Multi-modality MRI fusion with patch complementary pre-training for internet of medical things-based smart healthcare

Magnetic Resonance Imaging (MRI) is a pivotal neuroimaging technique capable of generating images with various contrasts, known as multi-modal images. The integration of these diverse modalities is essential for improving model performance across various tasks. However, in real clinical scenarios, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Information fusion Jg. 107; S. 102342
Hauptverfasser: Lyu, Jun, Chen, Xiudong, AlQahtani, Salman A., Hossain, M. Shamim
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.07.2024
Schlagworte:
ISSN:1566-2535, 1872-6305
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Magnetic Resonance Imaging (MRI) is a pivotal neuroimaging technique capable of generating images with various contrasts, known as multi-modal images. The integration of these diverse modalities is essential for improving model performance across various tasks. However, in real clinical scenarios, acquiring MR images for all modalities is frequently hindered by factors such as patient comfort and scanning costs. Therefore, effectively fusing different modalities to synthesize missing modalities has become a research hot-spot in the field of smart healthcare, particularly in the context of the Internet of Medical Things (IoMT). In this study, we introduce a multi-modal coordinated fusion network (MCF-Net) with Patch Complementarity Pre-training. This network leverages the complementarity and correlation between different modalities to make the fusion of multi-modal MR images, addressing challenges in the IoMT. Specifically, we first employ a Patch Complementarity Mask Autoencoder (PC-MAE) for self-supervised pre-training. The complementarity learning mechanism is introduced to align masks and visual annotations between two modalities. Subsequently, a dual-branch MAE architecture and a shared encoder–decoder are adopted to facilitate cross-modal interactions within mask tokens. Furthermore, during the fine-tuning phase, we incorporate an Attention-Driven Fusion (ADF) module into the MCF-Net. This module synthesizes missing modal images by fusion of multi-modal features from the pre-trained PC-MAE encoder. Additionally, we leverage the pre-trained encoder to extract high-level features from both synthetic and corresponding real images, ensuring consistency throughout the training process. Our experimental findings showcase a notable enhancement in performance across various modalities with our fusion method, outperforming state-of-the-art techniques. •Propose a multi-modal medical image fusion framework with patch complementary pre-training•Design a novel masking alignment strategy to learn complementary information between modalities.•Introduce an attention-driven fusion module to aggregate multi-modal features.
AbstractList Magnetic Resonance Imaging (MRI) is a pivotal neuroimaging technique capable of generating images with various contrasts, known as multi-modal images. The integration of these diverse modalities is essential for improving model performance across various tasks. However, in real clinical scenarios, acquiring MR images for all modalities is frequently hindered by factors such as patient comfort and scanning costs. Therefore, effectively fusing different modalities to synthesize missing modalities has become a research hot-spot in the field of smart healthcare, particularly in the context of the Internet of Medical Things (IoMT). In this study, we introduce a multi-modal coordinated fusion network (MCF-Net) with Patch Complementarity Pre-training. This network leverages the complementarity and correlation between different modalities to make the fusion of multi-modal MR images, addressing challenges in the IoMT. Specifically, we first employ a Patch Complementarity Mask Autoencoder (PC-MAE) for self-supervised pre-training. The complementarity learning mechanism is introduced to align masks and visual annotations between two modalities. Subsequently, a dual-branch MAE architecture and a shared encoder–decoder are adopted to facilitate cross-modal interactions within mask tokens. Furthermore, during the fine-tuning phase, we incorporate an Attention-Driven Fusion (ADF) module into the MCF-Net. This module synthesizes missing modal images by fusion of multi-modal features from the pre-trained PC-MAE encoder. Additionally, we leverage the pre-trained encoder to extract high-level features from both synthetic and corresponding real images, ensuring consistency throughout the training process. Our experimental findings showcase a notable enhancement in performance across various modalities with our fusion method, outperforming state-of-the-art techniques. •Propose a multi-modal medical image fusion framework with patch complementary pre-training•Design a novel masking alignment strategy to learn complementary information between modalities.•Introduce an attention-driven fusion module to aggregate multi-modal features.
ArticleNumber 102342
Author AlQahtani, Salman A.
Lyu, Jun
Hossain, M. Shamim
Chen, Xiudong
Author_xml – sequence: 1
  givenname: Jun
  orcidid: 0000-0003-1989-1360
  surname: Lyu
  fullname: Lyu, Jun
  email: ljdream0710@pku.edu.cn
  organization: School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
– sequence: 2
  givenname: Xiudong
  surname: Chen
  fullname: Chen, Xiudong
  email: chenxiudong@s.ytu.edu.cn
  organization: School of Computer and Control Engineering, Yantai University, Yantai, 264005, China
– sequence: 3
  givenname: Salman A.
  surname: AlQahtani
  fullname: AlQahtani, Salman A.
  email: salmanq@ksu.edu.sa, alqahtani.s@gmail.com
  organization: Department of Computer Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, Saudi Arabia
– sequence: 4
  givenname: M. Shamim
  surname: Hossain
  fullname: Hossain, M. Shamim
  email: mshossain@ksu.edu.sa
  organization: Department of Software Engineering, College of Computer and Information Sciences, King Saud University, Riyadh, 12372, Saudi Arabia
BookMark eNqFkM1KAzEURoNUsK2-gYu8wNTcpJOZuhCk-FNoEUTXIc3ccVJmMiVJlb69KePKha5ySe75yHcmZOR6h4RcA5sBA3mzm1lX14cw44zP0xUXc35GxlAWPJOC5aM051JmPBf5BZmEsGMMCiZgTA6bQxtt1vWVbm080s3riqYk2zv6ZWND9zqahpq-27fYoYvaH-neYxa9ts66D1r3nloX0TuMtK9ph5U1uqWxSa8h2-qAFQ2d9pE2qNvYGO3xkpzXug149XNOyfvjw9vyOVu_PK2W9-vMCCZjghnP62JR6qIUBSLj22oLxoithIpDVVYwX4CBHEHneSEBUACrteQyrfBSTMntkGt8H4LHWhkbdUztTv9vFTB1Eqh2ahCoTgLVIDDB81_w3ttU5PgfdjdgmIp9WvQqGIvOJC8eTVRVb_8O-AYGRJDS
CitedBy_id crossref_primary_10_3390_math13111768
crossref_primary_10_1016_j_bspc_2024_106857
crossref_primary_10_1016_j_inffus_2025_103302
crossref_primary_10_1109_TMI_2025_3550206
crossref_primary_10_1016_j_bspc_2025_108626
crossref_primary_10_1109_TIM_2025_3545534
Cites_doi 10.1109/TMI.2022.3167808
10.1109/TMI.2020.3046444
10.1109/JBHI.2021.3082541
10.3389/fonc.2022.942511
10.1002/hbm.24428
10.1109/TMI.2020.2987026
10.1109/TMI.2019.2901750
10.1016/j.inffus.2021.06.007
10.1016/j.inffus.2022.03.010
10.1109/TMI.2018.2884053
10.1007/s00530-017-0561-x
10.1016/j.inffus.2022.12.027
10.1016/j.infrared.2016.01.009
10.1016/j.compbiomed.2023.106738
10.1016/j.inffus.2021.06.008
10.1162/0899766042321814
10.1109/TPAMI.2010.183
10.1109/TMI.2020.2975344
10.1109/TMI.2019.2895894
10.1109/TMI.2014.2377694
10.1016/j.inffus.2021.02.019
10.1117/1.JMI.6.1.014005
10.1109/JBHI.2019.2922986
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.inffus.2024.102342
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1872-6305
ExternalDocumentID 10_1016_j_inffus_2024_102342
S1566253524001209
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-ba025f798a7837ee02bdb1cc3b61d21d8d1491c15e1a557611e310fa6263b6283
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001208236800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1566-2535
IngestDate Sat Nov 29 07:05:17 EST 2025
Tue Nov 18 22:16:45 EST 2025
Sat Apr 06 16:25:38 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Magnetic resonance imaging (MRI)
Multi-modal medical image fusion
Smart healthcare
Internet of medical things (IoMT)
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-ba025f798a7837ee02bdb1cc3b61d21d8d1491c15e1a557611e310fa6263b6283
ORCID 0000-0003-1989-1360
ParticipantIDs crossref_citationtrail_10_1016_j_inffus_2024_102342
crossref_primary_10_1016_j_inffus_2024_102342
elsevier_sciencedirect_doi_10_1016_j_inffus_2024_102342
PublicationCentury 2000
PublicationDate July 2024
2024-07-00
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: July 2024
PublicationDecade 2020
PublicationTitle Information fusion
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Zhou, He, Zhou, Shen (b33) 2023
Liu, Pasumarthi, Duffy, Gong, Datta, Zaharchuk (b32) 2023
Yan, Wang, Chen, Lyu (b31) 2022; 12
Fu, Wu, Durrani (b8) 2021; 72
Zhang, Xu, Tian, Jiang, Ma (b4) 2021; 76
Hardoon, Szedmak, Shawe-Taylor (b36) 2004; 16
Tao, Velasquez (b17) 2022; 83
Vaswani, Shazeer, Parmar, Uszkoreit, Jones, Gomez, Kaiser, Polosukhin (b26) 2017; vol. 30
Huang, Shao, Frangi (b23) 2017
Wang, Zhou, Yu, Wang, Zu, Lalush, Lin, Wu, Zhou, Shen (b25) 2018; 38
Zhou, Liu, Fu, Wang, Shen, Shao, Shen (b1) 2019
Menze, Jakab, Bauer, Kalpathy-Cramer, Farahani, Kirby, Burren, Porz, Slotboom, Wiest (b42) 2014; 34
Wang, Gong, Banerjee, Martin, Tong, Choi, Chen, Wintermark, Pauly, Zaharchuk (b10) 2020; 39
Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223–2232.
Dar, Yurt, Karacan, Erdem, Erdem, Cukur (b19) 2019; 38
Chen, He, Frey, Li, Du (b28) 2021
Chen, Lu, Yu, Luo, Adeli, Wang, Lu, Yuille, Zhou (b27) 2021
Yang, Lin, Wang, Li, Cheng (b12) 2019; 24
Dalmaz, Yurt, Çukur (b29) 2022; 41
Li, Xu, Lu, Qi (b35) 2023; 11
Lin, Liu, Fuh (b37) 2010; 33
Wolterink, Dinkla, Savenije, Seevinck, van den Berg, Išgum (b20) 2017
Zhou, Fu, Chen, Shen, Shao (b14) 2020; 39
Umirzakova, Ahmad, Khan, Whangbo (b16) 2023
Zhou, Thung, Zhu, Shen (b38) 2019; 40
Hou, Tang, Zhang, Kong, Zhao (b39) 2019; 32
Li, Xu, Chen, Sun, Bian, Guo, Lu, Qi (b34) 2023; 157
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (b18) 2014; vol. 27
Yu, Zhou, Wang, Shi, Fripp, Bourgeat (b44) 2019; 38
Peng, Liu, Bin, Shen, Lei (b30) 2021; 26
Sevetlidis, Giuffrida, Tsaftaris (b5) 2016
Zhang, Li, Wang, Wang, Lai, Zhang (b3) 2023; 93
Hossain (b15) 2019; 25
Zhang, He, Guo, Ettehadi, Aw, Semanek, Posner, Laine, Wang (b43) 2021
Shen, Zhu, Wang, Xing, Pauly, Turkbey, Harmon, Sanford, Mehralivand, Choyke (b24) 2020; 40
Wei, Poirion, Bodini, Durrleman, Colliot, Stankoff, Ayache (b41) 2019; 6
Dar, Yurt, Karacan, Erdem, Erdem, Cukur (b7) 2019; 38
Yu, Zhou, Wang, Fripp, Bourgeat (b40) 2018
Wen Wei, Emilie Poirion, Benedetta Bodini, Stanley Durrleman, Olivier Colliot, Bruno Stankoff, Nicholas Ayache, FLAIR MR image synthesis by using 3D fully convolutional networks for multiple sclerosis, in: ISMRM-ESMRMB 2018-Joint Annual Meeting, 2018, pp. 1–6.
Bavirisetti, Dhuli (b6) 2016; 76
Olut, Sahin, Demir, Unal (b13) 2018
Muhammad, Alshehri, Karray, El Saddik, Alsulaiman, Falk (b2) 2021; 76
Hossain (10.1016/j.inffus.2024.102342_b15) 2019; 25
Dar (10.1016/j.inffus.2024.102342_b19) 2019; 38
Huang (10.1016/j.inffus.2024.102342_b23) 2017
Zhou (10.1016/j.inffus.2024.102342_b38) 2019; 40
Zhang (10.1016/j.inffus.2024.102342_b3) 2023; 93
Zhou (10.1016/j.inffus.2024.102342_b14) 2020; 39
Vaswani (10.1016/j.inffus.2024.102342_b26) 2017; vol. 30
Fu (10.1016/j.inffus.2024.102342_b8) 2021; 72
Yan (10.1016/j.inffus.2024.102342_b31) 2022; 12
Hou (10.1016/j.inffus.2024.102342_b39) 2019; 32
Yu (10.1016/j.inffus.2024.102342_b40) 2018
Menze (10.1016/j.inffus.2024.102342_b42) 2014; 34
10.1016/j.inffus.2024.102342_b21
Zhang (10.1016/j.inffus.2024.102342_b43) 2021
Lin (10.1016/j.inffus.2024.102342_b37) 2010; 33
Liu (10.1016/j.inffus.2024.102342_b32) 2023
Yu (10.1016/j.inffus.2024.102342_b44) 2019; 38
10.1016/j.inffus.2024.102342_b22
Yang (10.1016/j.inffus.2024.102342_b12) 2019; 24
Sevetlidis (10.1016/j.inffus.2024.102342_b5) 2016
Bavirisetti (10.1016/j.inffus.2024.102342_b6) 2016; 76
Tao (10.1016/j.inffus.2024.102342_b17) 2022; 83
10.1016/j.inffus.2024.102342_b9
Wang (10.1016/j.inffus.2024.102342_b10) 2020; 39
Dalmaz (10.1016/j.inffus.2024.102342_b29) 2022; 41
Dar (10.1016/j.inffus.2024.102342_b7) 2019; 38
Li (10.1016/j.inffus.2024.102342_b35) 2023; 11
Chen (10.1016/j.inffus.2024.102342_b28) 2021
Olut (10.1016/j.inffus.2024.102342_b13) 2018
Umirzakova (10.1016/j.inffus.2024.102342_b16) 2023
Wang (10.1016/j.inffus.2024.102342_b25) 2018; 38
Li (10.1016/j.inffus.2024.102342_b33) 2023
Muhammad (10.1016/j.inffus.2024.102342_b2) 2021; 76
10.1016/j.inffus.2024.102342_b11
Chen (10.1016/j.inffus.2024.102342_b27) 2021
Wolterink (10.1016/j.inffus.2024.102342_b20) 2017
Li (10.1016/j.inffus.2024.102342_b34) 2023; 157
Zhou (10.1016/j.inffus.2024.102342_b1) 2019
Zhang (10.1016/j.inffus.2024.102342_b4) 2021; 76
Goodfellow (10.1016/j.inffus.2024.102342_b18) 2014; vol. 27
Hardoon (10.1016/j.inffus.2024.102342_b36) 2004; 16
Wei (10.1016/j.inffus.2024.102342_b41) 2019; 6
Shen (10.1016/j.inffus.2024.102342_b24) 2020; 40
Peng (10.1016/j.inffus.2024.102342_b30) 2021; 26
References_xml – volume: vol. 27
  year: 2014
  ident: b18
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems
– volume: 40
  start-page: 1001
  year: 2019
  end-page: 1016
  ident: b38
  article-title: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis
  publication-title: Hum. Brain Mapp.
– volume: 76
  start-page: 355
  year: 2021
  end-page: 375
  ident: b2
  article-title: A comprehensive survey on multimodal medical signals fusion for smart healthcare systems
  publication-title: Inf. Fusion
– year: 2023
  ident: b33
  article-title: Multi-scale transformer network with edge-aware pre-training for cross-modality MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
– start-page: 147
  year: 2018
  end-page: 154
  ident: b13
  article-title: Generative adversarial training for MRA image synthesis using multi-contrast MRI
  publication-title: PRedictive Intelligence in MEdicine: First International Workshop, PRIME 2018, Held in Conjunction with MICCAI 2018, Granada, Spain, September 16, 2018, Proceedings 1
– volume: 38
  start-page: 1750
  year: 2019
  end-page: 1762
  ident: b44
  article-title: Ea-GANs: Edge-aware generative adversarial networks for cross-modality MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
– volume: 25
  start-page: 565
  year: 2019
  end-page: 575
  ident: b15
  article-title: Smart healthcare monitoring: A voice pathology detection paradigm for smart cities
  publication-title: Multimedia Syst.
– volume: 83
  start-page: 93
  year: 2022
  end-page: 95
  ident: b17
  article-title: Multi-source information fusion for smart health with artificial intelligence
  publication-title: Inf. Fusion
– volume: vol. 30
  year: 2017
  ident: b26
  article-title: Attention is all you need
  publication-title: Advances in Neural Information Processing Systems
– year: 2021
  ident: b28
  article-title: Vit-v-net: Vision transformer for unsupervised volumetric medical image registration
– volume: 34
  start-page: 1993
  year: 2014
  end-page: 2024
  ident: b42
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 27
  year: 2021
  end-page: 35
  ident: b30
  article-title: Multi-modality mr image synthesis via confidence-guided aggregation and cross-modality refinement
  publication-title: IEEE J. Biomed. Health Inf.
– year: 2021
  ident: b43
  article-title: PTNet: A high-resolution infant MRI synthesizer based on transformer
– volume: 76
  start-page: 323
  year: 2021
  end-page: 336
  ident: b4
  article-title: Image fusion meets deep learning: A survey and perspective
  publication-title: Inf. Fusion
– reference: Wen Wei, Emilie Poirion, Benedetta Bodini, Stanley Durrleman, Olivier Colliot, Bruno Stankoff, Nicholas Ayache, FLAIR MR image synthesis by using 3D fully convolutional networks for multiple sclerosis, in: ISMRM-ESMRMB 2018-Joint Annual Meeting, 2018, pp. 1–6.
– year: 2021
  ident: b27
  article-title: Transunet: Transformers make strong encoders for medical image segmentation
– volume: 32
  year: 2019
  ident: b39
  article-title: Deep multimodal multilinear fusion with high-order polynomial pooling
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 629
  year: 2019
  end-page: 638
  ident: b1
  article-title: Deep multi-modal latent representation learning for automated dementia diagnosis
  publication-title: International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 40
  start-page: 1113
  year: 2020
  end-page: 1122
  ident: b24
  article-title: Multi-domain image completion for random missing input data
  publication-title: IEEE Trans. Med. Imaging
– volume: 16
  start-page: 2639
  year: 2004
  end-page: 2664
  ident: b36
  article-title: Canonical correlation analysis: An overview with application to learning methods
  publication-title: Neural Comput.
– volume: 12
  year: 2022
  ident: b31
  article-title: Swin transformer-based GAN for multi-modal medical image translation
  publication-title: Front. Oncol.
– volume: 6
  start-page: 014005
  year: 2019
  ident: b41
  article-title: Fluid-attenuated inversion recovery MRI synthesis from multisequence MRI using three-dimensional fully convolutional networks for multiple sclerosis
  publication-title: J. Med. Imaging
– start-page: 626
  year: 2018
  end-page: 630
  ident: b40
  article-title: 3D cGAN based cross-modality MR image synthesis for brain tumor segmentation
  publication-title: 2018 IEEE 15th International Symposium on Biomedical Imaging
– reference: Jun-Yan Zhu, Taesung Park, Phillip Isola, Alexei A Efros, Unpaired image-to-image translation using cycle-consistent adversarial networks, in: Proceedings of the IEEE International Conference on Computer Vision, 2017, pp. 2223–2232.
– volume: 33
  start-page: 1147
  year: 2010
  end-page: 1160
  ident: b37
  article-title: Multiple kernel learning for dimensionality reduction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 127
  year: 2016
  end-page: 137
  ident: b5
  article-title: Whole image synthesis using a deep encoder-decoder network
  publication-title: Simulation and Synthesis in Medical Imaging: First International Workshop, SASHIMI 2016, Held in Conjunction with MICCAI 2016, Athens, Greece, October 21, 2016, Proceedings 1
– volume: 72
  start-page: 110
  year: 2021
  end-page: 125
  ident: b8
  article-title: Image fusion based on generative adversarial network consistent with perception
  publication-title: Inf. Fusion
– volume: 157
  year: 2023
  ident: b34
  article-title: CT synthesis from multi-sequence MRI using adaptive fusion network
  publication-title: Comput. Biol. Med.
– volume: 38
  start-page: 2375
  year: 2019
  end-page: 2388
  ident: b7
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEE Trans. Med. Imaging
– start-page: 14
  year: 2017
  end-page: 23
  ident: b20
  article-title: Deep MR to CT synthesis using unpaired data
  publication-title: Simulation and Synthesis in Medical Imaging: Second International Workshop, SASHIMI 2017, Held in Conjunction with MICCAI 2017, QuÉBec City, QC, Canada, September 10, 2017, Proceedings 2
– volume: 11
  year: 2023
  ident: b35
  article-title: CT synthesis from MRI with an improved multi-scale learning network
  publication-title: Front. Phys.
– volume: 39
  start-page: 3089
  year: 2020
  end-page: 3099
  ident: b10
  article-title: Synthesize high-quality multi-contrast magnetic resonance imaging from multi-echo acquisition using multi-task deep generative model
  publication-title: IEEE Trans. Med. Imaging
– volume: 39
  start-page: 2772
  year: 2020
  end-page: 2781
  ident: b14
  article-title: Hi-net: Hybrid-fusion network for multi-modal MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
– year: 2023
  ident: b16
  article-title: Medical image super-resolution for smart healthcare applications: A comprehensive survey
  publication-title: Inf. Fusion
– volume: 41
  start-page: 2598
  year: 2022
  end-page: 2614
  ident: b29
  article-title: ResViT: Residual vision transformers for multimodal medical image synthesis
  publication-title: IEEE Trans. Med. Imaging
– volume: 38
  start-page: 1328
  year: 2018
  end-page: 1339
  ident: b25
  article-title: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis
  publication-title: IEEE Trans. Med. Imaging
– volume: 24
  start-page: 855
  year: 2019
  end-page: 865
  ident: b12
  article-title: Bi-modality medical image synthesis using semi-supervised sequential generative adversarial networks
  publication-title: IEEE J. Biomed. Health Inform.
– start-page: 89
  year: 2017
  end-page: 98
  ident: b23
  article-title: DOTE: Dual convolutional filter learning for super-resolution and cross-modality synthesis in MRI
  publication-title: Medical Image Computing and Computer Assisted Intervention- MICCAI 2017: 20th International Conference, Quebec City, QC, Canada, September 11-13, 2017, Proceedings, Part III 20
– year: 2023
  ident: b32
  article-title: One model to synthesize them all: Multi-contrast multi-scale transformer for missing data imputation
  publication-title: IEEE Trans. Med. Imaging
– volume: 93
  start-page: 192
  year: 2023
  end-page: 208
  ident: b3
  article-title: A multi-source information fusion model for outlier detection
  publication-title: Inf. Fusion
– volume: 76
  start-page: 52
  year: 2016
  end-page: 64
  ident: b6
  article-title: Two-scale image fusion of visible and infrared images using saliency detection
  publication-title: Infrared Phys. Technol.
– volume: 38
  start-page: 2375
  year: 2019
  end-page: 2388
  ident: b19
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 11
  year: 2023
  ident: 10.1016/j.inffus.2024.102342_b35
  article-title: CT synthesis from MRI with an improved multi-scale learning network
  publication-title: Front. Phys.
– volume: vol. 27
  year: 2014
  ident: 10.1016/j.inffus.2024.102342_b18
  article-title: Generative adversarial nets
– volume: 41
  start-page: 2598
  issue: 10
  year: 2022
  ident: 10.1016/j.inffus.2024.102342_b29
  article-title: ResViT: Residual vision transformers for multimodal medical image synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2022.3167808
– year: 2021
  ident: 10.1016/j.inffus.2024.102342_b27
– year: 2023
  ident: 10.1016/j.inffus.2024.102342_b16
  article-title: Medical image super-resolution for smart healthcare applications: A comprehensive survey
  publication-title: Inf. Fusion
– start-page: 626
  year: 2018
  ident: 10.1016/j.inffus.2024.102342_b40
  article-title: 3D cGAN based cross-modality MR image synthesis for brain tumor segmentation
– volume: 40
  start-page: 1113
  issue: 4
  year: 2020
  ident: 10.1016/j.inffus.2024.102342_b24
  article-title: Multi-domain image completion for random missing input data
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3046444
– year: 2023
  ident: 10.1016/j.inffus.2024.102342_b32
  article-title: One model to synthesize them all: Multi-contrast multi-scale transformer for missing data imputation
  publication-title: IEEE Trans. Med. Imaging
– volume: 26
  start-page: 27
  issue: 1
  year: 2021
  ident: 10.1016/j.inffus.2024.102342_b30
  article-title: Multi-modality mr image synthesis via confidence-guided aggregation and cross-modality refinement
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2021.3082541
– volume: 12
  year: 2022
  ident: 10.1016/j.inffus.2024.102342_b31
  article-title: Swin transformer-based GAN for multi-modal medical image translation
  publication-title: Front. Oncol.
  doi: 10.3389/fonc.2022.942511
– volume: 40
  start-page: 1001
  issue: 3
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b38
  article-title: Effective feature learning and fusion of multimodality data using stage-wise deep neural network for dementia diagnosis
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.24428
– volume: 39
  start-page: 3089
  issue: 10
  year: 2020
  ident: 10.1016/j.inffus.2024.102342_b10
  article-title: Synthesize high-quality multi-contrast magnetic resonance imaging from multi-echo acquisition using multi-task deep generative model
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2987026
– volume: 38
  start-page: 2375
  issue: 10
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b19
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2901750
– volume: 76
  start-page: 355
  year: 2021
  ident: 10.1016/j.inffus.2024.102342_b2
  article-title: A comprehensive survey on multimodal medical signals fusion for smart healthcare systems
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.06.007
– volume: vol. 30
  year: 2017
  ident: 10.1016/j.inffus.2024.102342_b26
  article-title: Attention is all you need
– volume: 83
  start-page: 93
  year: 2022
  ident: 10.1016/j.inffus.2024.102342_b17
  article-title: Multi-source information fusion for smart health with artificial intelligence
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.03.010
– volume: 38
  start-page: 1328
  issue: 6
  year: 2018
  ident: 10.1016/j.inffus.2024.102342_b25
  article-title: 3D auto-context-based locality adaptive multi-modality GANs for PET synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2884053
– volume: 38
  start-page: 2375
  issue: 10
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b7
  article-title: Image synthesis in multi-contrast MRI with conditional generative adversarial networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2901750
– volume: 25
  start-page: 565
  issue: 5
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b15
  article-title: Smart healthcare monitoring: A voice pathology detection paradigm for smart cities
  publication-title: Multimedia Syst.
  doi: 10.1007/s00530-017-0561-x
– year: 2023
  ident: 10.1016/j.inffus.2024.102342_b33
  article-title: Multi-scale transformer network with edge-aware pre-training for cross-modality MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
– year: 2021
  ident: 10.1016/j.inffus.2024.102342_b28
– start-page: 89
  year: 2017
  ident: 10.1016/j.inffus.2024.102342_b23
  article-title: DOTE: Dual convolutional filter learning for super-resolution and cross-modality synthesis in MRI
– volume: 93
  start-page: 192
  year: 2023
  ident: 10.1016/j.inffus.2024.102342_b3
  article-title: A multi-source information fusion model for outlier detection
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2022.12.027
– volume: 76
  start-page: 52
  year: 2016
  ident: 10.1016/j.inffus.2024.102342_b6
  article-title: Two-scale image fusion of visible and infrared images using saliency detection
  publication-title: Infrared Phys. Technol.
  doi: 10.1016/j.infrared.2016.01.009
– volume: 32
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b39
  article-title: Deep multimodal multilinear fusion with high-order polynomial pooling
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 629
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b1
  article-title: Deep multi-modal latent representation learning for automated dementia diagnosis
– start-page: 127
  year: 2016
  ident: 10.1016/j.inffus.2024.102342_b5
  article-title: Whole image synthesis using a deep encoder-decoder network
– volume: 157
  year: 2023
  ident: 10.1016/j.inffus.2024.102342_b34
  article-title: CT synthesis from multi-sequence MRI using adaptive fusion network
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.106738
– volume: 76
  start-page: 323
  year: 2021
  ident: 10.1016/j.inffus.2024.102342_b4
  article-title: Image fusion meets deep learning: A survey and perspective
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.06.008
– start-page: 14
  year: 2017
  ident: 10.1016/j.inffus.2024.102342_b20
  article-title: Deep MR to CT synthesis using unpaired data
– volume: 16
  start-page: 2639
  issue: 12
  year: 2004
  ident: 10.1016/j.inffus.2024.102342_b36
  article-title: Canonical correlation analysis: An overview with application to learning methods
  publication-title: Neural Comput.
  doi: 10.1162/0899766042321814
– volume: 33
  start-page: 1147
  issue: 6
  year: 2010
  ident: 10.1016/j.inffus.2024.102342_b37
  article-title: Multiple kernel learning for dimensionality reduction
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2010.183
– ident: 10.1016/j.inffus.2024.102342_b11
– volume: 39
  start-page: 2772
  issue: 9
  year: 2020
  ident: 10.1016/j.inffus.2024.102342_b14
  article-title: Hi-net: Hybrid-fusion network for multi-modal MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2975344
– volume: 38
  start-page: 1750
  issue: 7
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b44
  article-title: Ea-GANs: Edge-aware generative adversarial networks for cross-modality MR image synthesis
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2895894
– year: 2021
  ident: 10.1016/j.inffus.2024.102342_b43
– volume: 34
  start-page: 1993
  issue: 10
  year: 2014
  ident: 10.1016/j.inffus.2024.102342_b42
  article-title: The multimodal brain tumor image segmentation benchmark (BRATS)
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2014.2377694
– start-page: 147
  year: 2018
  ident: 10.1016/j.inffus.2024.102342_b13
  article-title: Generative adversarial training for MRA image synthesis using multi-contrast MRI
– volume: 72
  start-page: 110
  year: 2021
  ident: 10.1016/j.inffus.2024.102342_b8
  article-title: Image fusion based on generative adversarial network consistent with perception
  publication-title: Inf. Fusion
  doi: 10.1016/j.inffus.2021.02.019
– ident: 10.1016/j.inffus.2024.102342_b9
  doi: 10.1117/1.JMI.6.1.014005
– volume: 24
  start-page: 855
  issue: 3
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b12
  article-title: Bi-modality medical image synthesis using semi-supervised sequential generative adversarial networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2019.2922986
– volume: 6
  start-page: 014005
  issue: 1
  year: 2019
  ident: 10.1016/j.inffus.2024.102342_b41
  article-title: Fluid-attenuated inversion recovery MRI synthesis from multisequence MRI using three-dimensional fully convolutional networks for multiple sclerosis
  publication-title: J. Med. Imaging
  doi: 10.1117/1.JMI.6.1.014005
– ident: 10.1016/j.inffus.2024.102342_b22
  doi: 10.1117/1.JMI.6.1.014005
– ident: 10.1016/j.inffus.2024.102342_b21
SSID ssj0017031
Score 2.434192
Snippet Magnetic Resonance Imaging (MRI) is a pivotal neuroimaging technique capable of generating images with various contrasts, known as multi-modal images. The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102342
SubjectTerms Internet of medical things (IoMT)
Magnetic resonance imaging (MRI)
Multi-modal medical image fusion
Smart healthcare
Title Multi-modality MRI fusion with patch complementary pre-training for internet of medical things-based smart healthcare
URI https://dx.doi.org/10.1016/j.inffus.2024.102342
Volume 107
WOSCitedRecordID wos001208236800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-6305
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017031
  issn: 1566-2535
  databaseCode: AIEXJ
  dateStart: 20000701
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIf2UHRF0w089GbQCKn9aAQpmqIOuqSAbwLFBXFgy4YtBcmP9Hs7XETLTZE2h14Eg6BISfM8nBnOPCL0XqbSsGxGpGAyIXGaxySnXJO40CLK-KFU3Er6c3Z6mk-nxZfB4GdXC3M5z-o6v7oqVv9V1NAGwjals3cQdxgUGuA3CB2uIHa4_pPgbUktWSyls7An306GujUxMRdzXYHuPXeZ5C5xfH1tiAJId1aEzTuc2TihasLuu0lJtyd8ErPsyeFmATP7IkqTPNa3cX2Fk0titDOHrJ_r1lWChJYjXxwynbVy6RdRA7_5V37euOOmht_53Gw0jEcBgrCwc8d9MBkZyunFbNGPXrA4ZLoGhZumhCWOsiRoZHcQrtephlzCMXDdUPcu8nBhfBR4n5GZYLTtvsuu_duqF3IRuzS3i9KNUppRSjfKPbTPsqQAhb8_Pjmefgr7U4b13zLx-qfvijJt5uDNp_mz0dMzZM4eo0feA8Fjh5wnaKDqp-jhJND3bp6hdhdDGDCEnSSxwRC2GMI7GMJ9DGEAAO4whJcaewzhPoawxRDeYug5-vHh-OzoI_HncxABjmYDncFg1lmR8yyPMqUOWSUrKkRUpVQyKnMJ7jcVNFGUJ-DXUqrAmdDcECBVKdi1L9BevazVS4SrKBei0qAdNItBq1RpRRV8eCk006lkByjqPmApPHm9ead5eZv4DhAJd60cectf-medbEpvgDrDsgTA3XrnqzvO9Bo92P4b3qC9Zt2qt-i-uGxmm_U7j7Zf8bOtbg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-modality+MRI+fusion+with+patch+complementary+pre-training+for+internet+of+medical+things-based+smart+healthcare&rft.jtitle=Information+fusion&rft.au=Lyu%2C+Jun&rft.au=Chen%2C+Xiudong&rft.au=AlQahtani%2C+Salman+A.&rft.au=Hossain%2C+M.+Shamim&rft.date=2024-07-01&rft.issn=1566-2535&rft.volume=107&rft.spage=102342&rft_id=info:doi/10.1016%2Fj.inffus.2024.102342&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_inffus_2024_102342
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1566-2535&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1566-2535&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1566-2535&client=summon