Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology

The paper proposes a novel metaheuristic Socio Evolution & Learning Optimization Algorithm (SELO) inspired by the social learning behaviour of humans organized as families in a societal setup. This population based stochastic methodology can be categorized under the very recent and upcoming clas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 81; S. 252 - 272
Hauptverfasser: Kumar, Meeta, Kulkarni, Anand J., Satapathy, Suresh Chandra
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.04.2018
Schlagworte:
ISSN:0167-739X, 1872-7115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The paper proposes a novel metaheuristic Socio Evolution & Learning Optimization Algorithm (SELO) inspired by the social learning behaviour of humans organized as families in a societal setup. This population based stochastic methodology can be categorized under the very recent and upcoming class of optimization algorithms—the socio-inspired algorithms. It is the social tendency of humans to adapt to mannerisms and behaviours of other individuals through observation. SELO mimics the socio-evolution and learning of parents and children constituting a family. Individuals organized as family groups (parents and children) interact with one another and other distinct families to attain some individual goals. In the process, these family individuals learn from one another as well as from individuals from other families in the society. This helps them to evolve, improve their intelligence and collectively achieve shared goals. The proposed optimization algorithm models this de-centralized learning which may result in the overall improvement of each individual’s behaviour and associated goals and ultimately the entire societal system. SELO shows good performance on finding the global optimum solution for the unconstrained optimization problems. The problem solving success of SELO is evaluated using 50 well-known boundary-constrained benchmark test problems. The paper compares the results of SELO with few other population based evolutionary algorithms which are popular across scientific and real-world applications. SELO’s performance is also compared to another very recent socio-inspired methodology—the Ideology algorithm. Results indicate that SELO demonstrates comparable performance to other comparison algorithms. This gives ground to the authors to further establish the effectiveness of this metaheuristic by solving purposeful and real world problems.
AbstractList The paper proposes a novel metaheuristic Socio Evolution & Learning Optimization Algorithm (SELO) inspired by the social learning behaviour of humans organized as families in a societal setup. This population based stochastic methodology can be categorized under the very recent and upcoming class of optimization algorithms—the socio-inspired algorithms. It is the social tendency of humans to adapt to mannerisms and behaviours of other individuals through observation. SELO mimics the socio-evolution and learning of parents and children constituting a family. Individuals organized as family groups (parents and children) interact with one another and other distinct families to attain some individual goals. In the process, these family individuals learn from one another as well as from individuals from other families in the society. This helps them to evolve, improve their intelligence and collectively achieve shared goals. The proposed optimization algorithm models this de-centralized learning which may result in the overall improvement of each individual’s behaviour and associated goals and ultimately the entire societal system. SELO shows good performance on finding the global optimum solution for the unconstrained optimization problems. The problem solving success of SELO is evaluated using 50 well-known boundary-constrained benchmark test problems. The paper compares the results of SELO with few other population based evolutionary algorithms which are popular across scientific and real-world applications. SELO’s performance is also compared to another very recent socio-inspired methodology—the Ideology algorithm. Results indicate that SELO demonstrates comparable performance to other comparison algorithms. This gives ground to the authors to further establish the effectiveness of this metaheuristic by solving purposeful and real world problems.
Author Satapathy, Suresh Chandra
Kumar, Meeta
Kulkarni, Anand J.
Author_xml – sequence: 1
  givenname: Meeta
  surname: Kumar
  fullname: Kumar, Meeta
  email: meeta.kumar@sitpune.edu.in
  organization: Symbiosis Institute of Technology, Symbiosis International University, Pune, MH 412 115, India
– sequence: 2
  givenname: Anand J.
  surname: Kulkarni
  fullname: Kulkarni, Anand J.
  email: anand.kulkarni@sitpune.edu.in, kulk0003@uwindsor.ca
  organization: Symbiosis Institute of Technology, Symbiosis International University, Pune, MH 412 115, India
– sequence: 3
  givenname: Suresh Chandra
  surname: Satapathy
  fullname: Satapathy, Suresh Chandra
  email: sureshsatapathy@ieee.org
  organization: Department of Computer Science and Engineering, PVP Siddhartha Institute of Technology, Vijayawada, AP, India
BookMark eNqFkE1LAzEQhoNUsFb_gYc9eds1yWa_ehBK8QsKHlTwIIRsdtKm7G5KkhbqrzfbetGDngZe3meYec7RqDc9IHRFcEIwyW_Widr6rYWEYlKEKMEZPUFjUhY0LgjJRmgcakVcpNX7GTp3bo1xaKZkjD5ejNQmgp1pt16bPrqOWhC21_0yMhuvO_0pDrlol8Zqv-qm0SxyAxTr3m20heZnsQO_Mo1pzXJ_gU6VaB1cfs8Jeru_e50_xovnh6f5bBHLFOc-ruuSCVorDIqVGcuzRrC8AMiFzJWikhKBy5IVjNYZYSmrhkINtMpklSmo0gmaHvdKa5yzoLjU_nCNt0K3nGA-eOJrfvTEB09DGjwFmP2CN1Z3wu7_w26PGITHdhosd1JDL6EJSqTnjdF_L_gC5KSJng
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127416
crossref_primary_10_1016_j_matcom_2023_06_015
crossref_primary_10_1016_j_cma_2025_118318
crossref_primary_10_1109_ACCESS_2019_2923468
crossref_primary_10_3390_biomimetics9090509
crossref_primary_10_1007_s00366_020_01258_7
crossref_primary_10_1016_j_cosrev_2024_100647
crossref_primary_10_1155_2022_3343505
crossref_primary_10_1016_j_egyr_2020_11_250
crossref_primary_10_1109_ACCESS_2020_3026821
crossref_primary_10_1007_s00366_020_01133_5
crossref_primary_10_1007_s40747_020_00189_6
crossref_primary_10_1109_ACCESS_2024_3365700
crossref_primary_10_1007_s10489_022_03438_y
crossref_primary_10_1016_j_jocs_2023_101978
crossref_primary_10_1016_j_future_2019_02_028
crossref_primary_10_1038_s41598_024_56926_1
crossref_primary_10_1016_j_asoc_2021_108126
crossref_primary_10_3390_math12172604
crossref_primary_10_1007_s13042_025_02624_x
crossref_primary_10_1038_s41598_024_75123_8
crossref_primary_10_1007_s40747_023_01069_5
crossref_primary_10_1002_cpe_7971
crossref_primary_10_1016_j_asoc_2020_106325
crossref_primary_10_1002_cpe_7612
crossref_primary_10_1007_s10586_025_05140_3
crossref_primary_10_1007_s13369_020_05292_x
crossref_primary_10_1111_exsy_12854
crossref_primary_10_1038_s41598_024_69010_5
crossref_primary_10_1007_s10586_025_05121_6
crossref_primary_10_1016_j_cogsys_2024_101237
crossref_primary_10_1007_s11227_018_2639_4
crossref_primary_10_1016_j_knosys_2022_108320
crossref_primary_10_1186_s40537_023_00864_8
crossref_primary_10_1002_er_5163
crossref_primary_10_1109_TITS_2023_3257484
crossref_primary_10_1007_s11227_021_03943_w
crossref_primary_10_1016_j_eswa_2022_117444
crossref_primary_10_3390_su14159428
crossref_primary_10_3390_polym14153097
crossref_primary_10_1007_s10115_025_02498_z
crossref_primary_10_1016_j_ijhydene_2019_12_189
crossref_primary_10_3846_jcem_2023_20399
crossref_primary_10_32604_cmc_2023_040775
crossref_primary_10_2478_jaiscr_2024_0012
crossref_primary_10_3390_fractalfract5010002
crossref_primary_10_1007_s00366_020_01025_8
crossref_primary_10_1007_s00500_023_08575_1
crossref_primary_10_1016_j_engappai_2019_08_025
crossref_primary_10_32604_cmc_2023_036865
crossref_primary_10_1016_j_eswa_2020_113702
crossref_primary_10_1371_journal_pone_0263387
crossref_primary_10_1109_ACCESS_2022_3156593
crossref_primary_10_3390_math11040851
crossref_primary_10_1016_j_heliyon_2024_e37819
crossref_primary_10_1016_j_asoc_2025_113527
crossref_primary_10_1016_j_eswa_2023_120602
crossref_primary_10_1155_2021_9210050
crossref_primary_10_1007_s10462_021_10078_0
crossref_primary_10_1109_ACCESS_2020_3030950
crossref_primary_10_1002_2050_7038_12552
crossref_primary_10_1007_s12559_022_09998_y
crossref_primary_10_1007_s00366_021_01530_4
crossref_primary_10_1007_s12652_022_04332_8
crossref_primary_10_1016_j_aej_2025_02_046
crossref_primary_10_1016_j_cie_2021_107250
crossref_primary_10_1007_s00366_021_01591_5
crossref_primary_10_1007_s42235_025_00674_z
crossref_primary_10_1007_s10586_024_04881_x
crossref_primary_10_1038_s41598_025_94260_2
crossref_primary_10_1051_e3sconf_202018401069
crossref_primary_10_1007_s12597_024_00763_3
crossref_primary_10_1016_j_knosys_2024_111616
crossref_primary_10_3390_biomimetics9100603
crossref_primary_10_1371_journal_pone_0251204
crossref_primary_10_1007_s11831_022_09766_z
crossref_primary_10_1038_s41598_023_38778_3
crossref_primary_10_1016_j_knosys_2022_108664
crossref_primary_10_1109_ACCESS_2019_2958279
crossref_primary_10_1109_ACCESS_2020_3043174
crossref_primary_10_1016_j_eswa_2023_122638
crossref_primary_10_1016_j_egyr_2020_05_011
crossref_primary_10_1007_s10462_024_10729_y
crossref_primary_10_1016_j_knosys_2025_113548
crossref_primary_10_1109_ACCESS_2022_3144431
crossref_primary_10_1007_s10586_023_04221_5
crossref_primary_10_3390_app131810247
crossref_primary_10_1007_s11227_023_05851_7
crossref_primary_10_1007_s00366_021_01371_1
crossref_primary_10_1016_j_engappai_2024_109370
crossref_primary_10_3390_biomimetics9120727
crossref_primary_10_1007_s11831_022_09780_1
crossref_primary_10_3390_biomimetics9080500
crossref_primary_10_1007_s10586_025_05170_x
crossref_primary_10_3390_biomimetics9040205
crossref_primary_10_1007_s11831_020_09481_7
crossref_primary_10_1016_j_jer_2024_05_008
crossref_primary_10_1016_j_jocs_2022_101886
crossref_primary_10_3390_pr11051380
crossref_primary_10_1109_ACCESS_2019_2918753
crossref_primary_10_1016_j_eswa_2025_129195
crossref_primary_10_3390_su132212771
crossref_primary_10_1007_s40747_021_00283_3
crossref_primary_10_1007_s00500_023_08090_3
crossref_primary_10_1016_j_engappai_2019_07_001
crossref_primary_10_1007_s11831_023_09897_x
crossref_primary_10_1007_s11831_022_09872_y
crossref_primary_10_1002_cpe_6165
crossref_primary_10_1371_journal_pone_0329705
crossref_primary_10_1016_j_engappai_2022_105069
crossref_primary_10_1049_cit2_12316
crossref_primary_10_1109_ACCESS_2023_3327732
crossref_primary_10_3390_electronics11121919
crossref_primary_10_1016_j_future_2018_07_057
crossref_primary_10_1016_j_cie_2021_107739
crossref_primary_10_1007_s10462_024_11008_6
crossref_primary_10_3389_fenrg_2022_1028423
crossref_primary_10_3390_biomimetics9090561
crossref_primary_10_1016_j_knosys_2025_113169
crossref_primary_10_1007_s10586_025_05358_1
crossref_primary_10_1080_01430750_2020_1789740
crossref_primary_10_3390_su15064982
crossref_primary_10_1007_s00500_021_05886_z
crossref_primary_10_1007_s10462_024_10723_4
crossref_primary_10_1016_j_engappai_2022_105592
crossref_primary_10_1080_0952813X_2022_2115144
crossref_primary_10_1007_s00366_020_00994_0
crossref_primary_10_1007_s00500_022_07041_8
crossref_primary_10_1016_j_cma_2023_116199
crossref_primary_10_1016_j_cie_2023_109300
crossref_primary_10_1007_s10489_020_01947_2
crossref_primary_10_1007_s00521_024_09879_5
crossref_primary_10_1109_ACCESS_2021_3117567
crossref_primary_10_1007_s10462_023_10498_0
crossref_primary_10_1016_j_chaos_2023_113672
crossref_primary_10_1007_s00521_024_10009_4
crossref_primary_10_1007_s10462_023_10446_y
crossref_primary_10_1038_s41598_024_79577_8
crossref_primary_10_1007_s10462_023_10403_9
crossref_primary_10_1007_s10586_024_04293_x
crossref_primary_10_1093_jcde_qwad108
crossref_primary_10_1016_j_engappai_2019_103300
crossref_primary_10_1038_s41598_024_53064_6
crossref_primary_10_1515_mt_2020_0075
crossref_primary_10_1007_s00500_023_08033_y
crossref_primary_10_1007_s11042_025_20607_6
crossref_primary_10_1093_jcde_qwac013
crossref_primary_10_1007_s12065_020_00508_3
crossref_primary_10_3390_su141710673
crossref_primary_10_1007_s10115_025_02463_w
crossref_primary_10_3390_math9233011
crossref_primary_10_1007_s12008_024_02174_6
crossref_primary_10_1007_s42235_023_00469_0
crossref_primary_10_3390_axioms11120675
crossref_primary_10_1016_j_matcom_2021_09_014
crossref_primary_10_1007_s13201_022_01865_3
crossref_primary_10_1038_s41598_025_16513_4
crossref_primary_10_1002_ima_22388
crossref_primary_10_1109_ACCESS_2019_2918406
crossref_primary_10_3233_JIFS_211408
crossref_primary_10_1016_j_engappai_2020_103505
crossref_primary_10_1016_j_engappai_2023_106959
crossref_primary_10_1016_j_eswa_2022_119246
crossref_primary_10_1007_s00500_019_03852_4
crossref_primary_10_1088_1742_6596_1950_1_012063
crossref_primary_10_3390_sym13122364
crossref_primary_10_1016_j_future_2018_05_037
crossref_primary_10_1016_j_heliyon_2024_e26187
crossref_primary_10_1007_s10462_024_11035_3
crossref_primary_10_1007_s11831_024_10217_0
crossref_primary_10_3390_biomimetics9060361
crossref_primary_10_1007_s00500_021_06229_8
crossref_primary_10_1080_15567036_2020_1747575
crossref_primary_10_1007_s11831_022_09801_z
crossref_primary_10_1007_s00500_023_07929_z
crossref_primary_10_1007_s00521_024_10694_1
crossref_primary_10_1016_j_knosys_2020_105709
crossref_primary_10_1007_s11227_023_05260_w
crossref_primary_10_1109_ACCESS_2022_3200386
Cites_doi 10.3233/AIC-140652
10.7763/IJMLC.2012.V2.146
10.1007/978-3-642-04317-8_1
10.1023/A:1008202821328
10.1109/TEVC.2006.872133
10.1037/0012-1649.28.6.1006
10.1016/j.asoc.2009.09.006
10.1016/j.asoc.2014.08.024
10.1007/s13042-014-0272-y
10.1109/4235.930318
10.1007/s10898-007-9149-x
10.2307/2348448
10.1155/2013/438152
10.1109/TEVC.2009.2014613
10.1016/j.ins.2011.08.006
10.1016/0304-4076(94)90038-8
10.1016/j.asoc.2013.12.005
10.1002/9780470640425.app1
10.1016/S1672-6529(09)60240-7
10.1109/TEVC.2005.857610
10.1109/4235.585893
10.1016/j.swevo.2013.11.003
10.1162/evco.2007.15.1.1
10.1016/j.asoc.2007.05.007
10.1016/j.ins.2008.02.014
10.1080/10508400802394906
10.1007/s40747-016-0022-8
10.1023/A:1021251113462
10.1109/TEVC.2009.2033580
10.1109/ICEC.1994.349983
10.1126/science.220.4598.671
10.1109/MCI.2006.329691
10.1016/S1665-6423(13)71558-X
10.1016/j.procs.2010.04.153
10.1016/j.swevo.2014.10.002
10.1007/s10462-009-9137-2
10.1109/TEVC.2003.814902
10.1016/j.cad.2011.07.003
10.1016/j.swevo.2014.02.002
10.1016/j.ins.2015.08.004
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2017.10.052
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 272
ExternalDocumentID 10_1016_j_future_2017_10_052
S0167739X17317259
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-bb84a2bf0ef485465da467ee6ac6ff2c21a0884742b5143495da4be295c95fe93
ISICitedReferencesCount 187
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423652200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 02:59:44 EST 2025
Tue Nov 18 22:15:41 EST 2025
Fri Feb 23 02:30:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Metaheuristic
Socio-inspired optimization
Unconstrained optimization
Cultural evolution
Nature-inspired computing
Evolutionary algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-bb84a2bf0ef485465da467ee6ac6ff2c21a0884742b5143495da4be295c95fe93
PageCount 21
ParticipantIDs crossref_citationtrail_10_1016_j_future_2017_10_052
crossref_primary_10_1016_j_future_2017_10_052
elsevier_sciencedirect_doi_10_1016_j_future_2017_10_052
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Kirkpatrick, Gelatt, Vecchi (b15) 1983; 220
Storn, Price (b30) 1997; 11
Talbi (b2) 2009
R.G. Reynolds, W. Sverdlik, Problem solving using cultural algorithms, in: Evolutionary Computation, IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference, Orlando, FL, USA, 1994, pp. 645–650.
Eisenberg (b62) 2008; 17
Krink, Filipic, Fogel (b73) 2004
Brooks, Morgan (b13) 1995; 44
Hassanien, Emary (b9) 2016
Lv, He, Li, Cheng, Luo, Zhang (b44) 2010; 1
Moosavian (b50) 2015; 20
Nanda, Panda (b6) 2014; 16
S. Surjanovic, D. Bingham, British Columbia, 2015.
Goffe, Ferrier, Rogers (b14) 1994; 60
Karaboga, Basturk (b29) 2008; 8
Xie, Lv, Liu, Zhang, Luo, Cheng (b45) 2010
Marini, Walczak (b22) 2015
Gendreau, Potvin (b19) 2010
Geem (b16) 2010
Zhang, Luo, Wang (b76) 2008; 178
Koppen, Wolpert, Macready (b56) 2001; 5
Kulkarni, Durugkar, Kumar (b70) 2013
Emami, Derakhshan (b51) 2015; 28
Hosseini, Al Khaled (b39) 2014; 24
Bonabeau, Dorigo, Theraulaz (b8) 1999
Fister Jr., Yang, Fister, Brest, Fister (b5) 2013
Bandura, Walters (b64) 1977
Kashan (b41) 2011; 43
Ahmadi-Javid (b46) 2011
Brest, Greiner, Boskovic, Mernik, Zumer (b33) 2006; 10
Yang (b3) 2010
Kulkarni, Tai (b59) 2010; 10
Yang (b71) 2010
Xu, Cui, Zeng (b43) 2010; vol. 6466
(Accessed 15 December 2016).
Karaboga, Basturk (b28) 2007; 39
Biswas, Mishra, Tiwari, Misra (b12) 2013
Filho, de Lima Neto, Lins, Nascimento, Lima (b11) 2009
Lam, Li (b18) 2010; 14
Neri, Tirronen (b31) 2010; 33
Atashpaz-Gargari, Lucas (b38) 2007
Kashan (b42) 2014; 16
Ray, Liew (b37) 2003; 7
Goldberg, Deb (b66) 1991
Brownlee (b4) 2011
Satapathy, Naik (b53) 2016; 2
Bandura (b63) 1962
M. Molga, C. Smutnicki, Test functions for optimization needs, 2005, pp. 101.
Zang, Zhang, Hapeshi (b7) 2010; 7
Liang, Qin, Suganthan, Baskar (b23) 2006; 10
Dorigo, Birattari, Stutzle (b10) 2006; 1
Edward (b58) 1978
Civicioglu (b35) 2013; 219
Kashan (b40) 2009
M.G.H. Omran, M. Clerc, 2011.
Clerc, Maurice, Standard particle swarm optimization, 2012, 15 pages, <hal-00764996>.
Igel, Hansen, Roth (b27) 2007; 15
Rao, Savsani, Vakharia (b47) 2012; 183
Liu, Chu, Song, Xue, Lu (b52) 2016; 326
Kuo, Lin (b69) 2013; 11
Kulkarni, Krishnasamy, Abraham (b48) 2016
Kumar (b68) 2012; 2
Wolpert, Macready (b55) 1997; 1
Huan, Kulkarni, Kanesan (b54) 2016
Civicioglu, Besdok (b61) 2013; 39
Yang (b17) 2009; vol. 191
Moosavian, Roodsari (b21) 2014; 17
Zhang, Sanderson (b32) 2009; 13
Pencheva, Atanassov, Shannon (b67) 2009; 13
Deshpande, Phatnani, Kulkarni (b77) 2013
Ho, Pepyne (b57) 2002; 115
Kennedy, Eberhart (b20) 1995
Maccoby (b65) 1992; 28
Kulkarni, Shabir (b49) 2016; 7
Jamil, Yang (b72) 2013; 4
(Accessed 15 January 2017).
Hansen (b26) 2006; vol. 192
Qin, Ponnuthurai (b34) 2005
Luke (b1) 2013
Hechter, Horne (b60) 2009
Neri (10.1016/j.future.2017.10.052_b31) 2010; 33
Ray (10.1016/j.future.2017.10.052_b37) 2003; 7
Deshpande (10.1016/j.future.2017.10.052_b77) 2013
Atashpaz-Gargari (10.1016/j.future.2017.10.052_b38) 2007
Nanda (10.1016/j.future.2017.10.052_b6) 2014; 16
Bandura (10.1016/j.future.2017.10.052_b64) 1977
Dorigo (10.1016/j.future.2017.10.052_b10) 2006; 1
Brownlee (10.1016/j.future.2017.10.052_b4) 2011
Eisenberg (10.1016/j.future.2017.10.052_b62) 2008; 17
Bandura (10.1016/j.future.2017.10.052_b63) 1962
Bonabeau (10.1016/j.future.2017.10.052_b8) 1999
Kirkpatrick (10.1016/j.future.2017.10.052_b15) 1983; 220
Kashan (10.1016/j.future.2017.10.052_b40) 2009
Yang (10.1016/j.future.2017.10.052_b17) 2009; vol. 191
Maccoby (10.1016/j.future.2017.10.052_b65) 1992; 28
Geem (10.1016/j.future.2017.10.052_b16) 2010
Xu (10.1016/j.future.2017.10.052_b43) 2010; vol. 6466
Xie (10.1016/j.future.2017.10.052_b45) 2010
Pencheva (10.1016/j.future.2017.10.052_b67) 2009; 13
Civicioglu (10.1016/j.future.2017.10.052_b35) 2013; 219
Kennedy (10.1016/j.future.2017.10.052_b20) 1995
Luke (10.1016/j.future.2017.10.052_b1) 2013
Kulkarni (10.1016/j.future.2017.10.052_b59) 2010; 10
Moosavian (10.1016/j.future.2017.10.052_b50) 2015; 20
10.1016/j.future.2017.10.052_b36
Marini (10.1016/j.future.2017.10.052_b22) 2015
Storn (10.1016/j.future.2017.10.052_b30) 1997; 11
Civicioglu (10.1016/j.future.2017.10.052_b61) 2013; 39
Hassanien (10.1016/j.future.2017.10.052_b9) 2016
Zhang (10.1016/j.future.2017.10.052_b76) 2008; 178
Kashan (10.1016/j.future.2017.10.052_b41) 2011; 43
Yang (10.1016/j.future.2017.10.052_b3) 2010
Fister Jr. (10.1016/j.future.2017.10.052_b5) 2013
Lv (10.1016/j.future.2017.10.052_b44) 2010; 1
Kashan (10.1016/j.future.2017.10.052_b42) 2014; 16
Wolpert (10.1016/j.future.2017.10.052_b55) 1997; 1
Brooks (10.1016/j.future.2017.10.052_b13) 1995; 44
Igel (10.1016/j.future.2017.10.052_b27) 2007; 15
Emami (10.1016/j.future.2017.10.052_b51) 2015; 28
Hansen (10.1016/j.future.2017.10.052_b26) 2006; vol. 192
Filho (10.1016/j.future.2017.10.052_b11) 2009
Edward (10.1016/j.future.2017.10.052_b58) 1978
Liu (10.1016/j.future.2017.10.052_b52) 2016; 326
Zang (10.1016/j.future.2017.10.052_b7) 2010; 7
10.1016/j.future.2017.10.052_b24
10.1016/j.future.2017.10.052_b25
Jamil (10.1016/j.future.2017.10.052_b72) 2013; 4
Moosavian (10.1016/j.future.2017.10.052_b21) 2014; 17
10.1016/j.future.2017.10.052_b74
Liang (10.1016/j.future.2017.10.052_b23) 2006; 10
Lam (10.1016/j.future.2017.10.052_b18) 2010; 14
10.1016/j.future.2017.10.052_b75
Goldberg (10.1016/j.future.2017.10.052_b66) 1991
Huan (10.1016/j.future.2017.10.052_b54) 2016
Kumar (10.1016/j.future.2017.10.052_b68) 2012; 2
Qin (10.1016/j.future.2017.10.052_b34) 2005
Koppen (10.1016/j.future.2017.10.052_b56) 2001; 5
Ahmadi-Javid (10.1016/j.future.2017.10.052_b46) 2011
Zhang (10.1016/j.future.2017.10.052_b32) 2009; 13
Krink (10.1016/j.future.2017.10.052_b73) 2004
Yang (10.1016/j.future.2017.10.052_b71) 2010
Kulkarni (10.1016/j.future.2017.10.052_b49) 2016; 7
Ho (10.1016/j.future.2017.10.052_b57) 2002; 115
Biswas (10.1016/j.future.2017.10.052_b12) 2013
Karaboga (10.1016/j.future.2017.10.052_b29) 2008; 8
Kulkarni (10.1016/j.future.2017.10.052_b70) 2013
Talbi (10.1016/j.future.2017.10.052_b2) 2009
Goffe (10.1016/j.future.2017.10.052_b14) 1994; 60
Brest (10.1016/j.future.2017.10.052_b33) 2006; 10
Karaboga (10.1016/j.future.2017.10.052_b28) 2007; 39
Gendreau (10.1016/j.future.2017.10.052_b19) 2010
Satapathy (10.1016/j.future.2017.10.052_b53) 2016; 2
Kulkarni (10.1016/j.future.2017.10.052_b48) 2016
Hechter (10.1016/j.future.2017.10.052_b60) 2009
Kuo (10.1016/j.future.2017.10.052_b69) 2013; 11
Rao (10.1016/j.future.2017.10.052_b47) 2012; 183
Hosseini (10.1016/j.future.2017.10.052_b39) 2014; 24
References_xml – volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: b29
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 15
  start-page: 1
  year: 2007
  end-page: 28
  ident: b27
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evol. Comput.
– volume: 7
  start-page: 427
  year: 2016
  end-page: 441
  ident: b49
  article-title: Solving 0–1 knapsack problem using cohort intelligence algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
– year: 2010
  ident: b3
  publication-title: Nature-Inspired Metaheuristic Algorithms
– year: 2013
  ident: b5
  publication-title: A Brief Review of Nature-Inspired Algorithms for Optimization
– volume: 1
  start-page: 1377
  year: 2010
  end-page: 1386
  ident: b44
  article-title: Election campaign optimization algorithm
  publication-title: Procedia Comput. Sci.
– start-page: 69
  year: 1991
  end-page: 93
  ident: b66
  article-title: A comparative analysis of selection schemes used in genetic algorithms
  publication-title: Foundations of Genetic Algorithms, Vol. 1
– volume: 39
  start-page: 459
  year: 2007
  end-page: 471
  ident: b28
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
– volume: 39
  start-page: 1
  year: 2013
  end-page: 32
  ident: b61
  article-title: A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms
  publication-title: Artif. Intell. Rev.
– year: 2013
  ident: b12
  article-title: Physics-inspired optimization algorithms: a survey
  publication-title: J. Optim.
– volume: 17
  start-page: 14
  year: 2014
  end-page: 24
  ident: b21
  article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks
  publication-title: Swarm Evol. Comput.
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: b32
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– year: 1978
  ident: b58
  publication-title: The Stable Society: Its Structure and Control: Towards a Social Cybernetics
– start-page: 1396
  year: 2013
  end-page: 1400
  ident: b70
  article-title: Cohort intelligence: a self supervised learning behavior
  publication-title: Systems, Man, and Cybernetics, SMC, IEEE International Conference
– reference: M. Molga, C. Smutnicki, Test functions for optimization needs, 2005, pp. 101.
– volume: 24
  start-page: 1078
  year: 2014
  end-page: 1094
  ident: b39
  article-title: A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research
  publication-title: Appl. Soft Comput.
– volume: 178
  start-page: 3043
  year: 2008
  end-page: 3074
  ident: b76
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Inform. Sci.
– start-page: 4661
  year: 2007
  end-page: 4667
  ident: b38
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
  publication-title: Evolutionary Computation, CEC, 2007 IEEE Congress
– volume: 326
  start-page: 315
  year: 2016
  end-page: 333
  ident: b52
  article-title: Social learning optimization (SLO) algorithm paradigm and its application in QoS-aware cloud service composition
  publication-title: Inform. Sci.
– volume: 16
  start-page: 1
  year: 2014
  end-page: 18
  ident: b6
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm Evol. Comput.
– volume: 17
  start-page: 588
  year: 2008
  end-page: 594
  ident: b62
  article-title: The peer assumption: A review of the nurture assumption
  publication-title: J. Learn. Sci.
– year: 2013
  ident: b1
  publication-title: Essentials of Metaheuristics, Lulu
– reference: M.G.H. Omran, M. Clerc, 2011.
– volume: 7
  start-page: S232
  year: 2010
  end-page: S237
  ident: b7
  article-title: A review of nature-inspired algorithms
  publication-title: J. Bionic Eng.
– year: 1999
  ident: b8
  publication-title: Swarm Intelligence: From Natural to Artificial Systems, No. 1
– volume: 44
  start-page: 241
  year: 1995
  end-page: 257
  ident: b13
  article-title: Optimization using simulated annealing
  publication-title: Statistician
– volume: vol. 6466
  start-page: 583
  year: 2010
  end-page: 590
  ident: b43
  article-title: Social emotional optimization algorithm for nonlinear constrained optimization problems
  publication-title: Swarm, Evolutionary, and Memetic Computing, SEMCCO 2010
– volume: 115
  start-page: 549
  year: 2002
  end-page: 570
  ident: b57
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J. Optim. Theory Appl.
– start-page: 1785
  year: 2005
  end-page: 1791
  ident: b34
  article-title: Self-adaptive differential evolution algorithm for numerical optimization
  publication-title: Evolutionary Computation (CEC), 2005 IEEE Congress, Vol. 2
– volume: 10
  start-page: 759
  year: 2010
  end-page: 771
  ident: b59
  article-title: Probability collectives: a multi-agent approach for solving combinatorial optimization problems
  publication-title: Appl. Soft Comput.
– start-page: 261
  year: 2010
  end-page: 266
  ident: b71
  article-title: Appendix A: test problems in optimization
  publication-title: Eng. Optim.
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: b47
  article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
– volume: 219
  start-page: 8121
  year: 2013
  end-page: 8144
  ident: b35
  article-title: Backtracking search optimization algorithm for numerical optimization problems
  publication-title: Appl. Math. Comput.
– volume: 20
  start-page: 14
  year: 2015
  end-page: 22
  ident: b50
  article-title: Soccer league competition algorithm for solving knapsack problems
  publication-title: Swarm Evol. Comput.
– year: 1962
  ident: b63
  article-title: Social learning through imitation
  publication-title: Nebraska Symposium on Motivation
– volume: 1
  start-page: 67
  year: 1997
  end-page: 82
  ident: b55
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 1942
  year: 1995
  end-page: 1948
  ident: b20
  article-title: Particle swarm optimization
  publication-title: Proceedings of IEEE International Conference on Neural Networks, Vol. 4
– reference: S. Surjanovic, D. Bingham, British Columbia, 2015.
– year: 2011
  ident: b4
  publication-title: Clever Algorithms: Nature-Inspired Programming Recipes
– start-page: 1
  year: 2016
  end-page: 32
  ident: b54
  article-title: Ideology algorithm: a socio-inspired optimization methodology
  publication-title: Neural Comput. Appl.
– volume: 1
  start-page: 28
  year: 2006
  end-page: 39
  ident: b10
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
– volume: 28
  start-page: 591
  year: 2015
  end-page: 603
  ident: b51
  article-title: Election algorithm: a new socio-politically inspired strategy
  publication-title: AI Commun.
– reference: . (Accessed 15 January 2017).
– volume: 13
  start-page: 257
  year: 2009
  end-page: 264
  ident: b67
  article-title: Modelling of a roulette wheel selection operator in genetic algorithms using generalized nets
  publication-title: Int. J. Bioautomation
– start-page: 186
  year: 2013
  end-page: 190
  ident: b77
  article-title: Constraint handling in firefly algorithm
  publication-title: Cybernetics, CYBCONF, 2013 IEEE International Conference
– volume: 7
  start-page: 386
  year: 2003
  end-page: 396
  ident: b37
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
– year: 2009
  ident: b2
  publication-title: Metaheuristics: From Design to Implementation, Vol. 74
– start-page: 153
  year: 2015
  end-page: 165
  ident: b22
  article-title: Particle swarm optimization (PSO)
  publication-title: A Tutorial, Chemometrics and Intelligent Laboratory Systems, Vol. 149
– volume: vol. 191
  start-page: 1
  year: 2009
  end-page: 14
  ident: b17
  article-title: Harmony search as a metaheuristic algorithm
  publication-title: Music-Inspired Harmony Search Algorithm
– year: 2010
  ident: b19
  publication-title: HandBook of Metaheuristics, Vol. 2
– reference: . (Accessed 15 December 2016).
– volume: 16
  start-page: 171
  year: 2014
  end-page: 200
  ident: b42
  article-title: League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships
  publication-title: Appl. Soft Comput.
– year: 2009
  ident: b60
  publication-title: Theories of Social Order: A Reader
– volume: 11
  start-page: 341
  year: 1997
  end-page: 359
  ident: b30
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– reference: R.G. Reynolds, W. Sverdlik, Problem solving using cultural algorithms, in: Evolutionary Computation, IEEE World Congress on Computational Intelligence, Proceedings of the First IEEE Conference, Orlando, FL, USA, 1994, pp. 645–650.
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: b33
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– year: 2010
  ident: b16
  article-title: State-of-the-art in the structure of harmony search algorithm
  publication-title: Recent Advances in Harmony Search Algorithm, Studies in Computational Intelligence
– reference: Clerc, Maurice, Standard particle swarm optimization, 2012, 15 pages, <hal-00764996>.
– year: 2016
  ident: b9
  publication-title: Swarm Intelligence: Principles, Advances, and Applications
– volume: 60
  start-page: 65
  year: 1994
  end-page: 99
  ident: b14
  article-title: Global optimization of statistical functions with simulated annealing
  publication-title: J. Econometrics
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: b23
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 332
  year: 2004
  end-page: 339
  ident: b73
  article-title: Noisy optimization problems-a particular challenge for differential evolution?
  publication-title: Congress on Evolutionary Computation, CEC2004, Vol. 1
– volume: 4
  start-page: 150
  year: 2013
  end-page: 194
  ident: b72
  article-title: A literature survey of benchmark functions for global optimisation problems
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 2
  start-page: 173
  year: 2016
  end-page: 203
  ident: b53
  article-title: Social group optimization (SGO): a new population evolutionary optimization technique
  publication-title: Complex Intel. Syst.
– year: 1977
  ident: b64
  publication-title: Social Learning Theory
– start-page: 261
  year: 2009
  end-page: 277
  ident: b11
  article-title: Fish school search
  publication-title: Nature-Inspired Algorithms for Optimisation, Vol. 193
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b15
  article-title: Optimization by simulated annealing
  publication-title: Science
– start-page: 43
  year: 2009
  end-page: 48
  ident: b40
  article-title: League championship algorithm: a new algorithm for numerical function optimization
  publication-title: International Conference on Soft Computing and Pattern Recognition, SOCPAR09
– volume: 33
  start-page: 61
  year: 2010
  end-page: 106
  ident: b31
  article-title: Recent advances in differential evolution: a survey and experimental analysis
  publication-title: Artif. Intell. Rev.
– volume: 5
  start-page: 295
  year: 2001
  end-page: 296
  ident: b56
  article-title: Remarks on a recent paper on the “no free lunch” theorems
  publication-title: IEEE Trans. Evol. Comput.
– volume: 43
  start-page: 1769
  year: 2011
  end-page: 1792
  ident: b41
  article-title: An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA)
  publication-title: Comput. Aided Des.
– volume: 11
  start-page: 510
  year: 2013
  end-page: 522
  ident: b69
  article-title: Cultural evolution algorithm for global optimizations and its applications
  publication-title: J. Appl. Res. Technol.
– volume: 14
  start-page: 381
  year: 2010
  end-page: 399
  ident: b18
  article-title: Chemical-reaction-inspired metaheuristic for optimization
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 2586
  year: 2011
  end-page: 2592
  ident: b46
  article-title: Anarchic society optimization: A human-inspired method
  publication-title: Evolutionary Computation, CEC, 2011 IEEE Congress
– volume: vol. 192
  start-page: 75
  year: 2006
  end-page: 102
  ident: b26
  article-title: The CMA evolution strategy: a comparing review
  publication-title: Towards a New Evolutionary Computation
– volume: 28
  start-page: 1006
  year: 1992
  end-page: 1017
  ident: b65
  article-title: The role of parents in the socialization of children: An historical overview
  publication-title: Dev. Psychol.
– start-page: 370
  year: 2010
  end-page: 373
  ident: b45
  article-title: Constrained optimization with election campaign algorithm
  publication-title: Industrial Mechatronics and Automation (ICIMA), 2nd International Conference, Vol. 1
– start-page: 1
  year: 2016
  end-page: 134
  ident: b48
  publication-title: Cohort Intelligence: A Socio-Inspired Optimization Method, Vol. 114
– volume: 2
  start-page: 365
  year: 2012
  ident: b68
  article-title: Blending roulette wheel selection & rank selection in genetic algorithms
  publication-title: Int. J. Mach. Learn. Comput.
– start-page: 2586
  year: 2011
  ident: 10.1016/j.future.2017.10.052_b46
  article-title: Anarchic society optimization: A human-inspired method
– volume: 28
  start-page: 591
  issue: 3
  year: 2015
  ident: 10.1016/j.future.2017.10.052_b51
  article-title: Election algorithm: a new socio-politically inspired strategy
  publication-title: AI Commun.
  doi: 10.3233/AIC-140652
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2017.10.052_b54
  article-title: Ideology algorithm: a socio-inspired optimization methodology
  publication-title: Neural Comput. Appl.
– ident: 10.1016/j.future.2017.10.052_b24
– volume: 2
  start-page: 365
  issue: 4
  year: 2012
  ident: 10.1016/j.future.2017.10.052_b68
  article-title: Blending roulette wheel selection & rank selection in genetic algorithms
  publication-title: Int. J. Mach. Learn. Comput.
  doi: 10.7763/IJMLC.2012.V2.146
– year: 2010
  ident: 10.1016/j.future.2017.10.052_b16
  article-title: State-of-the-art in the structure of harmony search algorithm
  doi: 10.1007/978-3-642-04317-8_1
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.future.2017.10.052_b30
  article-title: Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.future.2017.10.052_b33
  article-title: Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– volume: 28
  start-page: 1006
  issue: 6
  year: 1992
  ident: 10.1016/j.future.2017.10.052_b65
  article-title: The role of parents in the socialization of children: An historical overview
  publication-title: Dev. Psychol.
  doi: 10.1037/0012-1649.28.6.1006
– volume: vol. 192
  start-page: 75
  year: 2006
  ident: 10.1016/j.future.2017.10.052_b26
  article-title: The CMA evolution strategy: a comparing review
– volume: 10
  start-page: 759
  issue: 3
  year: 2010
  ident: 10.1016/j.future.2017.10.052_b59
  article-title: Probability collectives: a multi-agent approach for solving combinatorial optimization problems
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.09.006
– volume: vol. 6466
  start-page: 583
  year: 2010
  ident: 10.1016/j.future.2017.10.052_b43
  article-title: Social emotional optimization algorithm for nonlinear constrained optimization problems
– volume: vol. 191
  start-page: 1
  year: 2009
  ident: 10.1016/j.future.2017.10.052_b17
  article-title: Harmony search as a metaheuristic algorithm
– volume: 24
  start-page: 1078
  year: 2014
  ident: 10.1016/j.future.2017.10.052_b39
  article-title: A survey on the imperialist competitive algorithm metaheuristic: Implementation in engineering domain and directions for future research
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2014.08.024
– volume: 7
  start-page: 427
  issue: 3
  year: 2016
  ident: 10.1016/j.future.2017.10.052_b49
  article-title: Solving 0–1 knapsack problem using cohort intelligence algorithm
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-014-0272-y
– year: 2010
  ident: 10.1016/j.future.2017.10.052_b3
– year: 2009
  ident: 10.1016/j.future.2017.10.052_b2
– volume: 5
  start-page: 295
  issue: 3
  year: 2001
  ident: 10.1016/j.future.2017.10.052_b56
  article-title: Remarks on a recent paper on the “no free lunch” theorems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.930318
– volume: 219
  start-page: 8121
  issue: 15
  year: 2013
  ident: 10.1016/j.future.2017.10.052_b35
  article-title: Backtracking search optimization algorithm for numerical optimization problems
  publication-title: Appl. Math. Comput.
– volume: 39
  start-page: 459
  year: 2007
  ident: 10.1016/j.future.2017.10.052_b28
  article-title: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (ABC) algorithm
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-007-9149-x
– volume: 13
  start-page: 257
  issue: 4
  year: 2009
  ident: 10.1016/j.future.2017.10.052_b67
  article-title: Modelling of a roulette wheel selection operator in genetic algorithms using generalized nets
  publication-title: Int. J. Bioautomation
– volume: 44
  start-page: 241
  issue: 2
  year: 1995
  ident: 10.1016/j.future.2017.10.052_b13
  article-title: Optimization using simulated annealing
  publication-title: Statistician
  doi: 10.2307/2348448
– year: 2013
  ident: 10.1016/j.future.2017.10.052_b12
  article-title: Physics-inspired optimization algorithms: a survey
  publication-title: J. Optim.
  doi: 10.1155/2013/438152
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.future.2017.10.052_b32
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.future.2017.10.052_b47
  article-title: Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2011.08.006
– year: 2013
  ident: 10.1016/j.future.2017.10.052_b1
– volume: 60
  start-page: 65
  issue: 1–2
  year: 1994
  ident: 10.1016/j.future.2017.10.052_b14
  article-title: Global optimization of statistical functions with simulated annealing
  publication-title: J. Econometrics
  doi: 10.1016/0304-4076(94)90038-8
– volume: 16
  start-page: 171
  year: 2014
  ident: 10.1016/j.future.2017.10.052_b42
  article-title: League Championship Algorithm (LCA): An algorithm for global optimization inspired by sport championships
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.12.005
– start-page: 261
  year: 2010
  ident: 10.1016/j.future.2017.10.052_b71
  article-title: Appendix A: test problems in optimization
  publication-title: Eng. Optim.
  doi: 10.1002/9780470640425.app1
– volume: 7
  start-page: S232
  issue: Suppl.
  year: 2010
  ident: 10.1016/j.future.2017.10.052_b7
  article-title: A review of nature-inspired algorithms
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(09)60240-7
– year: 1999
  ident: 10.1016/j.future.2017.10.052_b8
– start-page: 153
  year: 2015
  ident: 10.1016/j.future.2017.10.052_b22
  article-title: Particle swarm optimization (PSO)
– year: 1977
  ident: 10.1016/j.future.2017.10.052_b64
– start-page: 1396
  year: 2013
  ident: 10.1016/j.future.2017.10.052_b70
  article-title: Cohort intelligence: a self supervised learning behavior
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.future.2017.10.052_b23
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2005.857610
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 10.1016/j.future.2017.10.052_b55
  article-title: No free lunch theorems for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.585893
– start-page: 332
  year: 2004
  ident: 10.1016/j.future.2017.10.052_b73
  article-title: Noisy optimization problems-a particular challenge for differential evolution?
– volume: 16
  start-page: 1
  year: 2014
  ident: 10.1016/j.future.2017.10.052_b6
  article-title: A survey on nature inspired metaheuristic algorithms for partitional clustering
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2013.11.003
– ident: 10.1016/j.future.2017.10.052_b75
– start-page: 4661
  year: 2007
  ident: 10.1016/j.future.2017.10.052_b38
  article-title: Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition
– volume: 15
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.future.2017.10.052_b27
  article-title: Covariance matrix adaptation for multi-objective optimization
  publication-title: Evol. Comput.
  doi: 10.1162/evco.2007.15.1.1
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.future.2017.10.052_b29
  article-title: On the performance of artificial bee colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– year: 1978
  ident: 10.1016/j.future.2017.10.052_b58
– year: 1962
  ident: 10.1016/j.future.2017.10.052_b63
  article-title: Social learning through imitation
– start-page: 261
  year: 2009
  ident: 10.1016/j.future.2017.10.052_b11
  article-title: Fish school search
– ident: 10.1016/j.future.2017.10.052_b74
– volume: 178
  start-page: 3043
  issue: 15
  year: 2008
  ident: 10.1016/j.future.2017.10.052_b76
  article-title: Differential evolution with dynamic stochastic selection for constrained optimization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2008.02.014
– volume: 17
  start-page: 588
  issue: 4
  year: 2008
  ident: 10.1016/j.future.2017.10.052_b62
  article-title: The peer assumption: A review of the nurture assumption
  publication-title: J. Learn. Sci.
  doi: 10.1080/10508400802394906
– start-page: 370
  year: 2010
  ident: 10.1016/j.future.2017.10.052_b45
  article-title: Constrained optimization with election campaign algorithm
– volume: 2
  start-page: 173
  issue: 3
  year: 2016
  ident: 10.1016/j.future.2017.10.052_b53
  article-title: Social group optimization (SGO): a new population evolutionary optimization technique
  publication-title: Complex Intel. Syst.
  doi: 10.1007/s40747-016-0022-8
– start-page: 186
  year: 2013
  ident: 10.1016/j.future.2017.10.052_b77
  article-title: Constraint handling in firefly algorithm
– start-page: 1942
  year: 1995
  ident: 10.1016/j.future.2017.10.052_b20
  article-title: Particle swarm optimization
– start-page: 1
  year: 2016
  ident: 10.1016/j.future.2017.10.052_b48
– volume: 115
  start-page: 549
  issue: 3
  year: 2002
  ident: 10.1016/j.future.2017.10.052_b57
  article-title: Simple explanation of the no-free-lunch theorem and its implications
  publication-title: J. Optim. Theory Appl.
  doi: 10.1023/A:1021251113462
– volume: 4
  start-page: 150
  issue: 2
  year: 2013
  ident: 10.1016/j.future.2017.10.052_b72
  article-title: A literature survey of benchmark functions for global optimisation problems
  publication-title: Int. J. Math. Model. Numer. Optim.
– volume: 14
  start-page: 381
  issue: 3
  year: 2010
  ident: 10.1016/j.future.2017.10.052_b18
  article-title: Chemical-reaction-inspired metaheuristic for optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2033580
– year: 2016
  ident: 10.1016/j.future.2017.10.052_b9
– start-page: 43
  year: 2009
  ident: 10.1016/j.future.2017.10.052_b40
  article-title: League championship algorithm: a new algorithm for numerical function optimization
– start-page: 69
  year: 1991
  ident: 10.1016/j.future.2017.10.052_b66
  article-title: A comparative analysis of selection schemes used in genetic algorithms
– ident: 10.1016/j.future.2017.10.052_b36
  doi: 10.1109/ICEC.1994.349983
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.future.2017.10.052_b15
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 39
  start-page: 1
  issue: 315
  year: 2013
  ident: 10.1016/j.future.2017.10.052_b61
  article-title: A conceptual comparison of the cuckoo-search, particle swarm optimization, differential evolution and artificial bee colony algorithms
  publication-title: Artif. Intell. Rev.
– volume: 1
  start-page: 28
  issue: 4
  year: 2006
  ident: 10.1016/j.future.2017.10.052_b10
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– year: 2010
  ident: 10.1016/j.future.2017.10.052_b19
– ident: 10.1016/j.future.2017.10.052_b25
– start-page: 1785
  year: 2005
  ident: 10.1016/j.future.2017.10.052_b34
  article-title: Self-adaptive differential evolution algorithm for numerical optimization
– year: 2011
  ident: 10.1016/j.future.2017.10.052_b4
– volume: 11
  start-page: 510
  issue: 4
  year: 2013
  ident: 10.1016/j.future.2017.10.052_b69
  article-title: Cultural evolution algorithm for global optimizations and its applications
  publication-title: J. Appl. Res. Technol.
  doi: 10.1016/S1665-6423(13)71558-X
– volume: 1
  start-page: 1377
  issue: 1
  year: 2010
  ident: 10.1016/j.future.2017.10.052_b44
  article-title: Election campaign optimization algorithm
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2010.04.153
– year: 2013
  ident: 10.1016/j.future.2017.10.052_b5
– volume: 20
  start-page: 14
  year: 2015
  ident: 10.1016/j.future.2017.10.052_b50
  article-title: Soccer league competition algorithm for solving knapsack problems
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.10.002
– volume: 33
  start-page: 61
  issue: 1–2
  year: 2010
  ident: 10.1016/j.future.2017.10.052_b31
  article-title: Recent advances in differential evolution: a survey and experimental analysis
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-009-9137-2
– volume: 7
  start-page: 386
  issue: 4
  year: 2003
  ident: 10.1016/j.future.2017.10.052_b37
  article-title: Society and civilization: An optimization algorithm based on the simulation of social behavior
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2003.814902
– volume: 43
  start-page: 1769
  issue: 12
  year: 2011
  ident: 10.1016/j.future.2017.10.052_b41
  article-title: An efficient algorithm for constrained global optimization and application to mechanical engineering design: League championship algorithm (LCA)
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2011.07.003
– volume: 17
  start-page: 14
  year: 2014
  ident: 10.1016/j.future.2017.10.052_b21
  article-title: Soccer league competition algorithm: A novel meta-heuristic algorithm for optimal design of water distribution networks
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2014.02.002
– volume: 326
  start-page: 315
  year: 2016
  ident: 10.1016/j.future.2017.10.052_b52
  article-title: Social learning optimization (SLO) algorithm paradigm and its application in QoS-aware cloud service composition
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2015.08.004
– year: 2009
  ident: 10.1016/j.future.2017.10.052_b60
SSID ssj0001731
Score 2.5862775
Snippet The paper proposes a novel metaheuristic Socio Evolution & Learning Optimization Algorithm (SELO) inspired by the social learning behaviour of humans organized...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 252
SubjectTerms Cultural evolution
Evolutionary algorithm
Metaheuristic
Nature-inspired computing
Socio-inspired optimization
Unconstrained optimization
Title Socio evolution & learning optimization algorithm: A socio-inspired optimization methodology
URI https://dx.doi.org/10.1016/j.future.2017.10.052
Volume 81
WOSCitedRecordID wos000423652200021&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKxwMvbNzEGCA_IF4mV43jxg5vFRoaE0xIDNQHpMhxT1lHSKcuVPsh_GCOb2mqIm4SL1Fl2bHl8_Xcci6EPEsyDgkMFQOeGiZ0KlieKcFSAJmZEkHkKvB9fCNPT9Vkkr_r9b7HXJhVJetaXV_nl_-V1DiGxLaps39B7valOIC_kej4RLLj848I71JQDmEVNnG0raIDZIEc4mtIvTzU1efFct6ce1-9c58v2Ly2395RDd2Y6htNr13wsbGnq0hi2zBDQJIJXSJCiejOp6IQyv0WoNHr0eqLPZkPrbQ-_JNB6_PRjbb9kn0wGm5zde5yIaZL3XVVJKoT4eL8Z1s5NN6liaxapq6hLkokz4aVRL0_8YmekU_71i6R0fq6t0Fmc9_-Z0sceM_ExcDXZ7GBfHJgY_ni4o1C2-_tSexBEolKFZqFN8gOl6Nc9cnO-PXR5KSV8HZCrBlvF8SUTBc3uL3Xz1WejhpztkduB_uDjj1u7pAe1HfJbuztQQOrv0c-ORjRFkb0OY0gol1k0BZEL-iYbkJoc2IHQvfJh1dHZy-PWejEwQyalA0rSyU0L2dDmAk1EtloqlHAAmTaZLMZNzzRKK2EFLy0Cjga3TihBJ6PTG6jGdMHpF8vanhIaIYmAqBVkRkwwkylRg1by1LL4dDk-I59ksbLKkwoU2-7pVRFjEe8KPwVF_aK7She8T5h7apLX6blN_NlpEMRVE2vQhYInV-ufPTPKw_IrfWf4jHpN8tv8ITcNKtmfrV8GjD2A2kkqhg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Socio+evolution+%26+learning+optimization+algorithm%3A+A+socio-inspired+optimization+methodology&rft.jtitle=Future+generation+computer+systems&rft.au=Kumar%2C+Meeta&rft.au=Kulkarni%2C+Anand+J.&rft.au=Satapathy%2C+Suresh+Chandra&rft.date=2018-04-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=81&rft.spage=252&rft.epage=272&rft_id=info:doi/10.1016%2Fj.future.2017.10.052&rft.externalDocID=S0167739X17317259
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon