Automated building layout generation using deep learning and graph algorithms
Designing architectural layouts is a complex task that has garnered significant attention in the research community. While automated site layout design and flat layout design have been extensively studied, automated building layout design has been relatively overlooked. This paper describes an appro...
Gespeichert in:
| Veröffentlicht in: | Automation in construction Jg. 154; S. 105036 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.10.2023
|
| Schlagworte: | |
| ISSN: | 0926-5805, 1872-7891 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Designing architectural layouts is a complex task that has garnered significant attention in the research community. While automated site layout design and flat layout design have been extensively studied, automated building layout design has been relatively overlooked. This paper describes an approach for generating automated building layouts using deep learning and graph algorithms. A unique building layout dataset is created to support the proposed approach. Euclidean distance, Dice coefficient, and a force-directed graph algorithm are employed for layout selection and fine-tuning. The Input-controlled Spatial Attention U-Net model accurately segments the building region, and the resulting layout is refined through image operations, leading to comprehensive BIM models for designers. Through two generative case studies and a comparative experiment with neural networks, this paper demonstrates the effectiveness of the approach that can assist designers during the initial stages of design and enable a rapid generation of complete layouts for individual buildings.
•A framework based on deep learning and graph algorithms for automated building layout generation is proposed.•A unique annotated building layout dataset, GeLayout, is created, which is the first of its kind.•Euclidean distance, Dice coefficient and a force-directed graph algorithm are employed for matching and fine-tuning the graph.•The proposed Input-controlled spatial attention U-Net (ICSA-UNet) generates more concise and well-defined segmentation lines compared to those generated by the standard U-Net.•The generated BIM models in both typical and untypical scenarios are effectively meeting the requirements for design assistance and exhibit stability. |
|---|---|
| AbstractList | Designing architectural layouts is a complex task that has garnered significant attention in the research community. While automated site layout design and flat layout design have been extensively studied, automated building layout design has been relatively overlooked. This paper describes an approach for generating automated building layouts using deep learning and graph algorithms. A unique building layout dataset is created to support the proposed approach. Euclidean distance, Dice coefficient, and a force-directed graph algorithm are employed for layout selection and fine-tuning. The Input-controlled Spatial Attention U-Net model accurately segments the building region, and the resulting layout is refined through image operations, leading to comprehensive BIM models for designers. Through two generative case studies and a comparative experiment with neural networks, this paper demonstrates the effectiveness of the approach that can assist designers during the initial stages of design and enable a rapid generation of complete layouts for individual buildings.
•A framework based on deep learning and graph algorithms for automated building layout generation is proposed.•A unique annotated building layout dataset, GeLayout, is created, which is the first of its kind.•Euclidean distance, Dice coefficient and a force-directed graph algorithm are employed for matching and fine-tuning the graph.•The proposed Input-controlled spatial attention U-Net (ICSA-UNet) generates more concise and well-defined segmentation lines compared to those generated by the standard U-Net.•The generated BIM models in both typical and untypical scenarios are effectively meeting the requirements for design assistance and exhibit stability. |
| ArticleNumber | 105036 |
| Author | Hu, Jiahao Huang, Xuesi Wang, Lufeng Liu, Jiepeng Hu, Huifeng Cheng, Guozhong Zeng, Yan |
| Author_xml | – sequence: 1 givenname: Lufeng surname: Wang fullname: Wang, Lufeng email: wanglufeng@cqu.edu.cn organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China – sequence: 2 givenname: Jiepeng surname: Liu fullname: Liu, Jiepeng organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China – sequence: 3 givenname: Yan surname: Zeng fullname: Zeng, Yan organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China – sequence: 4 givenname: Guozhong surname: Cheng fullname: Cheng, Guozhong email: chengguozhong@cqu.edu.cn organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China – sequence: 5 givenname: Huifeng surname: Hu fullname: Hu, Huifeng organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China – sequence: 6 givenname: Jiahao surname: Hu fullname: Hu, Jiahao organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China – sequence: 7 givenname: Xuesi surname: Huang fullname: Huang, Xuesi organization: Key Laboratory of New Technology for Construction of Cities in Mountain Area (Chongqing University), Ministry of Education, Chongqing 400045, China |
| BookMark | eNqFkM1OwzAQhC1UJNrCG3DIC6Ssk-aPA1JVQUEq4gJna2NvU1epXdkOUt-ehHDiAKfVjPSNZmfGJsYaYuyWw4IDz-8OC-yCtGaRQJL2VgZpfsGmvCySuCgrPmFTqJI8zkrIrtjM-wMAFJBXU_a66oI9YiAV1Z1ulTZN1OLZdiFqyJDDoK2JOj_4iugUtYTODAqNihqHp32EbWOdDvujv2aXO2w93fzcOft4enxfP8fbt83LerWNZQp5iGvMeFKXVVoXCJQlpAq1HBohFBlSXy6lpaolVlzWuywvgdISB1X2pOLpnN2PudJZ7x3thNThu2pwqFvBQQzDiIMYhxHDMGIcpoeXv-CT00d05_-whxGj_rFPTU54qclIUtqRDEJZ_XfAFwPfgss |
| CitedBy_id | crossref_primary_10_1016_j_autcon_2025_106379 crossref_primary_10_1080_00038628_2025_2557026 crossref_primary_10_1108_ECAM_08_2024_1107 crossref_primary_10_1016_j_jobe_2024_110972 crossref_primary_10_1016_j_autcon_2023_105187 crossref_primary_10_1016_j_autcon_2023_105264 crossref_primary_10_1016_j_autcon_2024_105286 crossref_primary_10_1016_j_autcon_2025_106174 crossref_primary_10_1016_j_autcon_2024_105668 crossref_primary_10_1016_j_autcon_2025_106253 crossref_primary_10_1016_j_cscm_2024_e04051 crossref_primary_10_1016_j_autcon_2025_106332 crossref_primary_10_1016_j_autcon_2025_106530 crossref_primary_10_1016_j_foar_2025_05_006 crossref_primary_10_3390_buildings15183267 crossref_primary_10_3390_buildings14071957 crossref_primary_10_1016_j_enbuild_2025_115499 crossref_primary_10_1016_j_jcsr_2024_109086 crossref_primary_10_1061_JCEMD4_COENG_16421 crossref_primary_10_3390_buildings15101674 crossref_primary_10_1016_j_dibe_2025_100691 crossref_primary_10_1016_j_jobe_2024_110163 crossref_primary_10_1016_j_pes_2024_100040 crossref_primary_10_1016_j_scs_2025_106734 crossref_primary_10_1111_tgis_70040 crossref_primary_10_3390_app142210517 crossref_primary_10_1111_mice_13397 crossref_primary_10_1016_j_firesaf_2025_104427 crossref_primary_10_1016_j_buildenv_2025_113450 crossref_primary_10_1016_j_jmapro_2024_05_050 crossref_primary_10_1061_JCCEE5_CPENG_6456 crossref_primary_10_1007_s42452_025_07306_5 crossref_primary_10_1061_JCCEE5_CPENG_6559 crossref_primary_10_1017_S0890060425000022 crossref_primary_10_4218_etrij_2024_0192 crossref_primary_10_1016_j_aei_2024_102885 crossref_primary_10_3390_su17083312 crossref_primary_10_1016_j_scs_2025_106662 crossref_primary_10_1080_13467581_2025_2512235 crossref_primary_10_1080_23744731_2025_2538381 crossref_primary_10_3390_buildings15091472 crossref_primary_10_1016_j_ymssp_2025_112456 crossref_primary_10_1016_j_jobe_2023_107847 |
| Cites_doi | 10.1016/j.autcon.2022.104385 10.1002/stc.2551 10.1016/j.autcon.2018.07.017 10.1177/1475921720940068 10.1016/j.autcon.2022.104147 10.3390/app11178229 10.1016/j.cad.2023.103480 10.1109/ACCESS.2021.3086020 10.1016/j.aei.2020.101184 10.1016/j.autcon.2020.103187 10.1016/j.autcon.2020.103288 10.1007/s41095-022-0271-y 10.1117/1.JMI.6.1.014006 10.1016/j.autcon.2016.06.008 10.1038/s42256-023-00625-5 10.1145/3386569.3392391 10.1137/120875909 10.1080/24751448.2019.1640536 10.1016/j.autcon.2020.103491 10.1016/j.autcon.2023.104888 10.3390/app12188972 10.1016/j.autcon.2013.10.007 10.1016/j.jclepro.2019.05.324 10.1016/j.autcon.2022.104234 10.1016/j.autcon.2019.04.005 10.1016/j.autcon.2023.104943 10.1038/s41592-018-0261-2 10.1007/s11042-021-10659-9 10.1145/3355089.3356556 10.1016/j.autcon.2021.104062 10.1016/j.aei.2012.12.004 10.1016/j.autcon.2020.103132 10.1016/j.autcon.2023.104810 10.1016/j.autcon.2022.104470 |
| ContentType | Journal Article |
| Copyright | 2023 Elsevier B.V. |
| Copyright_xml | – notice: 2023 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.autcon.2023.105036 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Economics Engineering |
| EISSN | 1872-7891 |
| ExternalDocumentID | 10_1016_j_autcon_2023_105036 S0926580523002960 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 23N 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARIN AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A NEJ O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG RNS ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SSB SSD SST SSZ T5K WUQ ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-ba512b893b7a0e52ed7d40070a075ae0003e4dbca91cbf5680e38aa91c8a51d13 |
| ISICitedReferencesCount | 47 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001050724900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-5805 |
| IngestDate | Sat Nov 29 07:11:15 EST 2025 Tue Nov 18 21:38:26 EST 2025 Fri Feb 23 02:35:27 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Building layout Layout plan AI-generated content Graph algorithms |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-ba512b893b7a0e52ed7d40070a075ae0003e4dbca91cbf5680e38aa91c8a51d13 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_autcon_2023_105036 crossref_primary_10_1016_j_autcon_2023_105036 elsevier_sciencedirect_doi_10_1016_j_autcon_2023_105036 |
| PublicationCentury | 2000 |
| PublicationDate | October 2023 2023-10-00 |
| PublicationDateYYYYMMDD | 2023-10-01 |
| PublicationDate_xml | – month: 10 year: 2023 text: October 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Automation in construction |
| PublicationYear | 2023 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Verma, Thakur (bb0160) 2010 Zhao (bb0215) 2020; 46 Gan, Wong, Tse, Cheng, Lo, Chan (bb0165) 2019; 231 Hu, Huang, Tang, Van Kaick, Zhang, Huang (bb0130) 2020; 39 Chaillou (bb0150) 2020 Wang, Jiang, Qian, Yang, Li, Zhang, Wang, Tang (bb0270) 2017 Fruchterman, Reingold (bb0305) 1991; 21 Chen, Xiong, Wang, Wang, Sheng, Zhang, Ye (bb0035) 2022 Wang, Zhang (bb0285) 2020; 119 Kingma, Ba (bb0320) 2015 O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, B. Glocker, D. Rueckert, Attention U-Net: Learning Where to Look for the Pancreas. doi He, Zhang, Ren, Sun (bb0315) 2022; 12 Elezkurtaj, Franck (bb0100) 2002; 16 (accessed June 8, 2023). Huyan, Li, Tighe, Xu, Zhai (bb0210) 2020; 27 Zheng, An, Wei, Ren (bb0090) 2020 Fan, Liu, Wang, Cheng, Liao, Liu, Chen (bb0060) 2023; 152 Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (bb0235) 2017 Li, Wang, Hu, Yang (bb0260) 2019 Woo, Park, Lee, Kweon (bb0265) 2018 Shi, Soman, Han, Whyte (bb0275) 2020; 115 Laignel, Pozin, Geffrier, Delevaux, Brun, Dolla (bb0075) 2021; 123 Luo, Huang (bb0135) 2022; 142 Cao, Li, Liu, Yan, Dai, Yu, Sun (bb0085) 2023 Falk, Mai, Bensch, Çiçek, Abdulkadir, Marrakchi, Böhm, Deubner, Jäckel, Seiwald, Dovzhenko, Tietz, Dal Bosco, Walsh, Saltukoglu, Tay, Prinz, Palme, Simons, Diester, Brox, Ronneberger (bb0185) 2019; 16 Alom, Yakopcic, Hasan, Taha, Asari (bb0190) 2019; 6 Grzesiak-Kopeć, Strug, Ślusarczyk (bb0065) 2021; 11 Rädsch, Reinke, Weru, Tizabi, Schreck, Kavur, Pekdemir, Roß, Kopp-Schneider, Maier-Hein (bb0290) 2023; 5 Nauata, Chang, Cheng, Mori, Furukawa (bb0140) 2020 Mnih, Heess, Graves, Kavukcuoglu (bb0230) 2014; 2 . Bao, Yan, Mitra, Wonka (bb0015) 2013; 32 Anon, NYC Open Data. Singh, Deb, Geyer (bb0095) 2022; 136 Liu, Cao, Wang, Wang (bb0195) 2019; 104 Gan (bb0170) 2022; 134 Ruiz-Montiel, Boned, Gavilanes, Jiménez, Mandow, Pérez-de-la-Cruz (bb0080) 2013; 27 Nisztuk, Myszkowski (bb0105) 2019; 17 Ronneberger, Fischer, Brox (bb0175) 2015 Guo, Xu, Liu, Liu, Jiang, Mu, Zhang, Martin, Cheng, Hu (bb0220) 2022; 8 Ghannad, Lee (bb0045) 2022; 139 (Accessed April 10, 2023). Jiang, Ma, Webster, Li, Gan (bb0025) 2023; 151 Wang, Yang, Zhang (bb0280) 2018; 94 Cha, You, Choi (bb0200) 2016; 71 Li, Ho, Li, Zhu, Wang, Meng (bb0055) 2020 Siddique, Paheding, Elkin, Devabhaktuni (bb0180) 2021; 9 Rahbar, Mahdavinejad, Markazi, Bemanian (bb0155) 2022; 47 Kim, Lee (bb0020) 2021; 80 Cheong, Si (bb0310) 2019; 19 Zhang, Shen, Zhu (bb0205) 2021; 20 Huang, Zheng (bb0120) 2018 Wang, Gan (bb0295) 2023; 149 Weber, Mueller, Reinhart (bb0005) 2022; 140 Du (bb0010) 2020; 116 Wang, Girshick, Gupta, He (bb0240) 2018 Sharma, Gupta, Chattopadhyay, Mehta (bb0050) 2017 Liberti, Lavor, Maculan, Mucherino (bb0300) 2014; 56 Ślusarczyk, Strug, Paszyńska, Grabska, Palacz (bb0070) 2023; 158 Grabska, Grzesiak-Kopeć, Ślusarczyk (bb0040) 2006 R.M.& Associates, Rhino.Python Guides, Www.Rhino3d.Com. (n.d.). Available online Newton (bb0115) 2019; 3 Carion, Massa, Synnaeve, Usunier, Kirillov, Zagoruyko (bb0245) 2020 Dosovitskiy, Beyer, Kolesnikov, Weissenborn, Zhai, Unterthiner, Dehghani, Minderer, Heigold, Gelly, Uszkoreit, Houlsby (bb0250) 2020 Nauata, Hosseini, Chang, Chu, Cheng, Furukawa (bb0145) 2021 (Accessed April 9, 2023). Hu, Shen, Albanie, Sun, Wu (bb0225) 2018 Wu, Fu, Tang, Wang, Qi, Liu (bb0125) 2019; 38 Anon, opencv-python: Wrapper package for OpenCV python bindings. Available online Lin, Gerber (bb0110) 2014; 38 Li, Wang, Tian, Gao, Zhang (bb0255) 2019 Nauata (10.1016/j.autcon.2023.105036_bb0145) 2021 Wu (10.1016/j.autcon.2023.105036_bb0125) 2019; 38 Falk (10.1016/j.autcon.2023.105036_bb0185) 2019; 16 Woo (10.1016/j.autcon.2023.105036_bb0265) 2018 10.1016/j.autcon.2023.105036_bb0330 Zhang (10.1016/j.autcon.2023.105036_bb0205) 2021; 20 Li (10.1016/j.autcon.2023.105036_bb0260) 2019 Cheong (10.1016/j.autcon.2023.105036_bb0310) 2019; 19 Zheng (10.1016/j.autcon.2023.105036_bb0090) 2020 He (10.1016/j.autcon.2023.105036_bb0315) 2022; 12 Cha (10.1016/j.autcon.2023.105036_bb0200) 2016; 71 Fruchterman (10.1016/j.autcon.2023.105036_bb0305) 1991; 21 Rädsch (10.1016/j.autcon.2023.105036_bb0290) 2023; 5 Luo (10.1016/j.autcon.2023.105036_bb0135) 2022; 142 Singh (10.1016/j.autcon.2023.105036_bb0095) 2022; 136 Laignel (10.1016/j.autcon.2023.105036_bb0075) 2021; 123 Rahbar (10.1016/j.autcon.2023.105036_bb0155) 2022; 47 Zhao (10.1016/j.autcon.2023.105036_bb0215) 2020; 46 Dosovitskiy (10.1016/j.autcon.2023.105036_bb0250) 2020 Ronneberger (10.1016/j.autcon.2023.105036_bb0175) 2015 10.1016/j.autcon.2023.105036_bb0325 Lin (10.1016/j.autcon.2023.105036_bb0110) 2014; 38 Elezkurtaj (10.1016/j.autcon.2023.105036_bb0100) 2002; 16 Wang (10.1016/j.autcon.2023.105036_bb0270) 2017 Jiang (10.1016/j.autcon.2023.105036_bb0025) 2023; 151 Wang (10.1016/j.autcon.2023.105036_bb0285) 2020; 119 Alom (10.1016/j.autcon.2023.105036_bb0190) 2019; 6 Wang (10.1016/j.autcon.2023.105036_bb0280) 2018; 94 Guo (10.1016/j.autcon.2023.105036_bb0220) 2022; 8 Hu (10.1016/j.autcon.2023.105036_bb0225) 2018 Du (10.1016/j.autcon.2023.105036_bb0010) 2020; 116 Nauata (10.1016/j.autcon.2023.105036_bb0140) 2020 Gan (10.1016/j.autcon.2023.105036_bb0170) 2022; 134 10.1016/j.autcon.2023.105036_bb0335 Siddique (10.1016/j.autcon.2023.105036_bb0180) 2021; 9 Vaswani (10.1016/j.autcon.2023.105036_bb0235) 2017 Hu (10.1016/j.autcon.2023.105036_bb0130) 2020; 39 10.1016/j.autcon.2023.105036_bb0030 Grabska (10.1016/j.autcon.2023.105036_bb0040) 2006 Huyan (10.1016/j.autcon.2023.105036_bb0210) 2020; 27 Wang (10.1016/j.autcon.2023.105036_bb0295) 2023; 149 Liberti (10.1016/j.autcon.2023.105036_bb0300) 2014; 56 Sharma (10.1016/j.autcon.2023.105036_bb0050) 2017 Huang (10.1016/j.autcon.2023.105036_bb0120) 2018 Kim (10.1016/j.autcon.2023.105036_bb0020) 2021; 80 Li (10.1016/j.autcon.2023.105036_bb0255) 2019 Cao (10.1016/j.autcon.2023.105036_bb0085) 2023 Liu (10.1016/j.autcon.2023.105036_bb0195) 2019; 104 Weber (10.1016/j.autcon.2023.105036_bb0005) 2022; 140 Ruiz-Montiel (10.1016/j.autcon.2023.105036_bb0080) 2013; 27 Kingma (10.1016/j.autcon.2023.105036_bb0320) 2015 Chaillou (10.1016/j.autcon.2023.105036_bb0150) 2020 Mnih (10.1016/j.autcon.2023.105036_bb0230) 2014; 2 Ghannad (10.1016/j.autcon.2023.105036_bb0045) 2022; 139 Li (10.1016/j.autcon.2023.105036_bb0055) 2020 Verma (10.1016/j.autcon.2023.105036_bb0160) 2010 Chen (10.1016/j.autcon.2023.105036_bb0035) 2022 Wang (10.1016/j.autcon.2023.105036_bb0240) 2018 Gan (10.1016/j.autcon.2023.105036_bb0165) 2019; 231 Newton (10.1016/j.autcon.2023.105036_bb0115) 2019; 3 Shi (10.1016/j.autcon.2023.105036_bb0275) 2020; 115 Grzesiak-Kopeć (10.1016/j.autcon.2023.105036_bb0065) 2021; 11 Nisztuk (10.1016/j.autcon.2023.105036_bb0105) 2019; 17 Fan (10.1016/j.autcon.2023.105036_bb0060) 2023; 152 Carion (10.1016/j.autcon.2023.105036_bb0245) 2020 Bao (10.1016/j.autcon.2023.105036_bb0015) 2013; 32 Ślusarczyk (10.1016/j.autcon.2023.105036_bb0070) 2023; 158 |
| References_xml | – volume: 5 start-page: 273 year: 2023 end-page: 283 ident: bb0290 article-title: Labelling instructions matter in biomedical image analysis publication-title: Nat. Machine Intel. – volume: 56 start-page: 3 year: 2014 end-page: 69 ident: bb0300 article-title: Euclidean distance geometry and applications publication-title: SIAM Rev. – start-page: 601 year: 2020 end-page: 610 ident: bb0090 article-title: Apartment floor plans generation via generative adversarial networks publication-title: 25th International Conference of the Association for Computer-Aided Architectural Design Research in Asia (CAADRIA 2020) – volume: 231 start-page: 1375 year: 2019 end-page: 1388 ident: bb0165 article-title: Simulation-based evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings publication-title: J. Clean. Prod. – start-page: 234 year: 2015 end-page: 241 ident: bb0175 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5–9, 2015, Proceedings, Part III 18 – volume: 20 start-page: 1864 year: 2021 end-page: 1879 ident: bb0205 article-title: A research on an improved Unet-based concrete crack detection algorithm publication-title: Struct. Health Monitor. – volume: 46 year: 2020 ident: bb0215 article-title: Deep residual U-net with input of static structural responses for efficient U* load transfer path analysis publication-title: Adv. Eng. Inform. – volume: 38 start-page: 1 year: 2019 end-page: 12 ident: bb0125 article-title: Data-driven interior plan generation for residential buildings publication-title: ACM Trans. Graph. – start-page: 3957 year: 2019 end-page: 3966 ident: bb0255 article-title: Global-local temporal representations for video person re-identification publication-title: in: 2019 IEEE/CVF international conference on computer vision (ICCV), Seoul, Korea (South) – volume: 140 year: 2022 ident: bb0005 article-title: Automated floorplan generation in architectural design: a review of methods and applications publication-title: Autom. Constr. – start-page: 213 year: 2020 end-page: 229 ident: bb0245 article-title: End-to-end object detection with transformers publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16 – start-page: 156 year: 2018 end-page: 165 ident: bb0120 article-title: Architectural drawings recognition and generation through machine learning publication-title: Proceedings of the 38th Annual Conference of the Association for Computer Aided Design in Architecture, Mexico City, Mexico – volume: 151 year: 2023 ident: bb0025 article-title: Building layout generation using site-embedded GAN model publication-title: Autom. Constr. – start-page: 268 year: 2010 end-page: 275 ident: bb0160 article-title: Architectural space planning using genetic algorithms publication-title: In: 2010 the 2nd International Conference on Computer and Automation Engineering (ICCAE) – volume: 11 start-page: 8229 year: 2021 ident: bb0065 article-title: Evolutionary methods in house floor plan design publication-title: Appl. Sci. – volume: 158 year: 2023 ident: bb0070 article-title: Semantic-driven graph transformations in floor plan design publication-title: Comput. Aided Des. – volume: 80 start-page: 29539 year: 2021 end-page: 29560 ident: bb0020 article-title: Draft layout generation of building drawings on real urban scenes with boundary particle method and priority solver publication-title: Multimed. Tools Appl. – year: 2020 ident: bb0055 article-title: HouseExpo: A Large-scale 2D Indoor Layout Dataset for Learning-based Algorithms on Mobile Robots – volume: 9 start-page: 82031 year: 2021 end-page: 82057 ident: bb0180 article-title: U-net and its variants for medical image segmentation: a review of theory and applications publication-title: IEEE Access. – start-page: 510 year: 2019 end-page: 519 ident: bb0260 article-title: Selective kernel networks publication-title: In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA – volume: 134 year: 2022 ident: bb0170 article-title: BIM-based graph data model for automatic generative design of modular buildings publication-title: Autom. Constr. – volume: 16 year: 2002 ident: bb0100 article-title: Algorithmic Support of Creative Architectural Design, organization. 2 – volume: 116 year: 2020 ident: bb0010 article-title: Gaps and requirements for automatic generation of space layouts with optimised energy performance publication-title: Autom. Constr. – volume: 123 year: 2021 ident: bb0075 article-title: Floor plan generation through a mixed constraint programming-genetic optimization approach publication-title: Autom. Constr. – volume: 38 start-page: 59 year: 2014 end-page: 73 ident: bb0110 article-title: Designing-in performance: a framework for evolutionary energy performance feedback in early stage design publication-title: Autom. Constr. – volume: 136 year: 2022 ident: bb0095 article-title: Early-stage design support combining machine learning and building information modelling publication-title: Autom. Constr. – volume: 47 year: 2022 ident: bb0155 article-title: Architectural layout design through deep learning and agent-based modeling: a hybrid approach publication-title: J. Build. Eng. – volume: 27 year: 2020 ident: bb0210 article-title: CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Struct. Control. Health Monit. – volume: 32 start-page: 1 year: 2013 end-page: 10 ident: bb0015 article-title: Generating and exploring good building layouts publication-title: ACM Trans. Graph. – volume: 17 start-page: 260 year: 2019 end-page: 283 ident: bb0105 article-title: Hybrid evolutionary algorithm applied to automated floor plan generation publication-title: Int. J. Archit. Comput. – reference: Anon, opencv-python: Wrapper package for OpenCV python bindings. Available online: – volume: 12 start-page: 8972 year: 2022 ident: bb0315 article-title: Deep residual learning for image recognition publication-title: Appl. Sci. – reference: (accessed June 8, 2023). – start-page: 13627 year: 2021 end-page: 13636 ident: bb0145 article-title: House-GAN++: Generative adversarial layout refinement networks publication-title: In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA – volume: 6 start-page: 014006 year: 2019 ident: bb0190 article-title: Recurrent residual U-Net for medical image segmentation publication-title: J. Med. Imag. – volume: 39 year: 2020 ident: bb0130 article-title: Graph2Plan: learning floorplan generation from layout graphs publication-title: ACM Trans. Graph. – start-page: 7794 year: 2018 end-page: 7803 ident: bb0240 article-title: Non-local neural networks publication-title: In: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA – volume: 119 year: 2020 ident: bb0285 article-title: Generating layout designs from high-level specifications publication-title: Autom. Constr. – start-page: 7132 year: 2018 end-page: 7141 ident: bb0225 article-title: Squeeze-and-excitation networks publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – start-page: 6450 year: 2017 end-page: 6458 ident: bb0270 article-title: Residual attention network for image classification publication-title: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA – reference: (Accessed April 9, 2023). – start-page: 883 year: 2006 end-page: 886 ident: bb0040 article-title: Designing floor-layouts with the assistance of curious agents publication-title: Computational Science – ICCS 2006 – reference: O. Oktay, J. Schlemper, L.L. Folgoc, M. Lee, M. Heinrich, K. Misawa, K. Mori, S. McDonagh, N.Y. Hammerla, B. Kainz, B. Glocker, D. Rueckert, Attention U-Net: Learning Where to Look for the Pancreas. doi: – year: 2023 ident: bb0085 article-title: A Comprehensive Survey of AI-Generated Content (AIGC): A History of Generative AI from GAN to ChatGPT, Computer Science, arXiv preprint – volume: 142 year: 2022 ident: bb0135 article-title: FloorplanGAN: vector residential floorplan adversarial generation publication-title: Autom. Constr. – volume: 21 start-page: 1129 year: 1991 end-page: 1164 ident: bb0305 article-title: Graph drawing by force-directed placement publication-title: Software: Pract. Exp. – year: 2022 ident: bb0035 article-title: ReCo: A Dataset for Residential Community Layout Planning – reference: (Accessed April 10, 2023). – start-page: 3 year: 2018 end-page: 19 ident: bb0265 article-title: CBAM: Convolutional block attention module publication-title: Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany – volume: 8 start-page: 331 year: 2022 end-page: 368 ident: bb0220 article-title: Attention mechanisms in computer vision: a survey publication-title: Com. Visual Media. – start-page: 117 year: 2020 end-page: 127 ident: bb0150 article-title: ArchiGAN: Artificial intelligence x architecture publication-title: Architectural Intelligence – volume: 16 start-page: 67 year: 2019 end-page: 70 ident: bb0185 article-title: U-net: deep learning for cell counting, detection, and morphometry publication-title: Nat. Methods – volume: 19 start-page: 1 year: 2019 ident: bb0310 article-title: Force-directed algorithms for schematic drawings and placement: a survey publication-title: Inf. Vis. – volume: 27 start-page: 230 year: 2013 end-page: 245 ident: bb0080 article-title: Design with shape grammars and reinforcement learning publication-title: Adv. Eng. Inform. – volume: 3 start-page: 176 year: 2019 end-page: 189 ident: bb0115 article-title: Generative deep learning in architectural design publication-title: Technology|Architecture + Design. – volume: 2 start-page: 2204 year: 2014 end-page: 2212 ident: bb0230 article-title: Recurrent models of visual attention publication-title: Adv. Neural Inf. Proces. Syst. – volume: 139 year: 2022 ident: bb0045 article-title: Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN) publication-title: Autom. Constr. – volume: 71 start-page: 181 year: 2016 end-page: 188 ident: bb0200 article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines publication-title: Autom. Constr. – volume: 115 year: 2020 ident: bb0275 article-title: Addressing adjacency constraints in rectangular floor plans using Monte-Carlo Tree Search publication-title: Autom. Constr. – reference: . – volume: 149 year: 2023 ident: bb0295 article-title: Automated joint 3D reconstruction and visual inspection for buildings using computer vision and transfer learning publication-title: Autom. Constr. – year: 2015 ident: bb0320 article-title: Adam: A method for stochastic optimization publication-title: 3rd International Conference on Learning Representations (ICLR 2015), San Diego, CA, USA – year: 2020 ident: bb0250 article-title: An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, arXiv preprint. 2010.11929 – volume: 104 start-page: 129 year: 2019 end-page: 139 ident: bb0195 article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks publication-title: Autom. Constr. – start-page: 6000 year: 2017 end-page: 6010 ident: bb0235 article-title: Attention is all you need publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems – volume: 94 start-page: 405 year: 2018 end-page: 416 ident: bb0280 article-title: Customization and generation of floor plans based on graph transformations publication-title: Autom. Constr. – start-page: 420 year: 2017 end-page: 425 ident: bb0050 article-title: DANIEL: A deep architecture for automatic analysis and retrieval of building floor plans publication-title: In: 2017 14th IAPR International Conference on Document Analysis and Recognition (ICDAR) – volume: 152 year: 2023 ident: bb0060 article-title: Automated layout of modular high-rise residential buildings based on genetic algorithm publication-title: Autom. Constr. – start-page: 162 year: 2020 end-page: 177 ident: bb0140 article-title: House-GAN: relational generative adversarial networks for graph-constrained house layout generation publication-title: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part I 16 – reference: Anon, NYC Open Data. – reference: R.M.& Associates, Rhino.Python Guides, Www.Rhino3d.Com. (n.d.). Available online: – volume: 140 year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0005 article-title: Automated floorplan generation in architectural design: a review of methods and applications publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104385 – volume: 27 issue: 8 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0210 article-title: CrackU-net: a novel deep convolutional neural network for pixelwise pavement crack detection publication-title: Struct. Control. Health Monit. doi: 10.1002/stc.2551 – ident: 10.1016/j.autcon.2023.105036_bb0030 – start-page: 13627 year: 2021 ident: 10.1016/j.autcon.2023.105036_bb0145 article-title: House-GAN++: Generative adversarial layout refinement networks – volume: 94 start-page: 405 year: 2018 ident: 10.1016/j.autcon.2023.105036_bb0280 article-title: Customization and generation of floor plans based on graph transformations publication-title: Autom. Constr. doi: 10.1016/j.autcon.2018.07.017 – volume: 20 start-page: 1864 issue: 4 year: 2021 ident: 10.1016/j.autcon.2023.105036_bb0205 article-title: A research on an improved Unet-based concrete crack detection algorithm publication-title: Struct. Health Monitor. doi: 10.1177/1475921720940068 – volume: 136 year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0095 article-title: Early-stage design support combining machine learning and building information modelling publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104147 – volume: 11 start-page: 8229 year: 2021 ident: 10.1016/j.autcon.2023.105036_bb0065 article-title: Evolutionary methods in house floor plan design publication-title: Appl. Sci. doi: 10.3390/app11178229 – start-page: 213 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0245 article-title: End-to-end object detection with transformers – volume: 2 start-page: 2204 year: 2014 ident: 10.1016/j.autcon.2023.105036_bb0230 article-title: Recurrent models of visual attention publication-title: Adv. Neural Inf. Proces. Syst. – start-page: 156 year: 2018 ident: 10.1016/j.autcon.2023.105036_bb0120 article-title: Architectural drawings recognition and generation through machine learning – volume: 158 year: 2023 ident: 10.1016/j.autcon.2023.105036_bb0070 article-title: Semantic-driven graph transformations in floor plan design publication-title: Comput. Aided Des. doi: 10.1016/j.cad.2023.103480 – volume: 9 start-page: 82031 year: 2021 ident: 10.1016/j.autcon.2023.105036_bb0180 article-title: U-net and its variants for medical image segmentation: a review of theory and applications publication-title: IEEE Access. doi: 10.1109/ACCESS.2021.3086020 – start-page: 7132 year: 2018 ident: 10.1016/j.autcon.2023.105036_bb0225 article-title: Squeeze-and-excitation networks publication-title: Proc. IEEE Conf. Comput. Vis. Pattern Recognit. – volume: 46 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0215 article-title: Deep residual U-net with input of static structural responses for efficient U* load transfer path analysis publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2020.101184 – start-page: 268 year: 2010 ident: 10.1016/j.autcon.2023.105036_bb0160 article-title: Architectural space planning using genetic algorithms – volume: 115 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0275 article-title: Addressing adjacency constraints in rectangular floor plans using Monte-Carlo Tree Search publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103187 – volume: 119 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0285 article-title: Generating layout designs from high-level specifications publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103288 – volume: 8 start-page: 331 issue: 3 year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0220 article-title: Attention mechanisms in computer vision: a survey publication-title: Com. Visual Media. doi: 10.1007/s41095-022-0271-y – year: 2023 ident: 10.1016/j.autcon.2023.105036_bb0085 – volume: 6 start-page: 014006 issue: 1 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0190 article-title: Recurrent residual U-Net for medical image segmentation publication-title: J. Med. Imag. doi: 10.1117/1.JMI.6.1.014006 – volume: 71 start-page: 181 year: 2016 ident: 10.1016/j.autcon.2023.105036_bb0200 article-title: Vision-based detection of loosened bolts using the Hough transform and support vector machines publication-title: Autom. Constr. doi: 10.1016/j.autcon.2016.06.008 – volume: 5 start-page: 273 year: 2023 ident: 10.1016/j.autcon.2023.105036_bb0290 article-title: Labelling instructions matter in biomedical image analysis publication-title: Nat. Machine Intel. doi: 10.1038/s42256-023-00625-5 – start-page: 510 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0260 article-title: Selective kernel networks – start-page: 7794 year: 2018 ident: 10.1016/j.autcon.2023.105036_bb0240 article-title: Non-local neural networks – start-page: 6450 year: 2017 ident: 10.1016/j.autcon.2023.105036_bb0270 article-title: Residual attention network for image classification – start-page: 117 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0150 article-title: ArchiGAN: Artificial intelligence x architecture – year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0035 – start-page: 3957 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0255 article-title: Global-local temporal representations for video person re-identification – volume: 39 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0130 article-title: Graph2Plan: learning floorplan generation from layout graphs publication-title: ACM Trans. Graph. doi: 10.1145/3386569.3392391 – volume: 56 start-page: 3 year: 2014 ident: 10.1016/j.autcon.2023.105036_bb0300 article-title: Euclidean distance geometry and applications publication-title: SIAM Rev. doi: 10.1137/120875909 – volume: 3 start-page: 176 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0115 article-title: Generative deep learning in architectural design publication-title: Technology|Architecture + Design. doi: 10.1080/24751448.2019.1640536 – year: 2015 ident: 10.1016/j.autcon.2023.105036_bb0320 article-title: Adam: A method for stochastic optimization – volume: 32 start-page: 1 year: 2013 ident: 10.1016/j.autcon.2023.105036_bb0015 article-title: Generating and exploring good building layouts publication-title: ACM Trans. Graph. – volume: 123 year: 2021 ident: 10.1016/j.autcon.2023.105036_bb0075 article-title: Floor plan generation through a mixed constraint programming-genetic optimization approach publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103491 – volume: 151 year: 2023 ident: 10.1016/j.autcon.2023.105036_bb0025 article-title: Building layout generation using site-embedded GAN model publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104888 – year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0055 – volume: 12 start-page: 8972 issue: 18 year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0315 article-title: Deep residual learning for image recognition publication-title: Appl. Sci. doi: 10.3390/app12188972 – volume: 38 start-page: 59 year: 2014 ident: 10.1016/j.autcon.2023.105036_bb0110 article-title: Designing-in performance: a framework for evolutionary energy performance feedback in early stage design publication-title: Autom. Constr. doi: 10.1016/j.autcon.2013.10.007 – ident: 10.1016/j.autcon.2023.105036_bb0330 – volume: 231 start-page: 1375 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0165 article-title: Simulation-based evolutionary optimization for energy-efficient layout plan design of high-rise residential buildings publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.05.324 – volume: 139 year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0045 article-title: Automated modular housing design using a module configuration algorithm and a coupled generative adversarial network (CoGAN) publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104234 – start-page: 3 year: 2018 ident: 10.1016/j.autcon.2023.105036_bb0265 article-title: CBAM: Convolutional block attention module – start-page: 883 year: 2006 ident: 10.1016/j.autcon.2023.105036_bb0040 article-title: Designing floor-layouts with the assistance of curious agents – start-page: 234 year: 2015 ident: 10.1016/j.autcon.2023.105036_bb0175 article-title: U-Net: Convolutional Networks for Biomedical Image Segmentation – start-page: 601 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0090 article-title: Apartment floor plans generation via generative adversarial networks – volume: 104 start-page: 129 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0195 article-title: Computer vision-based concrete crack detection using U-net fully convolutional networks publication-title: Autom. Constr. doi: 10.1016/j.autcon.2019.04.005 – volume: 152 year: 2023 ident: 10.1016/j.autcon.2023.105036_bb0060 article-title: Automated layout of modular high-rise residential buildings based on genetic algorithm publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104943 – volume: 16 start-page: 67 issue: 1 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0185 article-title: U-net: deep learning for cell counting, detection, and morphometry publication-title: Nat. Methods doi: 10.1038/s41592-018-0261-2 – volume: 80 start-page: 29539 year: 2021 ident: 10.1016/j.autcon.2023.105036_bb0020 article-title: Draft layout generation of building drawings on real urban scenes with boundary particle method and priority solver publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-021-10659-9 – volume: 38 start-page: 1 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0125 article-title: Data-driven interior plan generation for residential buildings publication-title: ACM Trans. Graph. doi: 10.1145/3355089.3356556 – volume: 134 year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0170 article-title: BIM-based graph data model for automatic generative design of modular buildings publication-title: Autom. Constr. doi: 10.1016/j.autcon.2021.104062 – volume: 19 start-page: 1 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0310 article-title: Force-directed algorithms for schematic drawings and placement: a survey publication-title: Inf. Vis. – volume: 27 start-page: 230 year: 2013 ident: 10.1016/j.autcon.2023.105036_bb0080 article-title: Design with shape grammars and reinforcement learning publication-title: Adv. Eng. Inform. doi: 10.1016/j.aei.2012.12.004 – volume: 17 start-page: 260 year: 2019 ident: 10.1016/j.autcon.2023.105036_bb0105 article-title: Hybrid evolutionary algorithm applied to automated floor plan generation publication-title: Int. J. Archit. Comput. – volume: 47 year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0155 article-title: Architectural layout design through deep learning and agent-based modeling: a hybrid approach publication-title: J. Build. Eng. – ident: 10.1016/j.autcon.2023.105036_bb0335 – year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0250 – volume: 116 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0010 article-title: Gaps and requirements for automatic generation of space layouts with optimised energy performance publication-title: Autom. Constr. doi: 10.1016/j.autcon.2020.103132 – volume: 149 year: 2023 ident: 10.1016/j.autcon.2023.105036_bb0295 article-title: Automated joint 3D reconstruction and visual inspection for buildings using computer vision and transfer learning publication-title: Autom. Constr. doi: 10.1016/j.autcon.2023.104810 – volume: 142 year: 2022 ident: 10.1016/j.autcon.2023.105036_bb0135 article-title: FloorplanGAN: vector residential floorplan adversarial generation publication-title: Autom. Constr. doi: 10.1016/j.autcon.2022.104470 – volume: 16 year: 2002 ident: 10.1016/j.autcon.2023.105036_bb0100 – volume: 21 start-page: 1129 year: 1991 ident: 10.1016/j.autcon.2023.105036_bb0305 article-title: Graph drawing by force-directed placement publication-title: Software: Pract. Exp. – start-page: 6000 year: 2017 ident: 10.1016/j.autcon.2023.105036_bb0235 article-title: Attention is all you need – start-page: 420 year: 2017 ident: 10.1016/j.autcon.2023.105036_bb0050 article-title: DANIEL: A deep architecture for automatic analysis and retrieval of building floor plans – start-page: 162 year: 2020 ident: 10.1016/j.autcon.2023.105036_bb0140 article-title: House-GAN: relational generative adversarial networks for graph-constrained house layout generation – ident: 10.1016/j.autcon.2023.105036_bb0325 |
| SSID | ssj0007069 |
| Score | 2.5549092 |
| Snippet | Designing architectural layouts is a complex task that has garnered significant attention in the research community. While automated site layout design and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105036 |
| SubjectTerms | AI-generated content Building layout Deep learning Graph algorithms Layout plan |
| Title | Automated building layout generation using deep learning and graph algorithms |
| URI | https://dx.doi.org/10.1016/j.autcon.2023.105036 |
| Volume | 154 |
| WOSCitedRecordID | wos001050724900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7891 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007069 issn: 0926-5805 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD6CDgl4QDBAjJv8wNsUKc3N9mM1jZvGhMRAhZfIcZy1VZVUa4O2_XrOsZ1kUMRN4iVqLTtOfb7Y3zk9F4AXZRKqtIzjAJXlmEJy4kBVSRIkaVWVUqaltM6Yn4748bGYTuV77267tuUEeF2L83O5-q-ixjYUNoXO_oW4-5tiA35GoeMVxY7XPxL8pN00SEOJWfqS1_tLdUHux6c2xbQVeGtNBKUxq65uhAtVtPmr99XytDmbb2Y-k_niuxt750jdDLlnB6u82zmO2sr4E5F8featxcqc6u32rV-M6_t5gOfBzLe9apvLWeP7epNENDi3eTvZVqyMMzhGWZCK0P2Hbdx2Kzjye-HqdfX7scsqvbW3OzPDgjx7yFRAE1OV4jD-IZW2PZw_0HQ0G6pYYYRq2nXYiXgqxQh2Jm8Op2_745qHmUvI6B-vi6-0ToDbc_2cv1zhJCd34Y5XJtjEgeAeXDP1LtzsYs3Xu3D7SrrJ-_CuhwbroMEcNNgADWahwQgarIMGQ2gwCw02QOMBfHx5eHLwOvDlNAKNeuEmKBSSuwL5acFVaNLIlBzfVPz9CmmjMqQdm6QstJJjXVRpJkITC0XfBI4sx_FDGNVNbR4BSxMdVjxTuuAiMYWW4yjTyEQTFWWSR3oP4m6Rcu1zzVPJk2XeORUucre0OS1t7pZ2D4J-1MrlWvlNf96tf-75ouOBOULmlyMf__PIJ3BrQPxTGOGLZp7BDf11M1-fPffY-gYKJZJA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+building+layout+generation+using+deep+learning+and+graph+algorithms&rft.jtitle=Automation+in+construction&rft.au=Wang%2C+Lufeng&rft.au=Liu%2C+Jiepeng&rft.au=Zeng%2C+Yan&rft.au=Cheng%2C+Guozhong&rft.date=2023-10-01&rft.pub=Elsevier+B.V&rft.issn=0926-5805&rft.eissn=1872-7891&rft.volume=154&rft_id=info:doi/10.1016%2Fj.autcon.2023.105036&rft.externalDocID=S0926580523002960 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-5805&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-5805&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-5805&client=summon |