learn. Sci. doi: 10.1080/10508400802394906 – start-page: 370 year: 2010 ident: 10.1016/j.future.2017.10.052_b45 article-title: Constrained optimization with election campaign algorithm – volume: 2 start-page: 173 issue: 3 year: 2016 ident: 10.1016/j.future.2017.10.052_b53 article-title: Social group optimization (SGO): a new population evolutionary optimization technique publication-title: Complex Intel. Syst. doi: 10.1007/s40747-016-0022-8 – start-page: 186 year: 2013 ident: 10.1016/j.future.2017.10.052_b77 article-title: Constraint handling in firefly algorithm – start-page: 1942 year: 1995 ident: 10.1016/j.future.2017.10.052_b20 article-title: Particle swarm optimization – start-page: 1 year: 2016 ident: 10.1016/j.future.2017.10.052_b48 – volume: 115 start-page: 549 issue: 3 year: 2002 ident: 10.1016/j.future.2017.10.052_b57 article-title: Simple explanation of the no-free-lunch theorem and its implications publication-title: J. Optim. Theory Appl. doi: 10.1023/A:1021251113462 – volume: 4 start-page: 150 issue: 2 year: 2013 ident: 10.1016/j.future.2017.10.052_b72 article-title: A literature survey of benchmark functions for global optimisation problems publication-title: Int. J. Math. Model. Numer. Optim. – volume: 14 start-page: 381 issue: 3 year: 2010 ident: 10.1016/j.future.2017.10.052_b18 article-title: Chemical-reaction-inspired metaheuristic for optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2009.2033580 – year: 2016 ident: 10.1016/j.future.2017.10.052_b9 – start-page: 43 year: 2009 ident: 10.1016/j.future.2017.10.052_b40 article-title: League championship algorithm: a new algorithm for numerical function optimization – start-page: 69 year: 1991 ident: 10.1016/j.future.2017.10.052_b66 article-title: A comparative analysis of selection schemes used in genetic algorithms – ident: 10.1016/j.future.2017.10.052_b36 doi: 10.1109/ICEC.1994.349983 – volume: 220 start-page: 671 issue: 4598 year: 1983 ident: 10.1016/j.future.2017.10.052_b15 article-title: Optimization by simulated annealing publication-title: Science doi: 10.1126/science.220.4598.671 – volume: 39 start-page: 1 issue: 315 year: 2013 ident: 10.1016/j.future.2017.10.052_b61 article-title: A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms publication-title: Artif. Intell. Rev. – volume: 1 start-page: 28 issue: 4 year: 2006 ident: 10.1016/j.future.2017.10.052_b10 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – year: 2010 ident: 10.1016/j.future.2017.10.052_b19 – ident: 10.1016/j.future.2017.10.052_b25 – start-page: 1785 year: 2005 ident: 10.1016/j.future.2017.10.052_b34 article-title: Self-adaptive differential evolution algorithm for numerical optimization – year: 2011 ident: 10.1016/j.future.2017.10.052_b4 – volume: 11 start-page: 510 issue: 4 year: 2013 ident: 10.1016/j.future.2017.10.052_b69 article-title: Cultural evolution algorithm for global optimizations and its applications publication-title: J. Appl. Res. Technol. doi: 10.1016/S1665-6423(13)71558-X – volume: 1 start-page: 1377 issue: 1 year: 2010 ident: 10.1016/j.future.2017.10.052_b44 article-title: Election campaign optimization algorithm publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2010.04.153 – year: 2013 ident: 10.1016/j.future.2017.10.052_b5 – volume: 20 start-page: 14 year: 2015 ident: 10.1016/j.future.2017.10.052_b50 article-title: Soccer league competition algorithm for solving knapsack problems publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.10.002 – volume: 33 start-page: 61 issue: 1–2 year: 2010 ident: 10.1016/j.future.2017.10.052_b31 article-title: Recent advances in differential evolution: a survey and experimental analysis publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-009-9137-2 – volume: 7 start-page: 386 issue: 4 year: 2003 ident: 10.1016/j.future.2017.10.052_b37 article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2003.814902 – volume: 43 start-page: 1769 issue: 12 year: 2011 ident: 10.1016/j.future.2017.10.052_b41 article-title: An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA) publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2011.07.003 – volume: 17 start-page: 14 year: 2014 ident: 10.1016/j.future.2017.10.052_b21 article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks publication-title: Swarm Evol. Comput. doi: 10.1016/j.swevo.2014.02.002 – volume: 326 start-page: 315 year: 2016 ident: 10.1016/j.future.2017.10.052_b52 article-title: Social learning optimization (SLO) algorithm paradigm and its application in QoS-aware cloud service composition publication-title: Inform. Sci. doi: 10.1016/j.ins.2015.08.004 – year: 2009 ident: 10.1016/j.future.2017.10.052_b60 |
| SSID | ssj0001731 |
| Score | 2.5862775 |
| Snippet | The paper proposes a novel metaheuristic Socio Evolution & Learning Optimization Algorithm (SELO) inspired by the social learning behaviour of humans organized... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 252 |
| SubjectTerms | Cultural evolution Evolutionary algorithm Metaheuristic Nature-inspired computing Socio-inspired optimization Unconstrained optimization |
| Title | Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology |
| URI | https://dx.doi.org/10.1016/j.future.2017.10.052 |
| Volume | 81 |
| WOSCitedRecordID | wos000423652200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMvbNzEGCA_IF4mV43jxg5vFRoaE0xIDNQHpMhxT1lHSKcuVPsh_GCOb2mqIm4SL1Fl2bHl8_Xcci6EPEsyDgkMFQOeGiZ0KlieKcFSAJmZEkHkKvB9fCNPT9Vkkr_r9b7HXJhVJetaXV_nl_-V1DiGxLaps39B7valOIC_kej4RLLj848I71JQDmEVNnG0raIDZIEc4mtIvTzU1efFct6ce1-9c58v2Ly2395RDd2Y6htNr13wsbGnq0hi2zBDQJIJXSJCiejOp6IQyv0WoNHr0eqLPZkPrbQ-_JNB6_PRjbb9kn0wGm5zde5yIaZL3XVVJKoT4eL8Z1s5NN6liaxapq6hLkokz4aVRL0_8YmekU_71i6R0fq6t0Fmc9_-Z0sceM_ExcDXZ7GBfHJgY_ni4o1C2-_tSexBEolKFZqFN8gOl6Nc9cnO-PXR5KSV8HZCrBlvF8SUTBc3uL3Xz1WejhpztkduB_uDjj1u7pAe1HfJbuztQQOrv0c-ORjRFkb0OY0gol1k0BZEL-iYbkJoc2IHQvfJh1dHZy-PWejEwQyalA0rSyU0L2dDmAk1EtloqlHAAmTaZLMZNzzRKK2EFLy0Cjga3TihBJ6PTG6jGdMHpF8vanhIaIYmAqBVkRkwwkylRg1by1LL4dDk-I59ksbLKkwoU2-7pVRFjEe8KPwVF_aK7She8T5h7apLX6blN_NlpEMRVE2vQhYInV-ufPTPKw_IrfWf4jHpN8tv8ITcNKtmfrV8GjD2A2kkqhg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Socio+evolution+%26+learning+optimization+algorithm%3A+A+socio-inspired+optimization+methodology&rft.jtitle=Future+generation+computer+systems&rft.au=Kumar%2C+Meeta&rft.au=Kulkarni%2C+Anand+J.&rft.au=Satapathy%2C+Suresh+Chandra&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=81&rft.spage=252&rft.epage=272&rft_id=info:doi/10.1016%2Fj.future.2017.10.052&rft.externalDocID=S0167739X17317259 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |