An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels
•Designing an ensemble hierarchical clustering framework based on cluster consensus selection approach.•Aggregation of primary clusters using the clusters clustering technique as a consensus function.•Development of NMI robustness measure for calculating merit at cluster and partition levels.•Defini...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition Jg. 136; S. 109255 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.04.2023
|
| Schlagworte: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Designing an ensemble hierarchical clustering framework based on cluster consensus selection approach.•Aggregation of primary clusters using the clusters clustering technique as a consensus function.•Development of NMI robustness measure for calculating merit at cluster and partition levels.•Defining an innovative criterion for calculating similarity based on merit scores and clusters size.•Perform extensive experiments to demonstrate the efficacy of the proposed clustering algorithm and give credence to our idea.
Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN. |
|---|---|
| AbstractList | •Designing an ensemble hierarchical clustering framework based on cluster consensus selection approach.•Aggregation of primary clusters using the clusters clustering technique as a consensus function.•Development of NMI robustness measure for calculating merit at cluster and partition levels.•Defining an innovative criterion for calculating similarity based on merit scores and clusters size.•Perform extensive experiments to demonstrate the efficacy of the proposed clustering algorithm and give credence to our idea.
Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN. |
| ArticleNumber | 109255 |
| Author | Gao, Rui Huang, Qirui Akhavan, Hoda |
| Author_xml | – sequence: 1 givenname: Qirui surname: Huang fullname: Huang, Qirui email: qirui@nyist.edu.cn organization: School of Information Engineering, Nanyang Institute of Technology, Nanyang, Henan 473004, China – sequence: 2 givenname: Rui surname: Gao fullname: Gao, Rui organization: Academic Affairs Office, Dongying Vocational Institute, Dongying, Shandong 257000, China – sequence: 3 givenname: Hoda surname: Akhavan fullname: Akhavan, Hoda email: akhavanhoda121@gmail.com organization: Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran |
| BookMark | eNqFkM1KAzEUhYNUsK2-gYu8wNT8dDodF0Ip_kHBjS4l3CR32pTMTEliwbc3ZXTjQlcX7rnncM83IaOu75CQa85mnPHFzX52gGT67UwwIfKqFmV5RsZ8Wcmi5HMxImPGJC-kYPKCTGLcM8arLIzJ-6qj2EVstUe6cxggmJ0z4KnxHzFhcN2Wgt_2waVdSzVEtLTvaJuVFCmknzsKnaUHCMkll3WPR_Txkpw34CNefc8peXu4f10_FZuXx-f1alMYyRap0LU2QmhR1XzJrRVopa0Fa5jOFTSXJUJtqwpLg1DaObIKWKPRVsAXgKWUU3I75JrQxxiwUcYlOD2SAjivOFMnUGqvBlDqBEoNoLJ5_st8CK6F8Pmf7W6w5Z54zORUNA47g9YFNEnZ3v0d8AW4bYkV |
| CitedBy_id | crossref_primary_10_1016_j_commatsci_2025_114019 crossref_primary_10_1007_s10489_025_06461_x crossref_primary_10_1016_j_ijar_2023_108968 crossref_primary_10_1007_s00357_025_09506_5 crossref_primary_10_3390_a16050245 crossref_primary_10_1007_s40031_025_01241_0 crossref_primary_10_1016_j_engappai_2024_107873 crossref_primary_10_1109_TAI_2024_3382248 crossref_primary_10_1016_j_patcog_2024_110739 crossref_primary_10_1007_s00357_024_09489_9 crossref_primary_10_3390_app13031246 crossref_primary_10_1016_j_patrec_2025_05_025 crossref_primary_10_1016_j_aei_2024_102799 crossref_primary_10_1371_journal_pone_0321847 crossref_primary_10_1016_j_patcog_2024_111261 crossref_primary_10_1007_s10489_024_05654_0 crossref_primary_10_1007_s10586_024_04822_8 crossref_primary_10_1007_s10115_024_02272_7 crossref_primary_10_1007_s12633_024_03148_9 crossref_primary_10_1016_j_patcog_2024_110389 crossref_primary_10_1109_TETCI_2024_3367811 crossref_primary_10_1007_s12633_025_03338_z crossref_primary_10_1007_s11063_024_11618_9 crossref_primary_10_1109_TKDE_2024_3401075 crossref_primary_10_1007_s10489_025_06376_7 crossref_primary_10_3390_fractalfract7100733 crossref_primary_10_1109_TFUZZ_2024_3456091 crossref_primary_10_3390_rs17050853 crossref_primary_10_1109_TNSM_2025_3539830 |
| Cites_doi | 10.1016/j.patcog.2021.108061 10.1016/j.engappai.2014.12.005 10.1016/j.patcog.2020.107522 10.1007/s00500-020-05409-2 10.1016/j.artint.2020.103237 10.1007/s10489-018-1332-x 10.1016/j.engappai.2016.10.005 10.1016/j.jksuci.2022.04.010 10.29252/jsdp.15.4.17 10.3390/app10051891 10.1002/spe.2641 10.1007/s10462-018-9642-2 10.1007/s10489-021-02624-8 10.1007/s40745-015-0040-1 10.1007/s10922-020-09537-w 10.1080/09540091.2020.1866496 10.1016/j.fss.2020.03.008 10.1002/cpe.5359 10.1016/j.scs.2019.101958 10.1016/j.patcog.2022.108772 10.1016/j.comnet.2020.107755 10.1089/big.2021.0254 10.1007/s11277-021-08614-w 10.3390/su14052520 10.2174/1574893616999210128175715 10.1016/j.neucom.2021.07.056 10.3233/IDA-2008-12603 10.1080/0952813X.2013.813974 10.1142/S021821302150007X 10.1007/s10462-020-09862-1 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2022.109255 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2022_109255 S0031320322007348 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-b9bc22b279181dd2ed3d920f0b187b135ea9d77e5cea5d4e07a0fbed7a16ae533 |
| ISICitedReferencesCount | 31 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000995833300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Tue Nov 18 22:08:46 EST 2025 Sat Nov 29 07:27:53 EST 2025 Fri Feb 23 02:39:24 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Cluster consensus Robustness measure Hyper-cluster Merit level Ensemble clustering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-b9bc22b279181dd2ed3d920f0b187b135ea9d77e5cea5d4e07a0fbed7a16ae533 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2022_109255 crossref_primary_10_1016_j_patcog_2022_109255 elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109255 |
| PublicationCentury | 2000 |
| PublicationDate | April 2023 2023-04-00 |
| PublicationDateYYYYMMDD | 2023-04-01 |
| PublicationDate_xml | – month: 04 year: 2023 text: April 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Abbasi, Nejatian, Parvin, Rezaie, Bagherifard (bib0007) 2019; 52 Lu, Yang, Wang (bib0020) 2013 Bagherinia, Minaei-Bidgoli, Hossinzadeh, Parvin (bib0011) 2019; 49 Mahmoudi, Akbarzadeh, Parvin, Nejatian, Rezaie, Alinejad-Rokny (bib0017) 2021; 54 Azimirad, Sotubadi, Nasirlou (bib0045) 2021 Ma, Zhang, Guo, Wang, Qian, Al-Nabhan (bib0037) 2021; 462 Wolpert, Macready (bib0030) 1995 Yu, Liu, Lin, Wu, Zhang (bib0031) 2022; 130 Law, Topchy, Jain (bib0035) 2004 Thrun, Ultsch (bib0039) 2021; 290 Akbari, Dahlan, Ibrahim, Alizadeh (bib0001) 2015; 39 Shin, Sohn (bib0038) 2001; 27 Rezaee, Sheikhabad, Beygi (bib0047) 2021; 187 Sun, Zhang, Trik (bib0006) 2022 Berahmand, Mohammadi, Saberi-Movahed, Li, Xu (bib0010) 2022 Li, Rezaeipanah, El Din (bib0013) 2022; 34 Xu, Tian (bib0023) 2015; 2 Wang, Zhao, Li, Chen, Li, Shen (bib0034) 2021; 119 Radhoush, Shabaninia, Lin (bib0042) 2018 Lutov, Khayati, Cudré-Mauroux (bib0015) 2019 Sabzi, Kamarei, Haghighi, Mahé (bib0004) 2020 Niu, Khozouie, Parvin, Alinejad-Rokny, Beheshti, Mahmoudi (bib0027) 2020; 10 Pakdehi, Daneshpour (bib0018) 2019; 15 Banerjee, Pujari, Panigrahi, Pati, Nayak, Weng (bib0024) 2021; 33 Nasiri, Berahmand, Samei, Li (bib0008) 2022; 10 Li, Qian, Wang, Dang, Liu (bib0036) 2018 Dua, Graff (bib0040) 2019; 25 Yousefnezhad, Reihanian, Zhang, Minaei-Bidgoli (bib0009) 2016; 56 Rafiee, Mirjalily (bib0044) 2020; 28 Mirzaei, Rahmati, Ahmadi (bib0029) 2008; 12 Chenarlogh, Razzazi, Mohammadyahya (bib0002) 2019 Affeldt, Labiod, Nadif (bib0032) 2020; 108 Akhavan, Manoochehri (bib0041) 2022 Tofighy, Rahmanian, Ghobaei-Arani (bib0003) 2018; 48 Bagherinia, Minaei-Bidgoli, Hosseinzadeh, Parvin (bib0016) 2021; 413 Ghobaei-Arani (bib0005) 2021; 25 Sun, Zhou, Yang (bib0028) 2020; 53 Chen, Bagherinia, Minaei-Bidgoli, Parvin, Pho (bib0026) 2021; 30 Rezaeipanah, Amiri, Nazari, Mojarad, Parvin (bib0012) 2021; 120 Radhoush, Bahramipanah, Nehrir, Shahooei (bib0043) 2022; 14 Alizadeh, Minaei-Bidgoli, Parvin (bib0019) 2014; 26 Dogan, Birant (bib0021) 2022; 52 Yang, Sun, Wu (bib0025) 2019; 31 Mozaffari, Houmansadr, Venkataramani (bib0046) 2019 Mojarad, Sarhangnia, Rezaeipanah, Parvin, Nejatian (bib0014) 2021; 16 Seldin, Tishby (bib0033) 2010; 11 Ahn, Jung, Chae, Oh, Kim, Kim (bib0022) 2021 Chen (10.1016/j.patcog.2022.109255_bib0026) 2021; 30 Rafiee (10.1016/j.patcog.2022.109255_bib0044) 2020; 28 Affeldt (10.1016/j.patcog.2022.109255_bib0032) 2020; 108 Rezaee (10.1016/j.patcog.2022.109255_bib0047) 2021; 187 Sun (10.1016/j.patcog.2022.109255_bib0028) 2020; 53 Sabzi (10.1016/j.patcog.2022.109255_bib0004) 2020 Lutov (10.1016/j.patcog.2022.109255_bib0015) 2019 Law (10.1016/j.patcog.2022.109255_bib0035) 2004 Alizadeh (10.1016/j.patcog.2022.109255_bib0019) 2014; 26 Ghobaei-Arani (10.1016/j.patcog.2022.109255_bib0005) 2021; 25 Shin (10.1016/j.patcog.2022.109255_bib0038) 2001; 27 Yang (10.1016/j.patcog.2022.109255_bib0025) 2019; 31 Ma (10.1016/j.patcog.2022.109255_bib0037) 2021; 462 Mahmoudi (10.1016/j.patcog.2022.109255_bib0017) 2021; 54 Mojarad (10.1016/j.patcog.2022.109255_bib0014) 2021; 16 Yu (10.1016/j.patcog.2022.109255_bib0031) 2022; 130 Nasiri (10.1016/j.patcog.2022.109255_bib0008) 2022; 10 Bagherinia (10.1016/j.patcog.2022.109255_bib0011) 2019; 49 Rezaeipanah (10.1016/j.patcog.2022.109255_bib0012) 2021; 120 Lu (10.1016/j.patcog.2022.109255_bib0020) 2013 Ahn (10.1016/j.patcog.2022.109255_bib0022) 2021 Mirzaei (10.1016/j.patcog.2022.109255_bib0029) 2008; 12 Akhavan (10.1016/j.patcog.2022.109255_bib0041) 2022 Xu (10.1016/j.patcog.2022.109255_bib0023) 2015; 2 Banerjee (10.1016/j.patcog.2022.109255_bib0024) 2021; 33 Bagherinia (10.1016/j.patcog.2022.109255_bib0016) 2021; 413 Wolpert (10.1016/j.patcog.2022.109255_bib0030) 1995 Wang (10.1016/j.patcog.2022.109255_bib0034) 2021; 119 Mozaffari (10.1016/j.patcog.2022.109255_bib0046) 2019 Yousefnezhad (10.1016/j.patcog.2022.109255_bib0009) 2016; 56 Abbasi (10.1016/j.patcog.2022.109255_bib0007) 2019; 52 Seldin (10.1016/j.patcog.2022.109255_bib0033) 2010; 11 Li (10.1016/j.patcog.2022.109255_bib0013) 2022; 34 Dogan (10.1016/j.patcog.2022.109255_bib0021) 2022; 52 Niu (10.1016/j.patcog.2022.109255_bib0027) 2020; 10 Berahmand (10.1016/j.patcog.2022.109255_bib0010) 2022 Thrun (10.1016/j.patcog.2022.109255_bib0039) 2021; 290 Radhoush (10.1016/j.patcog.2022.109255_bib0042) 2018 Radhoush (10.1016/j.patcog.2022.109255_bib0043) 2022; 14 Pakdehi (10.1016/j.patcog.2022.109255_bib0018) 2019; 15 Tofighy (10.1016/j.patcog.2022.109255_bib0003) 2018; 48 Chenarlogh (10.1016/j.patcog.2022.109255_bib0002) 2019 Li (10.1016/j.patcog.2022.109255_bib0036) 2018 Azimirad (10.1016/j.patcog.2022.109255_bib0045) 2021 Sun (10.1016/j.patcog.2022.109255_bib0006) 2022 Akbari (10.1016/j.patcog.2022.109255_bib0001) 2015; 39 Dua (10.1016/j.patcog.2022.109255_bib0040) 2019; 25 |
| References_xml | – start-page: 179 year: 2013 end-page: 189 ident: bib0020 article-title: Selective clustering ensemble based on covariance publication-title: International Workshop on Multiple Classifier Systems – volume: 10 start-page: 1891 year: 2020 ident: bib0027 article-title: An ensemble of locally reliable cluster solutions publication-title: Appl. Sci. – volume: 28 start-page: 1279 year: 2020 end-page: 1315 ident: bib0044 article-title: Distributed network coding-aware routing protocol incorporating fuzzy-logic-based forwarders in wireless Ad hoc networks publication-title: J. Netw. Syst. Manag. – volume: 49 start-page: 1724 year: 2019 end-page: 1747 ident: bib0011 article-title: Elite fuzzy clustering ensemble based on clustering diversity and quality measures publication-title: Appl. Intell. – volume: 27 start-page: 47 year: 2001 end-page: 53 ident: bib0038 article-title: Comparing classification accuracy of ensemble and clustering algorithms based on Taguchi design publication-title: J. Korean Inst. Ind. Eng. – start-page: 2791 year: 2021 end-page: 2800 ident: bib0022 article-title: IDEA: integrating divisive and ensemble-agglomerate hierarchical clustering framework for arbitrary shape data publication-title: Proceedings of the IEEE International Conference on Big Data (Big Data) – volume: 30 year: 2021 ident: bib0026 article-title: Fuzzy clustering ensemble considering cluster dependability publication-title: Int. J. Artif. Intell. Tools – volume: 12 start-page: 549 year: 2008 end-page: 571 ident: bib0029 article-title: A new method for hierarchical clustering combination publication-title: Intell. Data Anal. – year: 2004 ident: bib0035 article-title: Multiobjective data clustering publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR – volume: 14 start-page: 2520 year: 2022 ident: bib0043 article-title: A review on state estimation techniques in active distribution networks: existing practices and their challenges publication-title: Sustainability – start-page: 1 year: 2018 end-page: 6 ident: bib0042 article-title: Distribution system state estimation with measurement data using different compression methods publication-title: Proceedings of the IEEE Texas Power and Energy Conference (TPEC) – volume: 11 start-page: 3595 year: 2010 end-page: 3646 ident: bib0033 article-title: PAC-Bayesian analysis of co-clustering and beyond publication-title: J. Mach. Learn. Res. – volume: 25 start-page: 27 year: 2019 ident: bib0040 article-title: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: university of California publication-title: Sch. Inf. Comput. Sci. – year: 1995 ident: bib0030 article-title: No Free Lunch Theorems for Search – volume: 120 start-page: 3293 year: 2021 end-page: 3314 ident: bib0012 article-title: An energy-aware hybrid approach for wireless sensor networks using re-clustering-based multi-hop routing publication-title: Wirel. Pers. Commun. – volume: 108 year: 2020 ident: bib0032 article-title: Spectral clustering via ensemble deep autoencoder learning (SC-EDAE) publication-title: Pattern Recognit. – volume: 290 year: 2021 ident: bib0039 article-title: Swarm intelligence for self-organized clustering publication-title: Artif. Intell. – start-page: 192 year: 2021 end-page: 197 ident: bib0045 article-title: Vision-based learning: a novel machine learning method based on convolutional neural networks and spiking neural networks publication-title: Proceedings of the 9th RSI International Conference on Robotics and Mechatronics (ICRoM) – start-page: 1 year: 2020 end-page: 5 ident: bib0004 article-title: Analysis and design of X-band LNA using parallel technique publication-title: Proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE) – volume: 119 year: 2021 ident: bib0034 article-title: Ensemble selection with joint spectral clustering and structural sparsity publication-title: Pattern Recognit. – volume: 25 start-page: 3813 year: 2021 end-page: 3830 ident: bib0005 article-title: A workload clustering based resource provisioning mechanism using biogeography based optimization technique in the cloud based systems publication-title: Soft Comput. – volume: 48 start-page: 2257 year: 2018 end-page: 2277 ident: bib0003 article-title: An ensemble CPU load prediction algorithm using a Bayesian information criterion and smooth filters in a cloud computing environment publication-title: Softw. Pract. Exp. – start-page: 1 year: 2019 end-page: 8 ident: bib0015 article-title: Accuracy evaluation of overlapping and multi-resolution clustering algorithms on large datasets publication-title: Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp) – volume: 413 start-page: 1 year: 2021 end-page: 28 ident: bib0016 article-title: Reliability-based fuzzy clustering ensemble publication-title: Fuzzy Sets Syst. – start-page: 1 year: 2019 end-page: 11 ident: bib0002 article-title: A multi-view human action recognition system in limited data case using multi-stream CNN publication-title: Proceedings of the 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS) – volume: 16 start-page: 749 year: 2021 end-page: 764 ident: bib0014 article-title: Modeling hereditary disease behavior using an innovative similarity criterion and ensemble clustering publication-title: Curr. Bioinform. – start-page: 1 year: 2019 end-page: 6 ident: bib0046 article-title: Blocking-resilient communications in information-centric networks using router redirection publication-title: Proceedings of the IEEE Globecom Workshops (GC Wkshps) – volume: 462 start-page: 412 year: 2021 end-page: 425 ident: bib0037 article-title: Semi-supervised selective clustering ensemble based on constraint information publication-title: Neurocomputing – volume: 33 start-page: 623 year: 2021 end-page: 644 ident: bib0024 article-title: A new method for weighted ensemble clustering and coupled ensemble selection publication-title: Conn Sci. – year: 2022 ident: bib0010 article-title: Graph regularized nonnegative matrix factorization for community detection in attributed networks publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 26 start-page: 127 year: 2014 end-page: 150 ident: bib0019 article-title: To improve the quality of cluster ensembles by selecting a subset of base clusters publication-title: J. Exp. Theor. Artif. Intell. – volume: 2 start-page: 165 year: 2015 end-page: 193 ident: bib0023 article-title: A comprehensive survey of clustering algorithms publication-title: Ann. Data Sci. – volume: 31 start-page: e5359 year: 2019 ident: bib0025 article-title: Constraint projections for semi-supervised spectral clustering ensemble publication-title: Concurr. Comput. Pract. Exp. – volume: 15 start-page: 17 year: 2019 end-page: 30 ident: bib0018 article-title: Cluster ensemble selection using voting publication-title: Signal Data Process. – volume: 52 start-page: 5537 year: 2022 end-page: 5560 ident: bib0021 article-title: K-centroid link: a novel hierarchical clustering linkage method publication-title: Appl. Intell. – volume: 54 start-page: 639 year: 2021 end-page: 665 ident: bib0017 article-title: Consensus function based on cluster-wise two level clustering publication-title: Artif. Intell. Rev. – start-page: 1 year: 2022 end-page: 10 ident: bib0041 article-title: Sensory data fusion using machine learning methods for publication-title: Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS) – volume: 10 start-page: 138 year: 2022 end-page: 150 ident: bib0008 article-title: Impact of centrality measures on the common neighbors in link prediction for multiplex networks publication-title: Big Data – volume: 130 year: 2022 ident: bib0031 article-title: Auto-weighted sample-level fusion with anchors for incomplete multi-view clustering publication-title: Pattern Recognit. – volume: 187 year: 2021 ident: bib0047 article-title: Quality of transmission-aware control plane performance analysis for elastic optical networks publication-title: Comput. Netw. – start-page: 1 year: 2022 end-page: 22 ident: bib0006 article-title: PBPHS: a profile-based predictive handover strategy for 5G networks publication-title: Cybern. Syst. – volume: 56 start-page: 260 year: 2016 end-page: 272 ident: bib0009 article-title: A new selection strategy for selective cluster ensemble based on diversity and independency publication-title: Eng. Appl. Artif. Intell. – volume: 52 start-page: 1311 year: 2019 end-page: 1340 ident: bib0007 article-title: Clustering ensemble selection considering quality and diversity publication-title: Artif. Intell. Rev. – year: 2018 ident: bib0036 article-title: Cluster's quality evaluation and selective clustering ensemble publication-title: ACM Trans. KN – volume: 39 start-page: 146 year: 2015 end-page: 156 ident: bib0001 article-title: Hierarchical cluster ensemble selection publication-title: Eng. Appl. Artif. Intell. – volume: 34 start-page: 3828 year: 2022 end-page: 3842 ident: bib0013 article-title: An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement publication-title: J. King Saud Univ. Comput. Inf. Sci. – volume: 53 year: 2020 ident: bib0028 article-title: An ensemble clustering based framework for household load profiling and driven factors identification publication-title: Sustain. Cities Soc. – start-page: 1 year: 2020 ident: 10.1016/j.patcog.2022.109255_bib0004 article-title: Analysis and design of X-band LNA using parallel technique – volume: 119 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0034 article-title: Ensemble selection with joint spectral clustering and structural sparsity publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108061 – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2022.109255_bib0002 article-title: A multi-view human action recognition system in limited data case using multi-stream CNN – start-page: 1 year: 2022 ident: 10.1016/j.patcog.2022.109255_bib0006 article-title: PBPHS: a profile-based predictive handover strategy for 5G networks publication-title: Cybern. Syst. – volume: 39 start-page: 146 year: 2015 ident: 10.1016/j.patcog.2022.109255_bib0001 article-title: Hierarchical cluster ensemble selection publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2014.12.005 – year: 2022 ident: 10.1016/j.patcog.2022.109255_bib0010 article-title: Graph regularized nonnegative matrix factorization for community detection in attributed networks publication-title: IEEE Trans. Netw. Sci. Eng. – volume: 108 year: 2020 ident: 10.1016/j.patcog.2022.109255_bib0032 article-title: Spectral clustering via ensemble deep autoencoder learning (SC-EDAE) publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107522 – start-page: 1 year: 2022 ident: 10.1016/j.patcog.2022.109255_bib0041 article-title: Sensory data fusion using machine learning methods for in-situ defect registration in additive manufacturing: a review – start-page: 1 year: 2018 ident: 10.1016/j.patcog.2022.109255_bib0042 article-title: Distribution system state estimation with measurement data using different compression methods – volume: 25 start-page: 3813 issue: 5 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0005 article-title: A workload clustering based resource provisioning mechanism using biogeography based optimization technique in the cloud based systems publication-title: Soft Comput. doi: 10.1007/s00500-020-05409-2 – year: 2004 ident: 10.1016/j.patcog.2022.109255_bib0035 article-title: Multiobjective data clustering – volume: 290 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0039 article-title: Swarm intelligence for self-organized clustering publication-title: Artif. Intell. doi: 10.1016/j.artint.2020.103237 – start-page: 2791 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0022 article-title: IDEA: integrating divisive and ensemble-agglomerate hierarchical clustering framework for arbitrary shape data – volume: 49 start-page: 1724 issue: 5 year: 2019 ident: 10.1016/j.patcog.2022.109255_bib0011 article-title: Elite fuzzy clustering ensemble based on clustering diversity and quality measures publication-title: Appl. Intell. doi: 10.1007/s10489-018-1332-x – volume: 56 start-page: 260 year: 2016 ident: 10.1016/j.patcog.2022.109255_bib0009 article-title: A new selection strategy for selective cluster ensemble based on diversity and independency publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2016.10.005 – start-page: 179 year: 2013 ident: 10.1016/j.patcog.2022.109255_bib0020 article-title: Selective clustering ensemble based on covariance – year: 1995 ident: 10.1016/j.patcog.2022.109255_bib0030 – volume: 34 start-page: 3828 issue: 6 year: 2022 ident: 10.1016/j.patcog.2022.109255_bib0013 article-title: An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement publication-title: J. King Saud Univ. Comput. Inf. Sci. doi: 10.1016/j.jksuci.2022.04.010 – volume: 15 start-page: 17 issue: 4 year: 2019 ident: 10.1016/j.patcog.2022.109255_bib0018 article-title: Cluster ensemble selection using voting publication-title: Signal Data Process. doi: 10.29252/jsdp.15.4.17 – volume: 10 start-page: 1891 issue: 5 year: 2020 ident: 10.1016/j.patcog.2022.109255_bib0027 article-title: An ensemble of locally reliable cluster solutions publication-title: Appl. Sci. doi: 10.3390/app10051891 – volume: 25 start-page: 27 year: 2019 ident: 10.1016/j.patcog.2022.109255_bib0040 article-title: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: university of California publication-title: Sch. Inf. Comput. Sci. – volume: 48 start-page: 2257 issue: 12 year: 2018 ident: 10.1016/j.patcog.2022.109255_bib0003 article-title: An ensemble CPU load prediction algorithm using a Bayesian information criterion and smooth filters in a cloud computing environment publication-title: Softw. Pract. Exp. doi: 10.1002/spe.2641 – volume: 52 start-page: 1311 issue: 2 year: 2019 ident: 10.1016/j.patcog.2022.109255_bib0007 article-title: Clustering ensemble selection considering quality and diversity publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-018-9642-2 – volume: 52 start-page: 5537 issue: 5 year: 2022 ident: 10.1016/j.patcog.2022.109255_bib0021 article-title: K-centroid link: a novel hierarchical clustering linkage method publication-title: Appl. Intell. doi: 10.1007/s10489-021-02624-8 – volume: 2 start-page: 165 issue: 2 year: 2015 ident: 10.1016/j.patcog.2022.109255_bib0023 article-title: A comprehensive survey of clustering algorithms publication-title: Ann. Data Sci. doi: 10.1007/s40745-015-0040-1 – volume: 28 start-page: 1279 issue: 4 year: 2020 ident: 10.1016/j.patcog.2022.109255_bib0044 article-title: Distributed network coding-aware routing protocol incorporating fuzzy-logic-based forwarders in wireless Ad hoc networks publication-title: J. Netw. Syst. Manag. doi: 10.1007/s10922-020-09537-w – volume: 33 start-page: 623 issue: 3 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0024 article-title: A new method for weighted ensemble clustering and coupled ensemble selection publication-title: Conn Sci. doi: 10.1080/09540091.2020.1866496 – volume: 413 start-page: 1 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0016 article-title: Reliability-based fuzzy clustering ensemble publication-title: Fuzzy Sets Syst. doi: 10.1016/j.fss.2020.03.008 – volume: 31 start-page: e5359 issue: 20 year: 2019 ident: 10.1016/j.patcog.2022.109255_bib0025 article-title: Constraint projections for semi-supervised spectral clustering ensemble publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5359 – volume: 53 year: 2020 ident: 10.1016/j.patcog.2022.109255_bib0028 article-title: An ensemble clustering based framework for household load profiling and driven factors identification publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2019.101958 – volume: 130 year: 2022 ident: 10.1016/j.patcog.2022.109255_bib0031 article-title: Auto-weighted sample-level fusion with anchors for incomplete multi-view clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108772 – volume: 187 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0047 article-title: Quality of transmission-aware control plane performance analysis for elastic optical networks publication-title: Comput. Netw. doi: 10.1016/j.comnet.2020.107755 – volume: 10 start-page: 138 issue: 2 year: 2022 ident: 10.1016/j.patcog.2022.109255_bib0008 article-title: Impact of centrality measures on the common neighbors in link prediction for multiplex networks publication-title: Big Data doi: 10.1089/big.2021.0254 – volume: 120 start-page: 3293 issue: 4 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0012 article-title: An energy-aware hybrid approach for wireless sensor networks using re-clustering-based multi-hop routing publication-title: Wirel. Pers. Commun. doi: 10.1007/s11277-021-08614-w – volume: 14 start-page: 2520 issue: 5 year: 2022 ident: 10.1016/j.patcog.2022.109255_bib0043 article-title: A review on state estimation techniques in active distribution networks: existing practices and their challenges publication-title: Sustainability doi: 10.3390/su14052520 – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2022.109255_bib0015 article-title: Accuracy evaluation of overlapping and multi-resolution clustering algorithms on large datasets – volume: 16 start-page: 749 issue: 5 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0014 article-title: Modeling hereditary disease behavior using an innovative similarity criterion and ensemble clustering publication-title: Curr. Bioinform. doi: 10.2174/1574893616999210128175715 – volume: 462 start-page: 412 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0037 article-title: Semi-supervised selective clustering ensemble based on constraint information publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.07.056 – start-page: 192 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0045 article-title: Vision-based learning: a novel machine learning method based on convolutional neural networks and spiking neural networks – volume: 12 start-page: 549 issue: 6 year: 2008 ident: 10.1016/j.patcog.2022.109255_bib0029 article-title: A new method for hierarchical clustering combination publication-title: Intell. Data Anal. doi: 10.3233/IDA-2008-12603 – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2022.109255_bib0046 article-title: Blocking-resilient communications in information-centric networks using router redirection – volume: 26 start-page: 127 issue: 1 year: 2014 ident: 10.1016/j.patcog.2022.109255_bib0019 article-title: To improve the quality of cluster ensembles by selecting a subset of base clusters publication-title: J. Exp. Theor. Artif. Intell. doi: 10.1080/0952813X.2013.813974 – volume: 11 start-page: 3595 issue: 12 year: 2010 ident: 10.1016/j.patcog.2022.109255_bib0033 article-title: PAC-Bayesian analysis of co-clustering and beyond publication-title: J. Mach. Learn. Res. – volume: 27 start-page: 47 issue: 1 year: 2001 ident: 10.1016/j.patcog.2022.109255_bib0038 article-title: Comparing classification accuracy of ensemble and clustering algorithms based on Taguchi design publication-title: J. Korean Inst. Ind. Eng. – year: 2018 ident: 10.1016/j.patcog.2022.109255_bib0036 article-title: Cluster's quality evaluation and selective clustering ensemble publication-title: ACM Trans. KN – volume: 30 issue: 02 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0026 article-title: Fuzzy clustering ensemble considering cluster dependability publication-title: Int. J. Artif. Intell. Tools doi: 10.1142/S021821302150007X – volume: 54 start-page: 639 issue: 1 year: 2021 ident: 10.1016/j.patcog.2022.109255_bib0017 article-title: Consensus function based on cluster-wise two level clustering publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-020-09862-1 |
| SSID | ssj0017142 |
| Score | 2.5397995 |
| Snippet | •Designing an ensemble hierarchical clustering framework based on cluster consensus selection approach.•Aggregation of primary clusters using the clusters... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 109255 |
| SubjectTerms | Cluster consensus Ensemble clustering Hyper-cluster Merit level Robustness measure |
| Title | An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels |
| URI | https://dx.doi.org/10.1016/j.patcog.2022.109255 |
| Volume | 136 |
| WOSCitedRecordID | wos000995833300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9wwFBZt0kMv3UvTDR16CwrW4pF1NCVlWkpISwpzKUa25GTSiT3MeEp-fp8We5ympM2hGIwRkmz8Pp7e_hB6BzJCBtpOQjJVayLSUhA9oZRMbCrKOuGpNL5ryWd5dJTNZuo4xs-vfTsB2TTZ5aVa_ldSwxgQ26XO3oLcw6YwAM9AdLgD2eH-T4TPm31QTe2FS4lyja69q8CXAVlsXFUEn5W4OG1X8-7sYt-dYsZ5DJznplu73MY4L5QQcC_wEFm46KL1WJY99qU5XTpMjEHaevSnm2iG_jJfbeZDjI_2dtmv25H8x5mOnqhpG20D0QTB-ChyJbJVTglnCb_CVvmYMdJEsVCP9xrPDuaD84MlnD3tKajsjB1sp18tkf3b0TUEFPaxaudF2KVwuxRhl7tol8lUARPczT8ezj4NTiZJRSgmH7--z6z04X_Xv-bPkstIGjl5hB5ENQLngfyP0R3bPEEP-xYdOHLsp-h73uAeDXiMBrxFAx7QgD0acNvggAasu34eBjTgAQ04oOEZ-vbh8OT9lMSOGqQC1bAjpSorxkomFQh2xjBruFEsqZOSZrKkPLVaGSltWlmdGmETqZO6tEZqOtEWNIPnaKdpG_sCYaFpDZeAZZWwNVNasNopD4rpVNd6D_H-bxVVLDfvup4siptotYfIsGoZyq38Zb7sCVFEkTGIggWg68aVL2_5plfo_gB98RrtdKuNfYPuVT-7-Xr1NkLrF2R8kQo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+hierarchical+clustering+algorithm+based+on+merits+at+cluster+and+partition+levels&rft.jtitle=Pattern+recognition&rft.au=Huang%2C+Qirui&rft.au=Gao%2C+Rui&rft.au=Akhavan%2C+Hoda&rft.date=2023-04-01&rft.issn=0031-3203&rft.volume=136&rft.spage=109255&rft_id=info:doi/10.1016%2Fj.patcog.2022.109255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_109255 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |