Automated building layout generation using deep learning and graph algorithms

Designing architectural layouts is a complex task that has garnered significant attention in the research community. While automated site layout design and flat layout design have been extensively studied, automated building layout design has been relatively overlooked. This paper describes an appro...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Automation in construction Jg. 154; S. 105036
Hauptverfasser: Wang, Lufeng, Liu, Jiepeng, Zeng, Yan, Cheng, Guozhong, Hu, Huifeng, Hu, Jiahao, Huang, Xuesi
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2023
Schlagworte:
ISSN:0926-5805, 1872-7891
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Designing architectural layouts is a complex task that has garnered significant attention in the research community. While automated site layout design and flat layout design have been extensively studied, automated building layout design has been relatively overlooked. This paper describes an approach for generating automated building layouts using deep learning and graph algorithms. A unique building layout dataset is created to support the proposed approach. Euclidean distance, Dice coefficient, and a force-directed graph algorithm are employed for layout selection and fine-tuning. The Input-controlled Spatial Attention U-Net model accurately segments the building region, and the resulting layout is refined through image operations, leading to comprehensive BIM models for designers. Through two generative case studies and a comparative experiment with neural networks, this paper demonstrates the effectiveness of the approach that can assist designers during the initial stages of design and enable a rapid generation of complete layouts for individual buildings. •A framework based on deep learning and graph algorithms for automated building layout generation is proposed.•A unique annotated building layout dataset, GeLayout, is created, which is the first of its kind.•Euclidean distance, Dice coefficient and a force-directed graph algorithm are employed for matching and fine-tuning the graph.•The proposed Input-controlled spatial attention U-Net (ICSA-UNet) generates more concise and well-defined segmentation lines compared to those generated by the standard U-Net.•The generated BIM models in both typical and untypical scenarios are effectively meeting the requirements for design assistance and exhibit stability.
AbstractList Designing architectural layouts is a complex task that has garnered significant attention in the research community. While automated site layout design and flat layout design have been extensively studied, automated building layout design has been relatively overlooked. This paper describes an approach for generating automated building layouts using deep learning and graph algorithms. A unique building layout dataset is created to support the proposed approach. Euclidean distance, Dice coefficient, and a force-directed graph algorithm are employed for layout selection and fine-tuning. The Input-controlled Spatial Attention U-Net model accurately segments the building region, and the resulting layout is refined through image operations, leading to comprehensive BIM models for designers. Through two generative case studies and a comparative experiment with neural networks, this paper demonstrates the effectiveness of the approach that can assist designers during the initial stages of design and enable a rapid generation of complete layouts for individual buildings. •A framework based on deep learning and graph algorithms for automated building layout generation is proposed.•A unique annotated building layout dataset, GeLayout, is created, which is the first of its kind.•Euclidean distance, Dice coefficient and a force-directed graph algorithm are employed for matching and fine-tuning the graph.•The proposed Input-controlled spatial attention U-Net (ICSA-UNet) generates more concise and well-defined segmentation lines compared to those generated by the standard U-Net.•The generated BIM models in both typical and untypical scenarios are effectively meeting the requirements for design assistance and exhibit stability.
ArticleNumber 105036
Author Hu, Jiahao
Huang, Xuesi
Wang, Lufeng
Liu, Jiepeng
Hu, Huifeng
Cheng, Guozhong
Zeng, Yan
Author_xml – sequence: 1
  givenname: Lufeng
  surname: Wang
  fullname: Wang, Lufeng
  email: wanglufeng@cqu.edu.cn
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
– sequence: 2
  givenname: Jiepeng
  surname: Liu
  fullname: Liu, Jiepeng
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
– sequence: 3
  givenname: Yan
  surname: Zeng
  fullname: Zeng, Yan
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
– sequence: 4
  givenname: Guozhong
  surname: Cheng
  fullname: Cheng, Guozhong
  email: chengguozhong@cqu.edu.cn
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
– sequence: 5
  givenname: Huifeng
  surname: Hu
  fullname: Hu, Huifeng
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
– sequence: 6
  givenname: Jiahao
  surname: Hu
  fullname: Hu, Jiahao
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
– sequence: 7
  givenname: Xuesi
  surname: Huang
  fullname: Huang, Xuesi
  organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China
BookMark eNqFkM1OwzAQhC1UJNrCG3DIC6Ssk-aPA1JVQUEq4gJna2NvU1epXdkOUt-ehHDiAKfVjPSNZmfGJsYaYuyWw4IDz-8OC-yCtGaRQJL2VgZpfsGmvCySuCgrPmFTqJI8zkrIrtjM-wMAFJBXU_a66oI9YiAV1Z1ulTZN1OLZdiFqyJDDoK2JOj_4iugUtYTODAqNihqHp32EbWOdDvujv2aXO2w93fzcOft4enxfP8fbt83LerWNZQp5iGvMeFKXVVoXCJQlpAq1HBohFBlSXy6lpaolVlzWuywvgdISB1X2pOLpnN2PudJZ7x3thNThu2pwqFvBQQzDiIMYhxHDMGIcpoeXv-CT00d05_-whxGj_rFPTU54qclIUtqRDEJZ_XfAFwPfgss
CitedBy_id crossref_primary_10_1016_j_autcon_2025_106379
crossref_primary_10_1080_00038628_2025_2557026
crossref_primary_10_1108_ECAM_08_2024_1107
crossref_primary_10_1016_j_jobe_2024_110972
crossref_primary_10_1016_j_autcon_2023_105187
crossref_primary_10_1016_j_autcon_2023_105264
crossref_primary_10_1016_j_autcon_2024_105286
crossref_primary_10_1016_j_autcon_2025_106174
crossref_primary_10_1016_j_autcon_2024_105668
crossref_primary_10_1016_j_autcon_2025_106253
crossref_primary_10_1016_j_cscm_2024_e04051
crossref_primary_10_1016_j_autcon_2025_106332
crossref_primary_10_1016_j_autcon_2025_106530
crossref_primary_10_1016_j_foar_2025_05_006
crossref_primary_10_3390_buildings15183267
crossref_primary_10_3390_buildings14071957
crossref_primary_10_1016_j_enbuild_2025_115499
crossref_primary_10_1016_j_jcsr_2024_109086
crossref_primary_10_1061_JCEMD4_COENG_16421
crossref_primary_10_3390_buildings15101674
crossref_primary_10_1016_j_dibe_2025_100691
crossref_primary_10_1016_j_jobe_2024_110163
crossref_primary_10_1016_j_pes_2024_100040
crossref_primary_10_1016_j_scs_2025_106734
crossref_primary_10_1111_tgis_70040
crossref_primary_10_3390_app142210517
crossref_primary_10_1111_mice_13397
crossref_primary_10_1016_j_firesaf_2025_104427
crossref_primary_10_1016_j_buildenv_2025_113450
crossref_primary_10_1016_j_jmapro_2024_05_050
crossref_primary_10_1061_JCCEE5_CPENG_6456
crossref_primary_10_1007_s42452_025_07306_5
crossref_primary_10_1061_JCCEE5_CPENG_6559
crossref_primary_10_1017_S0890060425000022
crossref_primary_10_4218_etrij_2024_0192
crossref_primary_10_1016_j_aei_2024_102885
crossref_primary_10_3390_su17083312
crossref_primary_10_1016_j_scs_2025_106662
crossref_primary_10_1080_13467581_2025_2512235
crossref_primary_10_1080_23744731_2025_2538381
crossref_primary_10_3390_buildings15091472
crossref_primary_10_1016_j_ymssp_2025_112456
crossref_primary_10_1016_j_jobe_2023_107847
Cites_doi 10.1016/j.autcon.2022.104385
10.1002/stc.2551
10.1016/j.autcon.2018.07.017
10.1177/1475921720940068
10.1016/j.autcon.2022.104147
10.3390/app11178229
10.1016/j.cad.2023.103480
10.1109/ACCESS.2021.3086020
10.1016/j.aei.2020.101184
10.1016/j.autcon.2020.103187
10.1016/j.autcon.2020.103288
10.1007/s41095-022-0271-y
10.1117/1.JMI.6.1.014006
10.1016/j.autcon.2016.06.008
10.1038/s42256-023-00625-5
10.1145/3386569.3392391
10.1137/120875909
10.1080/24751448.2019.1640536
10.1016/j.autcon.2020.103491
10.1016/j.autcon.2023.104888
10.3390/app12188972
10.1016/j.autcon.2013.10.007
10.1016/j.jclepro.2019.05.324
10.1016/j.autcon.2022.104234
10.1016/j.autcon.2019.04.005
10.1016/j.autcon.2023.104943
10.1038/s41592-018-0261-2
10.1007/s11042-021-10659-9
10.1145/3355089.3356556
10.1016/j.autcon.2021.104062
10.1016/j.aei.2012.12.004
10.1016/j.autcon.2020.103132
10.1016/j.autcon.2023.104810
10.1016/j.autcon.2022.104470
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.autcon.2023.105036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Economics
Engineering
EISSN 1872-7891
ExternalDocumentID 10_1016_j_autcon_2023_105036
S0926580523002960
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
23N
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARIN
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSB
SSD
SST
SSZ
T5K
WUQ
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-ba512b893b7a0e52ed7d40070a075ae0003e4dbca91cbf5680e38aa91c8a51d13
ISICitedReferencesCount 47
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001050724900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-5805
IngestDate Sat Nov 29 07:11:15 EST 2025
Tue Nov 18 21:38:26 EST 2025
Fri Feb 23 02:35:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Building layout
Layout plan
AI-generated content
Graph algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-ba512b893b7a0e52ed7d40070a075ae0003e4dbca91cbf5680e38aa91c8a51d13
ParticipantIDs crossref_citationtrail_10_1016_j_autcon_2023_105036
crossref_primary_10_1016_j_autcon_2023_105036
elsevier_sciencedirect_doi_10_1016_j_autcon_2023_105036
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Automation in construction
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Verma, Thakur (bb0160) 2010
Zhao (bb0215) 2020; 46
Gan, Wong, Tse, Cheng, Lo, Chan (bb0165) 2019; 231
Hu, Huang, Tang, Van Kaick, Zhang, Huang (bb0130) 2020; 39
Chaillou (bb0150) 2020
Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (bb0270) 2017
Fruchterman, Reingold (bb0305) 1991; 21
Chen, Xiong, Wang, Wang, Sheng, Zhang, Ye (bb0035) 2022
Wang, Zhang (bb0285) 2020; 119
Kingma, Ba (bb0320) 2015
O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, B. Glocker, D. Rueckert, Attention U-Net: Learning Where to Look for the Pancreas. doi
He, Zhang, Ren, Sun (bb0315) 2022; 12
Elezkurtaj, Franck (bb0100) 2002; 16
(accessed June 8, 2023).
Huyan, Li, Tighe, Xu, Zhai (bb0210) 2020; 27
Zheng, An, Wei, Ren (bb0090) 2020
Fan, Liu, Wang, Cheng, Liao, Liu, Chen (bb0060) 2023; 152
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0235) 2017
Li, Wang, Hu, Yang (bb0260) 2019
Woo, Park, Lee, Kweon (bb0265) 2018
Shi, Soman, Han, Whyte (bb0275) 2020; 115
Laignel, Pozin, Geffrier, Delevaux, Brun, Dolla (bb0075) 2021; 123
Luo, Huang (bb0135) 2022; 142
Cao, Li, Liu, Yan, Dai, Yu, Sun (bb0085) 2023
Falk, Mai, Bensch, Çiçek, Abdulkadir, Marrakchi, Böhm, Deubner, Jäckel, Seiwald, Dovzhenko, Tietz, Dal Bosco, Walsh, Saltukoglu, Tay, Prinz, Palme, Simons, Diester, Brox, Ronneberger (bb0185) 2019; 16
Alom, Yakopcic, Hasan, Taha, Asari (bb0190) 2019; 6
Grzesiak-Kopeć, Strug, Ślusarczyk (bb0065) 2021; 11
Rädsch, Reinke, Weru, Tizabi, Schreck, Kavur, Pekdemir, Roß, Kopp-Schneider, Maier-Hein (bb0290) 2023; 5
Nauata, Chang, Cheng, Mori, Furukawa (bb0140) 2020
Mnih, Heess, Graves, Kavukcuoglu (bb0230) 2014; 2
.
Bao, Yan, Mitra, Wonka (bb0015) 2013; 32
Anon, NYC Open Data.
Singh, Deb, Geyer (bb0095) 2022; 136
Liu, Cao, Wang, Wang (bb0195) 2019; 104
Gan (bb0170) 2022; 134
Ruiz-Montiel, Boned, Gavilanes, Jiménez, Mandow, Pérez-de-la-Cruz (bb0080) 2013; 27
Nisztuk, Myszkowski (bb0105) 2019; 17
Ronneberger, Fischer, Brox (bb0175) 2015
Guo, Xu, Liu, Liu, Jiang, Mu, Zhang, Martin, Cheng, Hu (bb0220) 2022; 8
Ghannad, Lee (bb0045) 2022; 139
(Accessed April 10, 2023).
Jiang, Ma, Webster, Li, Gan (bb0025) 2023; 151
Wang, Yang, Zhang (bb0280) 2018; 94
Cha, You, Choi (bb0200) 2016; 71
Li, Ho, Li, Zhu, Wang, Meng (bb0055) 2020
Siddique, Paheding, Elkin, Devabhaktuni (bb0180) 2021; 9
Rahbar, Mahdavinejad, Markazi, Bemanian (bb0155) 2022; 47
Kim, Lee (bb0020) 2021; 80
Cheong, Si (bb0310) 2019; 19
Zhang, Shen, Zhu (bb0205) 2021; 20
Huang, Zheng (bb0120) 2018
Wang, Gan (bb0295) 2023; 149
Weber, Mueller, Reinhart (bb0005) 2022; 140
Du (bb0010) 2020; 116
Wang, Girshick, Gupta, He (bb0240) 2018
Sharma, Gupta, Chattopadhyay, Mehta (bb0050) 2017
Liberti, Lavor, Maculan, Mucherino (bb0300) 2014; 56
Ślusarczyk, Strug, Paszyńska, Grabska, Palacz (bb0070) 2023; 158
Grabska, Grzesiak-Kopeć, Ślusarczyk (bb0040) 2006
R.M.& Associates, Rhino.Python Guides, Www.Rhino3d.Com. (n.d.). Available online
Newton (bb0115) 2019; 3
Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bb0245) 2020
Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bb0250) 2020
Nauata, Hosseini, Chang, Chu, Cheng, Furukawa (bb0145) 2021
(Accessed April 9, 2023).
Hu, Shen, Albanie, Sun, Wu (bb0225) 2018
Wu, Fu, Tang, Wang, Qi, Liu (bb0125) 2019; 38
Anon, opencv-python: Wrapper package for OpenCV python bindings. Available online
Lin, Gerber (bb0110) 2014; 38
Li, Wang, Tian, Gao, Zhang (bb0255) 2019
Nauata (10.1016/j.autcon.2023.105036_bb0145) 2021
Wu (10.1016/j.autcon.2023.105036_bb0125) 2019; 38
Falk (10.1016/j.autcon.2023.105036_bb0185) 2019; 16
Woo (10.1016/j.autcon.2023.105036_bb0265) 2018
10.1016/j.autcon.2023.105036_bb0330
Zhang (10.1016/j.autcon.2023.105036_bb0205) 2021; 20
Li (10.1016/j.autcon.2023.105036_bb0260) 2019
Cheong (10.1016/j.autcon.2023.105036_bb0310) 2019; 19
Zheng (10.1016/j.autcon.2023.105036_bb0090) 2020
He (10.1016/j.autcon.2023.105036_bb0315) 2022; 12
Cha (10.1016/j.autcon.2023.105036_bb0200) 2016; 71
Fruchterman (10.1016/j.autcon.2023.105036_bb0305) 1991; 21
Rädsch (10.1016/j.autcon.2023.105036_bb0290) 2023; 5
Luo (10.1016/j.autcon.2023.105036_bb0135) 2022; 142
Singh (10.1016/j.autcon.2023.105036_bb0095) 2022; 136
Laignel (10.1016/j.autcon.2023.105036_bb0075) 2021; 123
Rahbar (10.1016/j.autcon.2023.105036_bb0155) 2022; 47
Zhao (10.1016/j.autcon.2023.105036_bb0215) 2020; 46
Dosovitskiy (10.1016/j.autcon.2023.105036_bb0250) 2020
Ronneberger (10.1016/j.autcon.2023.105036_bb0175) 2015
10.1016/j.autcon.2023.105036_bb0325
Lin (10.1016/j.autcon.2023.105036_bb0110) 2014; 38
Elezkurtaj (10.1016/j.autcon.2023.105036_bb0100) 2002; 16
Wang (10.1016/j.autcon.2023.105036_bb0270) 2017
Jiang (10.1016/j.autcon.2023.105036_bb0025) 2023; 151
Wang (10.1016/j.autcon.2023.105036_bb0285) 2020; 119
Alom (10.1016/j.autcon.2023.105036_bb0190) 2019; 6
Wang (10.1016/j.autcon.2023.105036_bb0280) 2018; 94
Guo (10.1016/j.autcon.2023.105036_bb0220) 2022; 8
Hu (10.1016/j.autcon.2023.105036_bb0225) 2018
Du (10.1016/j.autcon.2023.105036_bb0010) 2020; 116
Nauata (10.1016/j.autcon.2023.105036_bb0140) 2020
Gan (10.1016/j.autcon.2023.105036_bb0170) 2022; 134
10.1016/j.autcon.2023.105036_bb0335
Siddique (10.1016/j.autcon.2023.105036_bb0180) 2021; 9
Vaswani (10.1016/j.autcon.2023.105036_bb0235) 2017
Hu (10.1016/j.autcon.2023.105036_bb0130) 2020; 39
10.1016/j.autcon.2023.105036_bb0030
Grabska (10.1016/j.autcon.2023.105036_bb0040) 2006
Huyan (10.1016/j.autcon.2023.105036_bb0210) 2020; 27
Wang (10.1016/j.autcon.2023.105036_bb0295) 2023; 149
Liberti (10.1016/j.autcon.2023.105036_bb0300) 2014; 56
Sharma (10.1016/j.autcon.2023.105036_bb0050) 2017
Huang (10.1016/j.autcon.2023.105036_bb0120) 2018
Kim (10.1016/j.autcon.2023.105036_bb0020) 2021; 80
Li (10.1016/j.autcon.2023.105036_bb0255) 2019
Cao (10.1016/j.autcon.2023.105036_bb0085) 2023
Liu (10.1016/j.autcon.2023.105036_bb0195) 2019; 104
Weber (10.1016/j.autcon.2023.105036_bb0005) 2022; 140
Ruiz-Montiel (10.1016/j.autcon.2023.105036_bb0080) 2013; 27
Kingma (10.1016/j.autcon.2023.105036_bb0320) 2015
Chaillou (10.1016/j.autcon.2023.105036_bb0150) 2020
Mnih (10.1016/j.autcon.2023.105036_bb0230) 2014; 2
Ghannad (10.1016/j.autcon.2023.105036_bb0045) 2022; 139
Li (10.1016/j.autcon.2023.105036_bb0055) 2020
Verma (10.1016/j.autcon.2023.105036_bb0160) 2010
Chen (10.1016/j.autcon.2023.105036_bb0035) 2022
Wang (10.1016/j.autcon.2023.105036_bb0240) 2018
Gan (10.1016/j.autcon.2023.105036_bb0165) 2019; 231
Newton (10.1016/j.autcon.2023.105036_bb0115) 2019; 3
Shi (10.1016/j.autcon.2023.105036_bb0275) 2020; 115
Grzesiak-Kopeć (10.1016/j.autcon.2023.105036_bb0065) 2021; 11
Nisztuk (10.1016/j.autcon.2023.105036_bb0105) 2019; 17
Fan (10.1016/j.autcon.2023.105036_bb0060) 2023; 152
Carion (10.1016/j.autcon.2023.105036_bb0245) 2020
Bao (10.1016/j.autcon.2023.105036_bb0015) 2013; 32
Ślusarczyk (10.1016/j.autcon.2023.105036_bb0070) 2023; 158
References_xml – volume: 5
  start-page: 273
  year: 2023
  end-page: 283
  ident: bb0290
  article-title: Labelling instructions matter in biomedical image analysis
  publication-title: Nat. Machine Intel.
– volume: 56
  start-page: 3
  year: 2014
  end-page: 69
  ident: bb0300
  article-title: Euclidean distance geometry and applications
  publication-title: SIAM Rev.
– start-page: 601
  year: 2020
  end-page: 610
  ident: bb0090
  article-title: Apartment floor plans generation via generative adversarial networks
  publication-title: 25th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2020)
– volume: 231
  start-page: 1375
  year: 2019
  end-page: 1388
  ident: bb0165
  article-title: Simulation-based evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings
  publication-title: J. Clean. Prod.
– start-page: 234
  year: 2015
  end-page: 241
  ident: bb0175
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18
– volume: 20
  start-page: 1864
  year: 2021
  end-page: 1879
  ident: bb0205
  article-title: A research on an improved Unet-based concrete crack detection algorithm
  publication-title: Struct. Health Monitor.
– volume: 46
  year: 2020
  ident: bb0215
  article-title: Deep residual U-net with input of static structural responses for efficient U* load transfer path analysis
  publication-title: Adv. Eng. Inform.
– volume: 38
  start-page: 1
  year: 2019
  end-page: 12
  ident: bb0125
  article-title: Data-driven interior plan generation for residential buildings
  publication-title: ACM Trans. Graph.
– start-page: 3957
  year: 2019
  end-page: 3966
  ident: bb0255
  article-title: Global-local temporal representations for video person re-identification
  publication-title: in: 2019 IEEE/CVF international conference on computer vision (ICCV), Seoul, Korea (South)
– volume: 140
  year: 2022
  ident: bb0005
  article-title: Automated floorplan generation in architectural design: a review of methods and applications
  publication-title: Autom. Constr.
– start-page: 213
  year: 2020
  end-page: 229
  ident: bb0245
  article-title: End-to-end object detection with transformers
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16
– start-page: 156
  year: 2018
  end-page: 165
  ident: bb0120
  article-title: Architectural drawings recognition and generation through machine learning
  publication-title: Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture, Mexico City, Mexico
– volume: 151
  year: 2023
  ident: bb0025
  article-title: Building layout generation using site-embedded GAN model
  publication-title: Autom. Constr.
– start-page: 268
  year: 2010
  end-page: 275
  ident: bb0160
  article-title: Architectural space planning using genetic algorithms
  publication-title: In: 2010 the 2nd International Conference on Computer and Automation Engineering (ICCAE)
– volume: 11
  start-page: 8229
  year: 2021
  ident: bb0065
  article-title: Evolutionary methods in house floor plan design
  publication-title: Appl. Sci.
– volume: 158
  year: 2023
  ident: bb0070
  article-title: Semantic-driven graph transformations in floor plan design
  publication-title: Comput. Aided Des.
– volume: 80
  start-page: 29539
  year: 2021
  end-page: 29560
  ident: bb0020
  article-title: Draft layout generation of building drawings on real urban scenes with boundary particle method and priority solver
  publication-title: Multimed. Tools Appl.
– year: 2020
  ident: bb0055
  article-title: HouseExpo: A Large-scale 2D Indoor Layout Dataset for Learning-based Algorithms on Mobile Robots
– volume: 9
  start-page: 82031
  year: 2021
  end-page: 82057
  ident: bb0180
  article-title: U-net and its variants for medical image segmentation: a review of theory and applications
  publication-title: IEEE Access.
– start-page: 510
  year: 2019
  end-page: 519
  ident: bb0260
  article-title: Selective kernel networks
  publication-title: In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA
– volume: 134
  year: 2022
  ident: bb0170
  article-title: BIM-based graph data model for automatic generative design of modular buildings
  publication-title: Autom. Constr.
– volume: 16
  year: 2002
  ident: bb0100
  article-title: Algorithmic Support of Creative Architectural Design, organization. 2
– volume: 116
  year: 2020
  ident: bb0010
  article-title: Gaps and requirements for automatic generation of space layouts with optimised energy performance
  publication-title: Autom. Constr.
– volume: 123
  year: 2021
  ident: bb0075
  article-title: Floor plan generation through a mixed constraint programming-genetic optimization approach
  publication-title: Autom. Constr.
– volume: 38
  start-page: 59
  year: 2014
  end-page: 73
  ident: bb0110
  article-title: Designing-in performance: a framework for evolutionary energy performance feedback in early stage design
  publication-title: Autom. Constr.
– volume: 136
  year: 2022
  ident: bb0095
  article-title: Early-stage design support combining machine learning and building information modelling
  publication-title: Autom. Constr.
– volume: 47
  year: 2022
  ident: bb0155
  article-title: Architectural layout design through deep learning and agent-based modeling: a hybrid approach
  publication-title: J. Build. Eng.
– volume: 27
  year: 2020
  ident: bb0210
  article-title: CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Struct. Control. Health Monit.
– volume: 32
  start-page: 1
  year: 2013
  end-page: 10
  ident: bb0015
  article-title: Generating and exploring good building layouts
  publication-title: ACM Trans. Graph.
– volume: 17
  start-page: 260
  year: 2019
  end-page: 283
  ident: bb0105
  article-title: Hybrid evolutionary algorithm applied to automated floor plan generation
  publication-title: Int. J. Archit. Comput.
– reference: Anon, opencv-python: Wrapper package for OpenCV python bindings. Available online:
– volume: 12
  start-page: 8972
  year: 2022
  ident: bb0315
  article-title: Deep residual learning for image recognition
  publication-title: Appl. Sci.
– reference: (accessed June 8, 2023).
– start-page: 13627
  year: 2021
  end-page: 13636
  ident: bb0145
  article-title: House-GAN++: Generative adversarial layout refinement networks
  publication-title: In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA
– volume: 6
  start-page: 014006
  year: 2019
  ident: bb0190
  article-title: Recurrent residual U-Net for medical image segmentation
  publication-title: J. Med. Imag.
– volume: 39
  year: 2020
  ident: bb0130
  article-title: Graph2Plan: learning floorplan generation from layout graphs
  publication-title: ACM Trans. Graph.
– start-page: 7794
  year: 2018
  end-page: 7803
  ident: bb0240
  article-title: Non-local neural networks
  publication-title: In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA
– volume: 119
  year: 2020
  ident: bb0285
  article-title: Generating layout designs from high-level specifications
  publication-title: Autom. Constr.
– start-page: 7132
  year: 2018
  end-page: 7141
  ident: bb0225
  article-title: Squeeze-and-excitation networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– start-page: 6450
  year: 2017
  end-page: 6458
  ident: bb0270
  article-title: Residual attention network for image classification
  publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA
– reference: (Accessed April 9, 2023).
– start-page: 883
  year: 2006
  end-page: 886
  ident: bb0040
  article-title: Designing floor-layouts with the assistance of curious agents
  publication-title: Computational Science – ICCS 2006
– reference: O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, B. Glocker, D. Rueckert, Attention U-Net: Learning Where to Look for the Pancreas. doi:
– year: 2023
  ident: bb0085
  article-title: A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT, Computer Science, arXiv preprint
– volume: 142
  year: 2022
  ident: bb0135
  article-title: FloorplanGAN: vector residential floorplan adversarial generation
  publication-title: Autom. Constr.
– volume: 21
  start-page: 1129
  year: 1991
  end-page: 1164
  ident: bb0305
  article-title: Graph drawing by force-directed placement
  publication-title: Software: Pract. Exp.
– year: 2022
  ident: bb0035
  article-title: ReCo: A Dataset for Residential Community Layout Planning
– reference: (Accessed April 10, 2023).
– start-page: 3
  year: 2018
  end-page: 19
  ident: bb0265
  article-title: CBAM: Convolutional block attention module
  publication-title: Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany
– volume: 8
  start-page: 331
  year: 2022
  end-page: 368
  ident: bb0220
  article-title: Attention mechanisms in computer vision: a survey
  publication-title: Com. Visual Media.
– start-page: 117
  year: 2020
  end-page: 127
  ident: bb0150
  article-title: ArchiGAN: Artificial intelligence x architecture
  publication-title: Architectural Intelligence
– volume: 16
  start-page: 67
  year: 2019
  end-page: 70
  ident: bb0185
  article-title: U-net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat. Methods
– volume: 19
  start-page: 1
  year: 2019
  ident: bb0310
  article-title: Force-directed algorithms for schematic drawings and placement: a survey
  publication-title: Inf. Vis.
– volume: 27
  start-page: 230
  year: 2013
  end-page: 245
  ident: bb0080
  article-title: Design with shape grammars and reinforcement learning
  publication-title: Adv. Eng. Inform.
– volume: 3
  start-page: 176
  year: 2019
  end-page: 189
  ident: bb0115
  article-title: Generative deep learning in architectural design
  publication-title: Technology|Architecture + Design.
– volume: 2
  start-page: 2204
  year: 2014
  end-page: 2212
  ident: bb0230
  article-title: Recurrent models of visual attention
  publication-title: Adv. Neural Inf. Proces. Syst.
– volume: 139
  year: 2022
  ident: bb0045
  article-title: Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN)
  publication-title: Autom. Constr.
– volume: 71
  start-page: 181
  year: 2016
  end-page: 188
  ident: bb0200
  article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines
  publication-title: Autom. Constr.
– volume: 115
  year: 2020
  ident: bb0275
  article-title: Addressing adjacency constraints in rectangular floor plans using Monte-Carlo Tree Search
  publication-title: Autom. Constr.
– reference: .
– volume: 149
  year: 2023
  ident: bb0295
  article-title: Automated joint 3D reconstruction and visual inspection for buildings using computer vision and transfer learning
  publication-title: Autom. Constr.
– year: 2015
  ident: bb0320
  article-title: Adam: A method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA
– year: 2020
  ident: bb0250
  article-title: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv preprint. 2010.11929
– volume: 104
  start-page: 129
  year: 2019
  end-page: 139
  ident: bb0195
  article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks
  publication-title: Autom. Constr.
– start-page: 6000
  year: 2017
  end-page: 6010
  ident: bb0235
  article-title: Attention is all you need
  publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems
– volume: 94
  start-page: 405
  year: 2018
  end-page: 416
  ident: bb0280
  article-title: Customization and generation of floor plans based on graph transformations
  publication-title: Autom. Constr.
– start-page: 420
  year: 2017
  end-page: 425
  ident: bb0050
  article-title: DANIEL: A deep architecture for automatic analysis and retrieval of building floor plans
  publication-title: In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR)
– volume: 152
  year: 2023
  ident: bb0060
  article-title: Automated layout of modular high-rise residential buildings based on genetic algorithm
  publication-title: Autom. Constr.
– start-page: 162
  year: 2020
  end-page: 177
  ident: bb0140
  article-title: House-GAN: relational generative adversarial networks for graph-constrained house layout generation
  publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16
– reference: Anon, NYC Open Data.
– reference: R.M.& Associates, Rhino.Python Guides, Www.Rhino3d.Com. (n.d.). Available online:
– volume: 140
  year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0005
  article-title: Automated floorplan generation in architectural design: a review of methods and applications
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104385
– volume: 27
  issue: 8
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0210
  article-title: CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Struct. Control. Health Monit.
  doi: 10.1002/stc.2551
– ident: 10.1016/j.autcon.2023.105036_bb0030
– start-page: 13627
  year: 2021
  ident: 10.1016/j.autcon.2023.105036_bb0145
  article-title: House-GAN++: Generative adversarial layout refinement networks
– volume: 94
  start-page: 405
  year: 2018
  ident: 10.1016/j.autcon.2023.105036_bb0280
  article-title: Customization and generation of floor plans based on graph transformations
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2018.07.017
– volume: 20
  start-page: 1864
  issue: 4
  year: 2021
  ident: 10.1016/j.autcon.2023.105036_bb0205
  article-title: A research on an improved Unet-based concrete crack detection algorithm
  publication-title: Struct. Health Monitor.
  doi: 10.1177/1475921720940068
– volume: 136
  year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0095
  article-title: Early-stage design support combining machine learning and building information modelling
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104147
– volume: 11
  start-page: 8229
  year: 2021
  ident: 10.1016/j.autcon.2023.105036_bb0065
  article-title: Evolutionary methods in house floor plan design
  publication-title: Appl. Sci.
  doi: 10.3390/app11178229
– start-page: 213
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0245
  article-title: End-to-end object detection with transformers
– volume: 2
  start-page: 2204
  year: 2014
  ident: 10.1016/j.autcon.2023.105036_bb0230
  article-title: Recurrent models of visual attention
  publication-title: Adv. Neural Inf. Proces. Syst.
– start-page: 156
  year: 2018
  ident: 10.1016/j.autcon.2023.105036_bb0120
  article-title: Architectural drawings recognition and generation through machine learning
– volume: 158
  year: 2023
  ident: 10.1016/j.autcon.2023.105036_bb0070
  article-title: Semantic-driven graph transformations in floor plan design
  publication-title: Comput. Aided Des.
  doi: 10.1016/j.cad.2023.103480
– volume: 9
  start-page: 82031
  year: 2021
  ident: 10.1016/j.autcon.2023.105036_bb0180
  article-title: U-net and its variants for medical image segmentation: a review of theory and applications
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2021.3086020
– start-page: 7132
  year: 2018
  ident: 10.1016/j.autcon.2023.105036_bb0225
  article-title: Squeeze-and-excitation networks
  publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 46
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0215
  article-title: Deep residual U-net with input of static structural responses for efficient U* load transfer path analysis
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2020.101184
– start-page: 268
  year: 2010
  ident: 10.1016/j.autcon.2023.105036_bb0160
  article-title: Architectural space planning using genetic algorithms
– volume: 115
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0275
  article-title: Addressing adjacency constraints in rectangular floor plans using Monte-Carlo Tree Search
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103187
– volume: 119
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0285
  article-title: Generating layout designs from high-level specifications
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103288
– volume: 8
  start-page: 331
  issue: 3
  year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0220
  article-title: Attention mechanisms in computer vision: a survey
  publication-title: Com. Visual Media.
  doi: 10.1007/s41095-022-0271-y
– year: 2023
  ident: 10.1016/j.autcon.2023.105036_bb0085
– volume: 6
  start-page: 014006
  issue: 1
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0190
  article-title: Recurrent residual U-Net for medical image segmentation
  publication-title: J. Med. Imag.
  doi: 10.1117/1.JMI.6.1.014006
– volume: 71
  start-page: 181
  year: 2016
  ident: 10.1016/j.autcon.2023.105036_bb0200
  article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2016.06.008
– volume: 5
  start-page: 273
  year: 2023
  ident: 10.1016/j.autcon.2023.105036_bb0290
  article-title: Labelling instructions matter in biomedical image analysis
  publication-title: Nat. Machine Intel.
  doi: 10.1038/s42256-023-00625-5
– start-page: 510
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0260
  article-title: Selective kernel networks
– start-page: 7794
  year: 2018
  ident: 10.1016/j.autcon.2023.105036_bb0240
  article-title: Non-local neural networks
– start-page: 6450
  year: 2017
  ident: 10.1016/j.autcon.2023.105036_bb0270
  article-title: Residual attention network for image classification
– start-page: 117
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0150
  article-title: ArchiGAN: Artificial intelligence x architecture
– year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0035
– start-page: 3957
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0255
  article-title: Global-local temporal representations for video person re-identification
– volume: 39
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0130
  article-title: Graph2Plan: learning floorplan generation from layout graphs
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3386569.3392391
– volume: 56
  start-page: 3
  year: 2014
  ident: 10.1016/j.autcon.2023.105036_bb0300
  article-title: Euclidean distance geometry and applications
  publication-title: SIAM Rev.
  doi: 10.1137/120875909
– volume: 3
  start-page: 176
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0115
  article-title: Generative deep learning in architectural design
  publication-title: Technology|Architecture + Design.
  doi: 10.1080/24751448.2019.1640536
– year: 2015
  ident: 10.1016/j.autcon.2023.105036_bb0320
  article-title: Adam: A method for stochastic optimization
– volume: 32
  start-page: 1
  year: 2013
  ident: 10.1016/j.autcon.2023.105036_bb0015
  article-title: Generating and exploring good building layouts
  publication-title: ACM Trans. Graph.
– volume: 123
  year: 2021
  ident: 10.1016/j.autcon.2023.105036_bb0075
  article-title: Floor plan generation through a mixed constraint programming-genetic optimization approach
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103491
– volume: 151
  year: 2023
  ident: 10.1016/j.autcon.2023.105036_bb0025
  article-title: Building layout generation using site-embedded GAN model
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104888
– year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0055
– volume: 12
  start-page: 8972
  issue: 18
  year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0315
  article-title: Deep residual learning for image recognition
  publication-title: Appl. Sci.
  doi: 10.3390/app12188972
– volume: 38
  start-page: 59
  year: 2014
  ident: 10.1016/j.autcon.2023.105036_bb0110
  article-title: Designing-in performance: a framework for evolutionary energy performance feedback in early stage design
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2013.10.007
– ident: 10.1016/j.autcon.2023.105036_bb0330
– volume: 231
  start-page: 1375
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0165
  article-title: Simulation-based evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.05.324
– volume: 139
  year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0045
  article-title: Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN)
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104234
– start-page: 3
  year: 2018
  ident: 10.1016/j.autcon.2023.105036_bb0265
  article-title: CBAM: Convolutional block attention module
– start-page: 883
  year: 2006
  ident: 10.1016/j.autcon.2023.105036_bb0040
  article-title: Designing floor-layouts with the assistance of curious agents
– start-page: 234
  year: 2015
  ident: 10.1016/j.autcon.2023.105036_bb0175
  article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation
– start-page: 601
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0090
  article-title: Apartment floor plans generation via generative adversarial networks
– volume: 104
  start-page: 129
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0195
  article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2019.04.005
– volume: 152
  year: 2023
  ident: 10.1016/j.autcon.2023.105036_bb0060
  article-title: Automated layout of modular high-rise residential buildings based on genetic algorithm
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104943
– volume: 16
  start-page: 67
  issue: 1
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0185
  article-title: U-net: deep learning for cell counting, detection, and morphometry
  publication-title: Nat. Methods
  doi: 10.1038/s41592-018-0261-2
– volume: 80
  start-page: 29539
  year: 2021
  ident: 10.1016/j.autcon.2023.105036_bb0020
  article-title: Draft layout generation of building drawings on real urban scenes with boundary particle method and priority solver
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-021-10659-9
– volume: 38
  start-page: 1
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0125
  article-title: Data-driven interior plan generation for residential buildings
  publication-title: ACM Trans. Graph.
  doi: 10.1145/3355089.3356556
– volume: 134
  year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0170
  article-title: BIM-based graph data model for automatic generative design of modular buildings
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2021.104062
– volume: 19
  start-page: 1
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0310
  article-title: Force-directed algorithms for schematic drawings and placement: a survey
  publication-title: Inf. Vis.
– volume: 27
  start-page: 230
  year: 2013
  ident: 10.1016/j.autcon.2023.105036_bb0080
  article-title: Design with shape grammars and reinforcement learning
  publication-title: Adv. Eng. Inform.
  doi: 10.1016/j.aei.2012.12.004
– volume: 17
  start-page: 260
  year: 2019
  ident: 10.1016/j.autcon.2023.105036_bb0105
  article-title: Hybrid evolutionary algorithm applied to automated floor plan generation
  publication-title: Int. J. Archit. Comput.
– volume: 47
  year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0155
  article-title: Architectural layout design through deep learning and agent-based modeling: a hybrid approach
  publication-title: J. Build. Eng.
– ident: 10.1016/j.autcon.2023.105036_bb0335
– year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0250
– volume: 116
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0010
  article-title: Gaps and requirements for automatic generation of space layouts with optimised energy performance
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2020.103132
– volume: 149
  year: 2023
  ident: 10.1016/j.autcon.2023.105036_bb0295
  article-title: Automated joint 3D reconstruction and visual inspection for buildings using computer vision and transfer learning
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2023.104810
– volume: 142
  year: 2022
  ident: 10.1016/j.autcon.2023.105036_bb0135
  article-title: FloorplanGAN: vector residential floorplan adversarial generation
  publication-title: Autom. Constr.
  doi: 10.1016/j.autcon.2022.104470
– volume: 16
  year: 2002
  ident: 10.1016/j.autcon.2023.105036_bb0100
– volume: 21
  start-page: 1129
  year: 1991
  ident: 10.1016/j.autcon.2023.105036_bb0305
  article-title: Graph drawing by force-directed placement
  publication-title: Software: Pract. Exp.
– start-page: 6000
  year: 2017
  ident: 10.1016/j.autcon.2023.105036_bb0235
  article-title: Attention is all you need
– start-page: 420
  year: 2017
  ident: 10.1016/j.autcon.2023.105036_bb0050
  article-title: DANIEL: A deep architecture for automatic analysis and retrieval of building floor plans
– start-page: 162
  year: 2020
  ident: 10.1016/j.autcon.2023.105036_bb0140
  article-title: House-GAN: relational generative adversarial networks for graph-constrained house layout generation
– ident: 10.1016/j.autcon.2023.105036_bb0325
SSID ssj0007069
Score 2.5549092
Snippet Designing architectural layouts is a complex task that has garnered significant attention in the research community. While automated site layout design and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105036
SubjectTerms AI-generated content
Building layout
Deep learning
Graph algorithms
Layout plan
Title Automated building layout generation using deep learning and graph algorithms
URI https://dx.doi.org/10.1016/j.autcon.2023.105036
Volume 154
WOSCitedRecordID wos001050724900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7891
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007069
  issn: 0926-5805
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6CDgl4QDBAjJv8wNsUKc3N9mM1jZvGhMRAhZfIcZy1VZVUa4O2_XrOsZ1kUMRN4iVqLTtOfb7Y3zk9F4AXZRKqtIzjAJXlmEJy4kBVSRIkaVWVUqaltM6Yn4748bGYTuV77267tuUEeF2L83O5-q-ixjYUNoXO_oW4-5tiA35GoeMVxY7XPxL8pN00SEOJWfqS1_tLdUHux6c2xbQVeGtNBKUxq65uhAtVtPmr99XytDmbb2Y-k_niuxt750jdDLlnB6u82zmO2sr4E5F8featxcqc6u32rV-M6_t5gOfBzLe9apvLWeP7epNENDi3eTvZVqyMMzhGWZCK0P2Hbdx2Kzjye-HqdfX7scsqvbW3OzPDgjx7yFRAE1OV4jD-IZW2PZw_0HQ0G6pYYYRq2nXYiXgqxQh2Jm8Op2_745qHmUvI6B-vi6-0ToDbc_2cv1zhJCd34Y5XJtjEgeAeXDP1LtzsYs3Xu3D7SrrJ-_CuhwbroMEcNNgADWahwQgarIMGQ2gwCw02QOMBfHx5eHLwOvDlNAKNeuEmKBSSuwL5acFVaNLIlBzfVPz9CmmjMqQdm6QstJJjXVRpJkITC0XfBI4sx_FDGNVNbR4BSxMdVjxTuuAiMYWW4yjTyEQTFWWSR3oP4m6Rcu1zzVPJk2XeORUucre0OS1t7pZ2D4J-1MrlWvlNf96tf-75ouOBOULmlyMf__PIJ3BrQPxTGOGLZp7BDf11M1-fPffY-gYKJZJA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+building+layout+generation+using+deep+learning+and+graph+algorithms&rft.jtitle=Automation+in+construction&rft.au=Wang%2C+Lufeng&rft.au=Liu%2C+Jiepeng&rft.au=Zeng%2C+Yan&rft.au=Cheng%2C+Guozhong&rft.date=2023-10-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=154&rft_id=info:doi/10.1016%2Fj.autcon.2023.105036&rft.externalDocID=S0926580523002960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon