An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels

•Designing an ensemble hierarchical clustering framework based on cluster consensus selection approach.•Aggregation of primary clusters using the clusters clustering technique as a consensus function.•Development of NMI robustness measure for calculating merit at cluster and partition levels.•Defini...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 136; S. 109255
Hauptverfasser: Huang, Qirui, Gao, Rui, Akhavan, Hoda
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.04.2023
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Designing an ensemble hierarchical clustering framework based on cluster consensus selection approach.•Aggregation of primary clusters using the clusters clustering technique as a consensus function.•Development of NMI robustness measure for calculating merit at cluster and partition levels.•Defining an innovative criterion for calculating similarity based on merit scores and clusters size.•Perform extensive experiments to demonstrate the efficacy of the proposed clustering algorithm and give credence to our idea. Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN.
AbstractList •Designing an ensemble hierarchical clustering framework based on cluster consensus selection approach.•Aggregation of primary clusters using the clusters clustering technique as a consensus function.•Development of NMI robustness measure for calculating merit at cluster and partition levels.•Defining an innovative criterion for calculating similarity based on merit scores and clusters size.•Perform extensive experiments to demonstrate the efficacy of the proposed clustering algorithm and give credence to our idea. Ensemble clustering has emerged as a combination of several basic clustering algorithms to achieve high quality final clustering. However, this technique is challenging due to the complexities in primary clusters such as overlapping, vagueness, instability and uncertainty. Typically, ensemble clustering uses all the primary clusters into partitions for consensus, where the merits of a cluster or a partition can be considered to improve the quality of the consensus. In general, the robustness of a partition may be poorly measured, while having some high-quality clusters. Inspired by the evaluation of cluster and partition, this paper proposes an ensemble hierarchical clustering algorithm based on the cluster consensus selection approach. Here, the selection of a subset of primary clusters from partitions based on their merit level is emphasized. Merit level is defined using the development of Normalized Mutual Information measure. Clusters of basic clustering algorithms that satisfy the predefined threshold of this measure are selected to participate in the final consensus. In addition, the consensus of the selected primary clusters to create the final clusters is performed based on the clusters clustering technique. In this technique, the selected primary clusters are re-clustered to create hyper-clusters. Finally, the final clusters are formed by assigning instances to hyper-clusters with the highest similarity. Here, an innovative criterion based on merit and cluster size for defining similarity is presented. The performance of the proposed algorithm has been proven by extensive experiments on real-world datasets from the UCI repository compared to state-of-the-art algorithms such as CPDM, ENMI, IDEA, CFTLC and SSCEN.
ArticleNumber 109255
Author Gao, Rui
Huang, Qirui
Akhavan, Hoda
Author_xml – sequence: 1
  givenname: Qirui
  surname: Huang
  fullname: Huang, Qirui
  email: qirui@nyist.edu.cn
  organization: School of Information Engineering, Nanyang Institute of Technology, Nanyang, Henan 473004, China
– sequence: 2
  givenname: Rui
  surname: Gao
  fullname: Gao, Rui
  organization: Academic Affairs Office, Dongying Vocational Institute, Dongying, Shandong 257000, China
– sequence: 3
  givenname: Hoda
  surname: Akhavan
  fullname: Akhavan, Hoda
  email: akhavanhoda121@gmail.com
  organization: Computer Engineering and Information Technology Department, Amirkabir University of Technology, Tehran, Iran
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wNT8dDodF0Ip_kHBjS4l3CR32pTMTEliwbc3ZXTjQlcX7rnncM83IaOu75CQa85mnPHFzX52gGT67UwwIfKqFmV5RsZ8Wcmi5HMxImPGJC-kYPKCTGLcM8arLIzJ-6qj2EVstUe6cxggmJ0z4KnxHzFhcN2Wgt_2waVdSzVEtLTvaJuVFCmknzsKnaUHCMkll3WPR_Txkpw34CNefc8peXu4f10_FZuXx-f1alMYyRap0LU2QmhR1XzJrRVopa0Fa5jOFTSXJUJtqwpLg1DaObIKWKPRVsAXgKWUU3I75JrQxxiwUcYlOD2SAjivOFMnUGqvBlDqBEoNoLJ5_st8CK6F8Pmf7W6w5Z54zORUNA47g9YFNEnZ3v0d8AW4bYkV
CitedBy_id crossref_primary_10_1016_j_commatsci_2025_114019
crossref_primary_10_1007_s10489_025_06461_x
crossref_primary_10_1016_j_ijar_2023_108968
crossref_primary_10_1007_s00357_025_09506_5
crossref_primary_10_3390_a16050245
crossref_primary_10_1007_s40031_025_01241_0
crossref_primary_10_1016_j_engappai_2024_107873
crossref_primary_10_1109_TAI_2024_3382248
crossref_primary_10_1016_j_patcog_2024_110739
crossref_primary_10_1007_s00357_024_09489_9
crossref_primary_10_3390_app13031246
crossref_primary_10_1016_j_patrec_2025_05_025
crossref_primary_10_1016_j_aei_2024_102799
crossref_primary_10_1371_journal_pone_0321847
crossref_primary_10_1016_j_patcog_2024_111261
crossref_primary_10_1007_s10489_024_05654_0
crossref_primary_10_1007_s10586_024_04822_8
crossref_primary_10_1007_s10115_024_02272_7
crossref_primary_10_1007_s12633_024_03148_9
crossref_primary_10_1016_j_patcog_2024_110389
crossref_primary_10_1109_TETCI_2024_3367811
crossref_primary_10_1007_s12633_025_03338_z
crossref_primary_10_1007_s11063_024_11618_9
crossref_primary_10_1109_TKDE_2024_3401075
crossref_primary_10_1007_s10489_025_06376_7
crossref_primary_10_3390_fractalfract7100733
crossref_primary_10_1109_TFUZZ_2024_3456091
crossref_primary_10_3390_rs17050853
crossref_primary_10_1109_TNSM_2025_3539830
Cites_doi 10.1016/j.patcog.2021.108061
10.1016/j.engappai.2014.12.005
10.1016/j.patcog.2020.107522
10.1007/s00500-020-05409-2
10.1016/j.artint.2020.103237
10.1007/s10489-018-1332-x
10.1016/j.engappai.2016.10.005
10.1016/j.jksuci.2022.04.010
10.29252/jsdp.15.4.17
10.3390/app10051891
10.1002/spe.2641
10.1007/s10462-018-9642-2
10.1007/s10489-021-02624-8
10.1007/s40745-015-0040-1
10.1007/s10922-020-09537-w
10.1080/09540091.2020.1866496
10.1016/j.fss.2020.03.008
10.1002/cpe.5359
10.1016/j.scs.2019.101958
10.1016/j.patcog.2022.108772
10.1016/j.comnet.2020.107755
10.1089/big.2021.0254
10.1007/s11277-021-08614-w
10.3390/su14052520
10.2174/1574893616999210128175715
10.1016/j.neucom.2021.07.056
10.3233/IDA-2008-12603
10.1080/0952813X.2013.813974
10.1142/S021821302150007X
10.1007/s10462-020-09862-1
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.109255
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_109255
S0031320322007348
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-b9bc22b279181dd2ed3d920f0b187b135ea9d77e5cea5d4e07a0fbed7a16ae533
ISICitedReferencesCount 31
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000995833300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 22:08:46 EST 2025
Sat Nov 29 07:27:53 EST 2025
Fri Feb 23 02:39:24 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Cluster consensus
Robustness measure
Hyper-cluster
Merit level
Ensemble clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-b9bc22b279181dd2ed3d920f0b187b135ea9d77e5cea5d4e07a0fbed7a16ae533
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2022_109255
crossref_primary_10_1016_j_patcog_2022_109255
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_109255
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Abbasi, Nejatian, Parvin, Rezaie, Bagherifard (bib0007) 2019; 52
Lu, Yang, Wang (bib0020) 2013
Bagherinia, Minaei-Bidgoli, Hossinzadeh, Parvin (bib0011) 2019; 49
Mahmoudi, Akbarzadeh, Parvin, Nejatian, Rezaie, Alinejad-Rokny (bib0017) 2021; 54
Azimirad, Sotubadi, Nasirlou (bib0045) 2021
Ma, Zhang, Guo, Wang, Qian, Al-Nabhan (bib0037) 2021; 462
Wolpert, Macready (bib0030) 1995
Yu, Liu, Lin, Wu, Zhang (bib0031) 2022; 130
Law, Topchy, Jain (bib0035) 2004
Thrun, Ultsch (bib0039) 2021; 290
Akbari, Dahlan, Ibrahim, Alizadeh (bib0001) 2015; 39
Shin, Sohn (bib0038) 2001; 27
Rezaee, Sheikhabad, Beygi (bib0047) 2021; 187
Sun, Zhang, Trik (bib0006) 2022
Berahmand, Mohammadi, Saberi-Movahed, Li, Xu (bib0010) 2022
Li, Rezaeipanah, El Din (bib0013) 2022; 34
Xu, Tian (bib0023) 2015; 2
Wang, Zhao, Li, Chen, Li, Shen (bib0034) 2021; 119
Radhoush, Shabaninia, Lin (bib0042) 2018
Lutov, Khayati, Cudré-Mauroux (bib0015) 2019
Sabzi, Kamarei, Haghighi, Mahé (bib0004) 2020
Niu, Khozouie, Parvin, Alinejad-Rokny, Beheshti, Mahmoudi (bib0027) 2020; 10
Pakdehi, Daneshpour (bib0018) 2019; 15
Banerjee, Pujari, Panigrahi, Pati, Nayak, Weng (bib0024) 2021; 33
Nasiri, Berahmand, Samei, Li (bib0008) 2022; 10
Li, Qian, Wang, Dang, Liu (bib0036) 2018
Dua, Graff (bib0040) 2019; 25
Yousefnezhad, Reihanian, Zhang, Minaei-Bidgoli (bib0009) 2016; 56
Rafiee, Mirjalily (bib0044) 2020; 28
Mirzaei, Rahmati, Ahmadi (bib0029) 2008; 12
Chenarlogh, Razzazi, Mohammadyahya (bib0002) 2019
Affeldt, Labiod, Nadif (bib0032) 2020; 108
Akhavan, Manoochehri (bib0041) 2022
Tofighy, Rahmanian, Ghobaei-Arani (bib0003) 2018; 48
Bagherinia, Minaei-Bidgoli, Hosseinzadeh, Parvin (bib0016) 2021; 413
Ghobaei-Arani (bib0005) 2021; 25
Sun, Zhou, Yang (bib0028) 2020; 53
Chen, Bagherinia, Minaei-Bidgoli, Parvin, Pho (bib0026) 2021; 30
Rezaeipanah, Amiri, Nazari, Mojarad, Parvin (bib0012) 2021; 120
Radhoush, Bahramipanah, Nehrir, Shahooei (bib0043) 2022; 14
Alizadeh, Minaei-Bidgoli, Parvin (bib0019) 2014; 26
Dogan, Birant (bib0021) 2022; 52
Yang, Sun, Wu (bib0025) 2019; 31
Mozaffari, Houmansadr, Venkataramani (bib0046) 2019
Mojarad, Sarhangnia, Rezaeipanah, Parvin, Nejatian (bib0014) 2021; 16
Seldin, Tishby (bib0033) 2010; 11
Ahn, Jung, Chae, Oh, Kim, Kim (bib0022) 2021
Chen (10.1016/j.patcog.2022.109255_bib0026) 2021; 30
Rafiee (10.1016/j.patcog.2022.109255_bib0044) 2020; 28
Affeldt (10.1016/j.patcog.2022.109255_bib0032) 2020; 108
Rezaee (10.1016/j.patcog.2022.109255_bib0047) 2021; 187
Sun (10.1016/j.patcog.2022.109255_bib0028) 2020; 53
Sabzi (10.1016/j.patcog.2022.109255_bib0004) 2020
Lutov (10.1016/j.patcog.2022.109255_bib0015) 2019
Law (10.1016/j.patcog.2022.109255_bib0035) 2004
Alizadeh (10.1016/j.patcog.2022.109255_bib0019) 2014; 26
Ghobaei-Arani (10.1016/j.patcog.2022.109255_bib0005) 2021; 25
Shin (10.1016/j.patcog.2022.109255_bib0038) 2001; 27
Yang (10.1016/j.patcog.2022.109255_bib0025) 2019; 31
Ma (10.1016/j.patcog.2022.109255_bib0037) 2021; 462
Mahmoudi (10.1016/j.patcog.2022.109255_bib0017) 2021; 54
Mojarad (10.1016/j.patcog.2022.109255_bib0014) 2021; 16
Yu (10.1016/j.patcog.2022.109255_bib0031) 2022; 130
Nasiri (10.1016/j.patcog.2022.109255_bib0008) 2022; 10
Bagherinia (10.1016/j.patcog.2022.109255_bib0011) 2019; 49
Rezaeipanah (10.1016/j.patcog.2022.109255_bib0012) 2021; 120
Lu (10.1016/j.patcog.2022.109255_bib0020) 2013
Ahn (10.1016/j.patcog.2022.109255_bib0022) 2021
Mirzaei (10.1016/j.patcog.2022.109255_bib0029) 2008; 12
Akhavan (10.1016/j.patcog.2022.109255_bib0041) 2022
Xu (10.1016/j.patcog.2022.109255_bib0023) 2015; 2
Banerjee (10.1016/j.patcog.2022.109255_bib0024) 2021; 33
Bagherinia (10.1016/j.patcog.2022.109255_bib0016) 2021; 413
Wolpert (10.1016/j.patcog.2022.109255_bib0030) 1995
Wang (10.1016/j.patcog.2022.109255_bib0034) 2021; 119
Mozaffari (10.1016/j.patcog.2022.109255_bib0046) 2019
Yousefnezhad (10.1016/j.patcog.2022.109255_bib0009) 2016; 56
Abbasi (10.1016/j.patcog.2022.109255_bib0007) 2019; 52
Seldin (10.1016/j.patcog.2022.109255_bib0033) 2010; 11
Li (10.1016/j.patcog.2022.109255_bib0013) 2022; 34
Dogan (10.1016/j.patcog.2022.109255_bib0021) 2022; 52
Niu (10.1016/j.patcog.2022.109255_bib0027) 2020; 10
Berahmand (10.1016/j.patcog.2022.109255_bib0010) 2022
Thrun (10.1016/j.patcog.2022.109255_bib0039) 2021; 290
Radhoush (10.1016/j.patcog.2022.109255_bib0042) 2018
Radhoush (10.1016/j.patcog.2022.109255_bib0043) 2022; 14
Pakdehi (10.1016/j.patcog.2022.109255_bib0018) 2019; 15
Tofighy (10.1016/j.patcog.2022.109255_bib0003) 2018; 48
Chenarlogh (10.1016/j.patcog.2022.109255_bib0002) 2019
Li (10.1016/j.patcog.2022.109255_bib0036) 2018
Azimirad (10.1016/j.patcog.2022.109255_bib0045) 2021
Sun (10.1016/j.patcog.2022.109255_bib0006) 2022
Akbari (10.1016/j.patcog.2022.109255_bib0001) 2015; 39
Dua (10.1016/j.patcog.2022.109255_bib0040) 2019; 25
References_xml – start-page: 179
  year: 2013
  end-page: 189
  ident: bib0020
  article-title: Selective clustering ensemble based on covariance
  publication-title: International Workshop on Multiple Classifier Systems
– volume: 10
  start-page: 1891
  year: 2020
  ident: bib0027
  article-title: An ensemble of locally reliable cluster solutions
  publication-title: Appl. Sci.
– volume: 28
  start-page: 1279
  year: 2020
  end-page: 1315
  ident: bib0044
  article-title: Distributed network coding-aware routing protocol incorporating fuzzy-logic-based forwarders in wireless Ad hoc networks
  publication-title: J. Netw. Syst. Manag.
– volume: 49
  start-page: 1724
  year: 2019
  end-page: 1747
  ident: bib0011
  article-title: Elite fuzzy clustering ensemble based on clustering diversity and quality measures
  publication-title: Appl. Intell.
– volume: 27
  start-page: 47
  year: 2001
  end-page: 53
  ident: bib0038
  article-title: Comparing classification accuracy of ensemble and clustering algorithms based on Taguchi design
  publication-title: J. Korean Inst. Ind. Eng.
– start-page: 2791
  year: 2021
  end-page: 2800
  ident: bib0022
  article-title: IDEA: integrating divisive and ensemble-agglomerate hierarchical clustering framework for arbitrary shape data
  publication-title: Proceedings of the IEEE International Conference on Big Data (Big Data)
– volume: 30
  year: 2021
  ident: bib0026
  article-title: Fuzzy clustering ensemble considering cluster dependability
  publication-title: Int. J. Artif. Intell. Tools
– volume: 12
  start-page: 549
  year: 2008
  end-page: 571
  ident: bib0029
  article-title: A new method for hierarchical clustering combination
  publication-title: Intell. Data Anal.
– year: 2004
  ident: bib0035
  article-title: Multiobjective data clustering
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR
– volume: 14
  start-page: 2520
  year: 2022
  ident: bib0043
  article-title: A review on state estimation techniques in active distribution networks: existing practices and their challenges
  publication-title: Sustainability
– start-page: 1
  year: 2018
  end-page: 6
  ident: bib0042
  article-title: Distribution system state estimation with measurement data using different compression methods
  publication-title: Proceedings of the IEEE Texas Power and Energy Conference (TPEC)
– volume: 11
  start-page: 3595
  year: 2010
  end-page: 3646
  ident: bib0033
  article-title: PAC-Bayesian analysis of co-clustering and beyond
  publication-title: J. Mach. Learn. Res.
– volume: 25
  start-page: 27
  year: 2019
  ident: bib0040
  article-title: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: university of California
  publication-title: Sch. Inf. Comput. Sci.
– year: 1995
  ident: bib0030
  article-title: No Free Lunch Theorems for Search
– volume: 120
  start-page: 3293
  year: 2021
  end-page: 3314
  ident: bib0012
  article-title: An energy-aware hybrid approach for wireless sensor networks using re-clustering-based multi-hop routing
  publication-title: Wirel. Pers. Commun.
– volume: 108
  year: 2020
  ident: bib0032
  article-title: Spectral clustering via ensemble deep autoencoder learning (SC-EDAE)
  publication-title: Pattern Recognit.
– volume: 290
  year: 2021
  ident: bib0039
  article-title: Swarm intelligence for self-organized clustering
  publication-title: Artif. Intell.
– start-page: 192
  year: 2021
  end-page: 197
  ident: bib0045
  article-title: Vision-based learning: a novel machine learning method based on convolutional neural networks and spiking neural networks
  publication-title: Proceedings of the 9th RSI International Conference on Robotics and Mechatronics (ICRoM)
– start-page: 1
  year: 2020
  end-page: 5
  ident: bib0004
  article-title: Analysis and design of X-band LNA using parallel technique
  publication-title: Proceedings of the 28th Iranian Conference on Electrical Engineering (ICEE)
– volume: 119
  year: 2021
  ident: bib0034
  article-title: Ensemble selection with joint spectral clustering and structural sparsity
  publication-title: Pattern Recognit.
– volume: 25
  start-page: 3813
  year: 2021
  end-page: 3830
  ident: bib0005
  article-title: A workload clustering based resource provisioning mechanism using biogeography based optimization technique in the cloud based systems
  publication-title: Soft Comput.
– volume: 48
  start-page: 2257
  year: 2018
  end-page: 2277
  ident: bib0003
  article-title: An ensemble CPU load prediction algorithm using a Bayesian information criterion and smooth filters in a cloud computing environment
  publication-title: Softw. Pract. Exp.
– start-page: 1
  year: 2019
  end-page: 8
  ident: bib0015
  article-title: Accuracy evaluation of overlapping and multi-resolution clustering algorithms on large datasets
  publication-title: Proceedings of the IEEE International Conference on Big Data and Smart Computing (BigComp)
– volume: 413
  start-page: 1
  year: 2021
  end-page: 28
  ident: bib0016
  article-title: Reliability-based fuzzy clustering ensemble
  publication-title: Fuzzy Sets Syst.
– start-page: 1
  year: 2019
  end-page: 11
  ident: bib0002
  article-title: A multi-view human action recognition system in limited data case using multi-stream CNN
  publication-title: Proceedings of the 5th Iranian Conference on Signal Processing and Intelligent Systems (ICSPIS)
– volume: 16
  start-page: 749
  year: 2021
  end-page: 764
  ident: bib0014
  article-title: Modeling hereditary disease behavior using an innovative similarity criterion and ensemble clustering
  publication-title: Curr. Bioinform.
– start-page: 1
  year: 2019
  end-page: 6
  ident: bib0046
  article-title: Blocking-resilient communications in information-centric networks using router redirection
  publication-title: Proceedings of the IEEE Globecom Workshops (GC Wkshps)
– volume: 462
  start-page: 412
  year: 2021
  end-page: 425
  ident: bib0037
  article-title: Semi-supervised selective clustering ensemble based on constraint information
  publication-title: Neurocomputing
– volume: 33
  start-page: 623
  year: 2021
  end-page: 644
  ident: bib0024
  article-title: A new method for weighted ensemble clustering and coupled ensemble selection
  publication-title: Conn Sci.
– year: 2022
  ident: bib0010
  article-title: Graph regularized nonnegative matrix factorization for community detection in attributed networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 26
  start-page: 127
  year: 2014
  end-page: 150
  ident: bib0019
  article-title: To improve the quality of cluster ensembles by selecting a subset of base clusters
  publication-title: J. Exp. Theor. Artif. Intell.
– volume: 2
  start-page: 165
  year: 2015
  end-page: 193
  ident: bib0023
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann. Data Sci.
– volume: 31
  start-page: e5359
  year: 2019
  ident: bib0025
  article-title: Constraint projections for semi-supervised spectral clustering ensemble
  publication-title: Concurr. Comput. Pract. Exp.
– volume: 15
  start-page: 17
  year: 2019
  end-page: 30
  ident: bib0018
  article-title: Cluster ensemble selection using voting
  publication-title: Signal Data Process.
– volume: 52
  start-page: 5537
  year: 2022
  end-page: 5560
  ident: bib0021
  article-title: K-centroid link: a novel hierarchical clustering linkage method
  publication-title: Appl. Intell.
– volume: 54
  start-page: 639
  year: 2021
  end-page: 665
  ident: bib0017
  article-title: Consensus function based on cluster-wise two level clustering
  publication-title: Artif. Intell. Rev.
– start-page: 1
  year: 2022
  end-page: 10
  ident: bib0041
  article-title: Sensory data fusion using machine learning methods for
  publication-title: Proceedings of the IEEE International IOT, Electronics and Mechatronics Conference (IEMTRONICS)
– volume: 10
  start-page: 138
  year: 2022
  end-page: 150
  ident: bib0008
  article-title: Impact of centrality measures on the common neighbors in link prediction for multiplex networks
  publication-title: Big Data
– volume: 130
  year: 2022
  ident: bib0031
  article-title: Auto-weighted sample-level fusion with anchors for incomplete multi-view clustering
  publication-title: Pattern Recognit.
– volume: 187
  year: 2021
  ident: bib0047
  article-title: Quality of transmission-aware control plane performance analysis for elastic optical networks
  publication-title: Comput. Netw.
– start-page: 1
  year: 2022
  end-page: 22
  ident: bib0006
  article-title: PBPHS: a profile-based predictive handover strategy for 5G networks
  publication-title: Cybern. Syst.
– volume: 56
  start-page: 260
  year: 2016
  end-page: 272
  ident: bib0009
  article-title: A new selection strategy for selective cluster ensemble based on diversity and independency
  publication-title: Eng. Appl. Artif. Intell.
– volume: 52
  start-page: 1311
  year: 2019
  end-page: 1340
  ident: bib0007
  article-title: Clustering ensemble selection considering quality and diversity
  publication-title: Artif. Intell. Rev.
– year: 2018
  ident: bib0036
  article-title: Cluster's quality evaluation and selective clustering ensemble
  publication-title: ACM Trans. KN
– volume: 39
  start-page: 146
  year: 2015
  end-page: 156
  ident: bib0001
  article-title: Hierarchical cluster ensemble selection
  publication-title: Eng. Appl. Artif. Intell.
– volume: 34
  start-page: 3828
  year: 2022
  end-page: 3842
  ident: bib0013
  article-title: An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
– volume: 53
  year: 2020
  ident: bib0028
  article-title: An ensemble clustering based framework for household load profiling and driven factors identification
  publication-title: Sustain. Cities Soc.
– start-page: 1
  year: 2020
  ident: 10.1016/j.patcog.2022.109255_bib0004
  article-title: Analysis and design of X-band LNA using parallel technique
– volume: 119
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0034
  article-title: Ensemble selection with joint spectral clustering and structural sparsity
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108061
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2022.109255_bib0002
  article-title: A multi-view human action recognition system in limited data case using multi-stream CNN
– start-page: 1
  year: 2022
  ident: 10.1016/j.patcog.2022.109255_bib0006
  article-title: PBPHS: a profile-based predictive handover strategy for 5G networks
  publication-title: Cybern. Syst.
– volume: 39
  start-page: 146
  year: 2015
  ident: 10.1016/j.patcog.2022.109255_bib0001
  article-title: Hierarchical cluster ensemble selection
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2014.12.005
– year: 2022
  ident: 10.1016/j.patcog.2022.109255_bib0010
  article-title: Graph regularized nonnegative matrix factorization for community detection in attributed networks
  publication-title: IEEE Trans. Netw. Sci. Eng.
– volume: 108
  year: 2020
  ident: 10.1016/j.patcog.2022.109255_bib0032
  article-title: Spectral clustering via ensemble deep autoencoder learning (SC-EDAE)
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107522
– start-page: 1
  year: 2022
  ident: 10.1016/j.patcog.2022.109255_bib0041
  article-title: Sensory data fusion using machine learning methods for in-situ defect registration in additive manufacturing: a review
– start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2022.109255_bib0042
  article-title: Distribution system state estimation with measurement data using different compression methods
– volume: 25
  start-page: 3813
  issue: 5
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0005
  article-title: A workload clustering based resource provisioning mechanism using biogeography based optimization technique in the cloud based systems
  publication-title: Soft Comput.
  doi: 10.1007/s00500-020-05409-2
– year: 2004
  ident: 10.1016/j.patcog.2022.109255_bib0035
  article-title: Multiobjective data clustering
– volume: 290
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0039
  article-title: Swarm intelligence for self-organized clustering
  publication-title: Artif. Intell.
  doi: 10.1016/j.artint.2020.103237
– start-page: 2791
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0022
  article-title: IDEA: integrating divisive and ensemble-agglomerate hierarchical clustering framework for arbitrary shape data
– volume: 49
  start-page: 1724
  issue: 5
  year: 2019
  ident: 10.1016/j.patcog.2022.109255_bib0011
  article-title: Elite fuzzy clustering ensemble based on clustering diversity and quality measures
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-018-1332-x
– volume: 56
  start-page: 260
  year: 2016
  ident: 10.1016/j.patcog.2022.109255_bib0009
  article-title: A new selection strategy for selective cluster ensemble based on diversity and independency
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2016.10.005
– start-page: 179
  year: 2013
  ident: 10.1016/j.patcog.2022.109255_bib0020
  article-title: Selective clustering ensemble based on covariance
– year: 1995
  ident: 10.1016/j.patcog.2022.109255_bib0030
– volume: 34
  start-page: 3828
  issue: 6
  year: 2022
  ident: 10.1016/j.patcog.2022.109255_bib0013
  article-title: An ensemble agglomerative hierarchical clustering algorithm based on clusters clustering technique and the novel similarity measurement
  publication-title: J. King Saud Univ. Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2022.04.010
– volume: 15
  start-page: 17
  issue: 4
  year: 2019
  ident: 10.1016/j.patcog.2022.109255_bib0018
  article-title: Cluster ensemble selection using voting
  publication-title: Signal Data Process.
  doi: 10.29252/jsdp.15.4.17
– volume: 10
  start-page: 1891
  issue: 5
  year: 2020
  ident: 10.1016/j.patcog.2022.109255_bib0027
  article-title: An ensemble of locally reliable cluster solutions
  publication-title: Appl. Sci.
  doi: 10.3390/app10051891
– volume: 25
  start-page: 27
  year: 2019
  ident: 10.1016/j.patcog.2022.109255_bib0040
  article-title: UCI Machine Learning Repository [http://archive.ics.uci.edu/ml]. Irvine, CA: university of California
  publication-title: Sch. Inf. Comput. Sci.
– volume: 48
  start-page: 2257
  issue: 12
  year: 2018
  ident: 10.1016/j.patcog.2022.109255_bib0003
  article-title: An ensemble CPU load prediction algorithm using a Bayesian information criterion and smooth filters in a cloud computing environment
  publication-title: Softw. Pract. Exp.
  doi: 10.1002/spe.2641
– volume: 52
  start-page: 1311
  issue: 2
  year: 2019
  ident: 10.1016/j.patcog.2022.109255_bib0007
  article-title: Clustering ensemble selection considering quality and diversity
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-018-9642-2
– volume: 52
  start-page: 5537
  issue: 5
  year: 2022
  ident: 10.1016/j.patcog.2022.109255_bib0021
  article-title: K-centroid link: a novel hierarchical clustering linkage method
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-021-02624-8
– volume: 2
  start-page: 165
  issue: 2
  year: 2015
  ident: 10.1016/j.patcog.2022.109255_bib0023
  article-title: A comprehensive survey of clustering algorithms
  publication-title: Ann. Data Sci.
  doi: 10.1007/s40745-015-0040-1
– volume: 28
  start-page: 1279
  issue: 4
  year: 2020
  ident: 10.1016/j.patcog.2022.109255_bib0044
  article-title: Distributed network coding-aware routing protocol incorporating fuzzy-logic-based forwarders in wireless Ad hoc networks
  publication-title: J. Netw. Syst. Manag.
  doi: 10.1007/s10922-020-09537-w
– volume: 33
  start-page: 623
  issue: 3
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0024
  article-title: A new method for weighted ensemble clustering and coupled ensemble selection
  publication-title: Conn Sci.
  doi: 10.1080/09540091.2020.1866496
– volume: 413
  start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0016
  article-title: Reliability-based fuzzy clustering ensemble
  publication-title: Fuzzy Sets Syst.
  doi: 10.1016/j.fss.2020.03.008
– volume: 31
  start-page: e5359
  issue: 20
  year: 2019
  ident: 10.1016/j.patcog.2022.109255_bib0025
  article-title: Constraint projections for semi-supervised spectral clustering ensemble
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5359
– volume: 53
  year: 2020
  ident: 10.1016/j.patcog.2022.109255_bib0028
  article-title: An ensemble clustering based framework for household load profiling and driven factors identification
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2019.101958
– volume: 130
  year: 2022
  ident: 10.1016/j.patcog.2022.109255_bib0031
  article-title: Auto-weighted sample-level fusion with anchors for incomplete multi-view clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108772
– volume: 187
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0047
  article-title: Quality of transmission-aware control plane performance analysis for elastic optical networks
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107755
– volume: 10
  start-page: 138
  issue: 2
  year: 2022
  ident: 10.1016/j.patcog.2022.109255_bib0008
  article-title: Impact of centrality measures on the common neighbors in link prediction for multiplex networks
  publication-title: Big Data
  doi: 10.1089/big.2021.0254
– volume: 120
  start-page: 3293
  issue: 4
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0012
  article-title: An energy-aware hybrid approach for wireless sensor networks using re-clustering-based multi-hop routing
  publication-title: Wirel. Pers. Commun.
  doi: 10.1007/s11277-021-08614-w
– volume: 14
  start-page: 2520
  issue: 5
  year: 2022
  ident: 10.1016/j.patcog.2022.109255_bib0043
  article-title: A review on state estimation techniques in active distribution networks: existing practices and their challenges
  publication-title: Sustainability
  doi: 10.3390/su14052520
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2022.109255_bib0015
  article-title: Accuracy evaluation of overlapping and multi-resolution clustering algorithms on large datasets
– volume: 16
  start-page: 749
  issue: 5
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0014
  article-title: Modeling hereditary disease behavior using an innovative similarity criterion and ensemble clustering
  publication-title: Curr. Bioinform.
  doi: 10.2174/1574893616999210128175715
– volume: 462
  start-page: 412
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0037
  article-title: Semi-supervised selective clustering ensemble based on constraint information
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.07.056
– start-page: 192
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0045
  article-title: Vision-based learning: a novel machine learning method based on convolutional neural networks and spiking neural networks
– volume: 12
  start-page: 549
  issue: 6
  year: 2008
  ident: 10.1016/j.patcog.2022.109255_bib0029
  article-title: A new method for hierarchical clustering combination
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2008-12603
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2022.109255_bib0046
  article-title: Blocking-resilient communications in information-centric networks using router redirection
– volume: 26
  start-page: 127
  issue: 1
  year: 2014
  ident: 10.1016/j.patcog.2022.109255_bib0019
  article-title: To improve the quality of cluster ensembles by selecting a subset of base clusters
  publication-title: J. Exp. Theor. Artif. Intell.
  doi: 10.1080/0952813X.2013.813974
– volume: 11
  start-page: 3595
  issue: 12
  year: 2010
  ident: 10.1016/j.patcog.2022.109255_bib0033
  article-title: PAC-Bayesian analysis of co-clustering and beyond
  publication-title: J. Mach. Learn. Res.
– volume: 27
  start-page: 47
  issue: 1
  year: 2001
  ident: 10.1016/j.patcog.2022.109255_bib0038
  article-title: Comparing classification accuracy of ensemble and clustering algorithms based on Taguchi design
  publication-title: J. Korean Inst. Ind. Eng.
– year: 2018
  ident: 10.1016/j.patcog.2022.109255_bib0036
  article-title: Cluster's quality evaluation and selective clustering ensemble
  publication-title: ACM Trans. KN
– volume: 30
  issue: 02
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0026
  article-title: Fuzzy clustering ensemble considering cluster dependability
  publication-title: Int. J. Artif. Intell. Tools
  doi: 10.1142/S021821302150007X
– volume: 54
  start-page: 639
  issue: 1
  year: 2021
  ident: 10.1016/j.patcog.2022.109255_bib0017
  article-title: Consensus function based on cluster-wise two level clustering
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-020-09862-1
SSID ssj0017142
Score 2.5397995
Snippet •Designing an ensemble hierarchical clustering framework based on cluster consensus selection approach.•Aggregation of primary clusters using the clusters...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109255
SubjectTerms Cluster consensus
Ensemble clustering
Hyper-cluster
Merit level
Robustness measure
Title An ensemble hierarchical clustering algorithm based on merits at cluster and partition levels
URI https://dx.doi.org/10.1016/j.patcog.2022.109255
Volume 136
WOSCitedRecordID wos000995833300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Ja9wwFBZt0kMv3UvTDR16CwrW4pF1NCVlWkpISwpzKUa25GTSiT3MeEp-fp8We5ympM2hGIwRkmz8Pp7e_hB6BzJCBtpOQjJVayLSUhA9oZRMbCrKOuGpNL5ryWd5dJTNZuo4xs-vfTsB2TTZ5aVa_ldSwxgQ26XO3oLcw6YwAM9AdLgD2eH-T4TPm31QTe2FS4lyja69q8CXAVlsXFUEn5W4OG1X8-7sYt-dYsZ5DJznplu73MY4L5QQcC_wEFm46KL1WJY99qU5XTpMjEHaevSnm2iG_jJfbeZDjI_2dtmv25H8x5mOnqhpG20D0QTB-ChyJbJVTglnCb_CVvmYMdJEsVCP9xrPDuaD84MlnD3tKajsjB1sp18tkf3b0TUEFPaxaudF2KVwuxRhl7tol8lUARPczT8ezj4NTiZJRSgmH7--z6z04X_Xv-bPkstIGjl5hB5ENQLngfyP0R3bPEEP-xYdOHLsp-h73uAeDXiMBrxFAx7QgD0acNvggAasu34eBjTgAQ04oOEZ-vbh8OT9lMSOGqQC1bAjpSorxkomFQh2xjBruFEsqZOSZrKkPLVaGSltWlmdGmETqZO6tEZqOtEWNIPnaKdpG_sCYaFpDZeAZZWwNVNasNopD4rpVNd6D_H-bxVVLDfvup4siptotYfIsGoZyq38Zb7sCVFEkTGIggWg68aVL2_5plfo_gB98RrtdKuNfYPuVT-7-Xr1NkLrF2R8kQo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+ensemble+hierarchical+clustering+algorithm+based+on+merits+at+cluster+and+partition+levels&rft.jtitle=Pattern+recognition&rft.au=Huang%2C+Qirui&rft.au=Gao%2C+Rui&rft.au=Akhavan%2C+Hoda&rft.date=2023-04-01&rft.issn=0031-3203&rft.volume=136&rft.spage=109255&rft_id=info:doi/10.1016%2Fj.patcog.2022.109255&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2022_109255
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon