Resource allocation solution for sensor networks using improved chaotic firefly algorithm in IoT environment
Aiming at the problem that the location of the secondary base station affects the interference between the primary and secondary systems directly and the reasonable allocation of channel resources, an Internet of Things (IoT) sensor network resource allocation scheme using an improved chaotic firefl...
Uloženo v:
| Vydáno v: | Computer communications Ročník 156; s. 91 - 100 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
15.04.2020
|
| Témata: | |
| ISSN: | 0140-3664, 1873-703X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Aiming at the problem that the location of the secondary base station affects the interference between the primary and secondary systems directly and the reasonable allocation of channel resources, an Internet of Things (IoT) sensor network resource allocation scheme using an improved chaotic firefly algorithm is proposed. This solution builds a multi-objective optimization model based on interference analysis of the working scenario of the cognitive radio. The goal is to protect the primary user’s normal activity to maximize the throughput of the secondary system and maximize the number of users that can be covered by the secondary base station. Because the multi-objective model is a non-linear convex optimization problem, the paper uses an improved chaotic firefly algorithm to solve it. Chaos algorithm is introduced into the firefly algorithm. By perturbing individuals, the convergence speed is accelerated and the probability of local optimization is reduced. The algorithm can efficiently obtain the optimal solution while reducing the complexity of the problem. The simulation results show that the method proposed in this paper can optimize the performance of the secondary system while guaranteeing the priority of the primary user. And it is superior to several advanced algorithms. |
|---|---|
| AbstractList | Aiming at the problem that the location of the secondary base station affects the interference between the primary and secondary systems directly and the reasonable allocation of channel resources, an Internet of Things (IoT) sensor network resource allocation scheme using an improved chaotic firefly algorithm is proposed. This solution builds a multi-objective optimization model based on interference analysis of the working scenario of the cognitive radio. The goal is to protect the primary user’s normal activity to maximize the throughput of the secondary system and maximize the number of users that can be covered by the secondary base station. Because the multi-objective model is a non-linear convex optimization problem, the paper uses an improved chaotic firefly algorithm to solve it. Chaos algorithm is introduced into the firefly algorithm. By perturbing individuals, the convergence speed is accelerated and the probability of local optimization is reduced. The algorithm can efficiently obtain the optimal solution while reducing the complexity of the problem. The simulation results show that the method proposed in this paper can optimize the performance of the secondary system while guaranteeing the priority of the primary user. And it is superior to several advanced algorithms. |
| Author | Jolfaei, Alireza Wang, Zhiyong Liu, Dong |
| Author_xml | – sequence: 1 givenname: Zhiyong surname: Wang fullname: Wang, Zhiyong email: yong@sdyu.edu.cn organization: School of Information Engineering, Shandong Youth University of Political Science, Jinan, Shandong, 250100, China – sequence: 2 givenname: Dong surname: Liu fullname: Liu, Dong organization: School of Information Engineering, Shandong Youth University of Political Science, Jinan, Shandong, 250100, China – sequence: 3 givenname: Alireza surname: Jolfaei fullname: Jolfaei, Alireza organization: Department of Computing, Macquarie University, Sydney NSW 2113, Australia |
| BookMark | eNqFkMtKBDEURIMoOD7-wEV-oNvbnfTLhSDiCwRBRnAX0umbmYzdiSSZEf_eOOPKhUJB3U0Vt84R2bfOIiFnBeQFFPX5KlduSspLKCEHltTtkVnRNixrgL3ukxkUHDJW1_yQHIWwAgDeNGxGxmcMbu0VUjmOTslonKXBjevtoZ2nAW1IZjF-OP8W6DoYu6BmevdugwNVS-miUVQbj3r8TDUL501cTtRY-uDmFO3GeGcntPGEHGg5Bjz98WPycnszv77PHp_uHq6vHjPFoI5Z3w5pQMurodao-6bjsmw7PlSVbHQzVLJiutQt9KzrNe_10CPnhdKKQwsImh0TvutV3oWQ_hLv3kzSf4oCxDcxsRI7YuKbmACW1KXYxa-YMnFLJHppxv_Cl7swpmEbg14EZdAqHBIYFcXgzN8FX4d0kBY |
| CitedBy_id | crossref_primary_10_1002_int_22462 crossref_primary_10_1007_s41870_024_02044_0 crossref_primary_10_1177_15501477211003830 crossref_primary_10_1016_j_neucom_2022_05_100 crossref_primary_10_1155_2022_1810704 crossref_primary_10_1016_j_istruc_2020_07_029 crossref_primary_10_1016_j_micpro_2021_103835 crossref_primary_10_1080_01969722_2022_2080341 crossref_primary_10_1016_j_jisa_2021_102945 crossref_primary_10_1109_JSEN_2021_3080217 crossref_primary_10_1080_08839514_2022_2055394 crossref_primary_10_1007_s40747_021_00584_7 crossref_primary_10_1016_j_iot_2023_100942 crossref_primary_10_1080_1206212X_2022_2028999 crossref_primary_10_1002_dac_6141 crossref_primary_10_1016_j_apm_2021_01_017 crossref_primary_10_1002_dac_6111 |
| Cites_doi | 10.1109/MCE.2019.2893673 10.1109/TVT.2016.2622563 10.1109/JIOT.2018.2799948 10.1016/j.scib.2019.07.004 10.1109/JSYST.2015.2500518 10.1049/iet-com.2016.0742 10.1109/ACCESS.2016.2600633 10.1109/MSSC.2018.2867404 10.1186/s13638-019-1433-1 |
| ContentType | Journal Article |
| Copyright | 2020 |
| Copyright_xml | – notice: 2020 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.comcom.2020.03.039 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-703X |
| EndPage | 100 |
| ExternalDocumentID | 10_1016_j_comcom_2020_03_039 S0140366420302164 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABBOA ABFNM ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F 77I 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW TAE UHS VH1 VOH WUQ XPP ZY4 ~HD |
| ID | FETCH-LOGICAL-c306t-b8d039845d6fefb794a2894d55a7f7d5a53f2f80b39bf4bfdbe441cfc4080e0f3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000528265900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-3664 |
| IngestDate | Tue Nov 18 21:49:52 EST 2025 Sat Nov 29 07:23:44 EST 2025 Fri Feb 23 02:48:02 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Resource allocation algorithm Improved chaos firefly algorithm Throughput Frequency spectrum Cognitive radio IoT sensor network Interference attack |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-b8d039845d6fefb794a2894d55a7f7d5a53f2f80b39bf4bfdbe441cfc4080e0f3 |
| PageCount | 10 |
| ParticipantIDs | crossref_primary_10_1016_j_comcom_2020_03_039 crossref_citationtrail_10_1016_j_comcom_2020_03_039 elsevier_sciencedirect_doi_10_1016_j_comcom_2020_03_039 |
| PublicationCentury | 2000 |
| PublicationDate | 2020-04-15 |
| PublicationDateYYYYMMDD | 2020-04-15 |
| PublicationDate_xml | – month: 04 year: 2020 text: 2020-04-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer communications |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Tan, Yin, Ma (b21) 2014 Jang, Han, Lee (b26) 2019; 2019 Ozcan, Gursoy (b22) 2014 Chabalala, Olst, Takawira (b17) 2015 Denis, Pischella, Ruyet (b16) 2017; 66 Zhang, Yang, Kuang (b3) 2019; 8 Li, Zhu, Leung (b10) 2017; 11 Shao, Liang, Deng (b19) 2015 Shigueta, Fonseca, Viana (b7) 2015 Bakhsh (b12) 2017 Hong, Lee, Lim (b11) 2016 Apsel (b2) 2019; 10 Cao, Du, Ratazzi (b9) 2019 Yang, Zhao (b14) 2017; 11 Salameh, Almajali, Ayyash (b6) 2017 Tiwari, Saha (b15) 2016 Khan, Yoo (b23) 2015 Li, Zhao, Jin (b4) 2019; 64 Z. Jiang, Y. Song, D. Jiang, et al. multi-Armed Bandit Channel Access Scheme with Cognitive Radio Technology in Wireless Sensor Networks for the Internet of Things, 4 (2017) 4609–4617 Xue, Dong, Shi (b20) 2017; 66 Lin, Ziolkowski (b24) 2018 . Minkara, Shepherd (b18) 2014 Fayyazi, Ansari, Kamal (b8) 2018; 5 Praveen Kumar Reddy, Rajasekhara Babu (b1) 2019; 22 Shami, Rasti (b25) 2016 Cheng, Zheng, Wang (b5) 2019; 2019 Salameh (10.1016/j.comcom.2020.03.039_b6) 2017 Tiwari (10.1016/j.comcom.2020.03.039_b15) 2016 Cao (10.1016/j.comcom.2020.03.039_b9) 2019 Denis (10.1016/j.comcom.2020.03.039_b16) 2017; 66 Fayyazi (10.1016/j.comcom.2020.03.039_b8) 2018; 5 Praveen Kumar Reddy (10.1016/j.comcom.2020.03.039_b1) 2019; 22 Ozcan (10.1016/j.comcom.2020.03.039_b22) 2014 Li (10.1016/j.comcom.2020.03.039_b4) 2019; 64 Cheng (10.1016/j.comcom.2020.03.039_b5) 2019; 2019 Zhang (10.1016/j.comcom.2020.03.039_b3) 2019; 8 Minkara (10.1016/j.comcom.2020.03.039_b18) 2014 Chabalala (10.1016/j.comcom.2020.03.039_b17) 2015 Shami (10.1016/j.comcom.2020.03.039_b25) 2016 Apsel (10.1016/j.comcom.2020.03.039_b2) 2019; 10 Li (10.1016/j.comcom.2020.03.039_b10) 2017; 11 Shigueta (10.1016/j.comcom.2020.03.039_b7) 2015 Hong (10.1016/j.comcom.2020.03.039_b11) 2016 Xue (10.1016/j.comcom.2020.03.039_b20) 2017; 66 Khan (10.1016/j.comcom.2020.03.039_b23) 2015 10.1016/j.comcom.2020.03.039_b13 Lin (10.1016/j.comcom.2020.03.039_b24) 2018 Jang (10.1016/j.comcom.2020.03.039_b26) 2019; 2019 Yang (10.1016/j.comcom.2020.03.039_b14) 2017; 11 Bakhsh (10.1016/j.comcom.2020.03.039_b12) 2017 Shao (10.1016/j.comcom.2020.03.039_b19) 2015 Tan (10.1016/j.comcom.2020.03.039_b21) 2014 |
| References_xml | – year: 2017 ident: b6 article-title: Security-aware channel assignment in IoT-based cognitive radio networks for time-critical applications publication-title: The Fourth International Conference on Software Defined Systems (SDS-2017) – start-page: 3784 year: 2014 end-page: 3789 ident: b22 article-title: Performance analysis of primary and secondary users in a cognitive multiple-access channel publication-title: Global Communications Conference – volume: 2019 start-page: 1 year: 2019 end-page: 8 ident: b5 article-title: Attribute reduction based on genetic algorithm for the coevolution of meteorological data in the industrial internet of things publication-title: Wirel. Commun. Mobile Comput. – start-page: 1 year: 2016 end-page: 6 ident: b25 article-title: A joint multi-channel assignment and power control scheme for energy efficiency in cognitive radio networks publication-title: IEEE Wireless Communications and Networking Conference – year: 2018 ident: b24 article-title: Eletrically-small rectenna with huygens radiation pattern for wireless power transfer applications publication-title: 2018 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting – start-page: 176 year: 2014 end-page: 180 ident: b21 article-title: Positional proportional fairness scheduling based on spectrum aggregation in cognitive radio publication-title: International Conference on Telecommunications – volume: 8 start-page: 23 year: 2019 end-page: 27 ident: b3 article-title: A tensor-based forensics framework for virtualized network functions in the internet of things: Utilizing tensor algebra in facilitating more efficient network forensic investigations publication-title: IEEE Consum. Electron. Mag. – start-page: 1 year: 2015 end-page: 6 ident: b17 article-title: Optimal channel selection and power allocation for channel assembling in cognitive radio networks publication-title: IEEE Global Communications Conference – volume: 11 start-page: 273 year: 2017 end-page: 281 ident: b14 article-title: Robust resource allocation for orthogonal frequency division multiplexing-based cooperative cognitive radio networks with imperfect channel state information publication-title: Iet Commun. – start-page: 1 year: 2016 end-page: 3 ident: b11 article-title: RF spectrum sensing receiver system with improved frequency channel selectivity for cognitive iot sensor network applications publication-title: Ieee/Mtt-S International Microwave Symposium - Mtt. – start-page: 1802 year: 2017 end-page: 1807 ident: b12 article-title: Energy-efficient distributed relay selection in wireless sensor network for internet of things publication-title: International Wireless Communications and Mobile Computing Conference – volume: 11 start-page: 1456 year: 2017 end-page: 1466 ident: b10 article-title: Performance comparison of cognitive radio sensor networks for industrial IoT with different deployment patterns publication-title: IEEE Syst. J. – start-page: 566 year: 2014 end-page: 569 ident: b18 article-title: Optimising the location of wireless base stations within a dynamic indoor environment publication-title: European Conference on Antennas and Propagation – volume: 2019 year: 2019 ident: b26 article-title: Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks publication-title: EURASIP J. Wireless Commun. Networking – start-page: 1 year: 2015 end-page: 3 ident: b7 article-title: A strategy for opportunistic cognitive channel allocation in wireless Internet of Things publication-title: Wireless Days – volume: 64 start-page: 1234 year: 2019 end-page: 1245 ident: b4 article-title: Internet of things to network smart devices for ecosystem monitoring publication-title: Sci. Bull. – year: 2019 ident: b9 article-title: A light-weight authentication scheme for air force internet of things publication-title: ICC 2019-2019 IEEE International Conference on Communications (ICC) – year: 2015 ident: b23 article-title: Dynamic Interference Control in OFDM-Based Cognitive Radio Network Using Genetic Algorithm – volume: 10 start-page: 16 year: 2019 end-page: 23 ident: b2 article-title: A simple guide to low-power wireless technologies: Balancing the tradeoffs for the internet of things and medical applications publication-title: IEEE Solid-State Circuits Mag. – volume: 5 start-page: 1011 year: 2018 end-page: 1022 ident: b8 article-title: An ultra low-power memristive neuromorphic circuit for internet of things smart sensors publication-title: IEEE Internet Things J. – reference: . – start-page: 1 year: 2016 end-page: 3 ident: b15 article-title: Co-channel interference constrained spectrum allocation with simultaneous power and network capacity optimization using PSO in cognitive radio network publication-title: IEEE International Conference on Advanced Networks and Telecommuncations Systems – volume: 66 start-page: 884 year: 2017 end-page: 889 ident: b20 article-title: Resource-allocation strategy for multiuser cognitive radio systems: location-aware spectrum access publication-title: IEEE Trans. Veh. Technol. – volume: 22 start-page: 1 year: 2019 end-page: 12 ident: b1 article-title: Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things publication-title: Cluster Comput. – reference: Z. Jiang, Y. Song, D. Jiang, et al. multi-Armed Bandit Channel Access Scheme with Cognitive Radio Technology in Wireless Sensor Networks for the Internet of Things, 4 (2017) 4609–4617 – volume: 66 start-page: 4997 year: 2017 end-page: 5013 ident: b16 article-title: Energy-efficiency-based resource allocation framework for cognitive radio networks with FBMC/OFDM publication-title: IEEE Trans. Veh. Technol. – start-page: 1 year: 2015 end-page: 3 ident: b19 article-title: Optimal location of the base station based on measured interference power publication-title: Wireless Symposium – start-page: 1 year: 2015 ident: 10.1016/j.comcom.2020.03.039_b17 article-title: Optimal channel selection and power allocation for channel assembling in cognitive radio networks – volume: 66 start-page: 884 issue: 1 year: 2017 ident: 10.1016/j.comcom.2020.03.039_b20 article-title: Resource-allocation strategy for multiuser cognitive radio systems: location-aware spectrum access publication-title: IEEE Trans. Veh. Technol. – volume: 8 start-page: 23 issue: 3 year: 2019 ident: 10.1016/j.comcom.2020.03.039_b3 article-title: A tensor-based forensics framework for virtualized network functions in the internet of things: Utilizing tensor algebra in facilitating more efficient network forensic investigations publication-title: IEEE Consum. Electron. Mag. doi: 10.1109/MCE.2019.2893673 – volume: 66 start-page: 4997 issue: 6 year: 2017 ident: 10.1016/j.comcom.2020.03.039_b16 article-title: Energy-efficiency-based resource allocation framework for cognitive radio networks with FBMC/OFDM publication-title: IEEE Trans. Veh. Technol. doi: 10.1109/TVT.2016.2622563 – start-page: 1 year: 2016 ident: 10.1016/j.comcom.2020.03.039_b25 article-title: A joint multi-channel assignment and power control scheme for energy efficiency in cognitive radio networks – volume: 5 start-page: 1011 issue: 2 year: 2018 ident: 10.1016/j.comcom.2020.03.039_b8 article-title: An ultra low-power memristive neuromorphic circuit for internet of things smart sensors publication-title: IEEE Internet Things J. doi: 10.1109/JIOT.2018.2799948 – year: 2018 ident: 10.1016/j.comcom.2020.03.039_b24 article-title: Eletrically-small rectenna with huygens radiation pattern for wireless power transfer applications – start-page: 1 year: 2015 ident: 10.1016/j.comcom.2020.03.039_b7 article-title: A strategy for opportunistic cognitive channel allocation in wireless Internet of Things – volume: 22 start-page: 1 issue: 10 year: 2019 ident: 10.1016/j.comcom.2020.03.039_b1 article-title: Implementing self adaptiveness in whale optimization for cluster head section in Internet of Things publication-title: Cluster Comput. – volume: 64 start-page: 1234 issue: 17 year: 2019 ident: 10.1016/j.comcom.2020.03.039_b4 article-title: Internet of things to network smart devices for ecosystem monitoring publication-title: Sci. Bull. doi: 10.1016/j.scib.2019.07.004 – year: 2015 ident: 10.1016/j.comcom.2020.03.039_b23 – year: 2017 ident: 10.1016/j.comcom.2020.03.039_b6 article-title: Security-aware channel assignment in IoT-based cognitive radio networks for time-critical applications – volume: 11 start-page: 1456 issue: 3 year: 2017 ident: 10.1016/j.comcom.2020.03.039_b10 article-title: Performance comparison of cognitive radio sensor networks for industrial IoT with different deployment patterns publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2015.2500518 – start-page: 1802 year: 2017 ident: 10.1016/j.comcom.2020.03.039_b12 article-title: Energy-efficient distributed relay selection in wireless sensor network for internet of things – volume: 11 start-page: 273 issue: 2 year: 2017 ident: 10.1016/j.comcom.2020.03.039_b14 article-title: Robust resource allocation for orthogonal frequency division multiplexing-based cooperative cognitive radio networks with imperfect channel state information publication-title: Iet Commun. doi: 10.1049/iet-com.2016.0742 – start-page: 3784 year: 2014 ident: 10.1016/j.comcom.2020.03.039_b22 article-title: Performance analysis of primary and secondary users in a cognitive multiple-access channel – year: 2019 ident: 10.1016/j.comcom.2020.03.039_b9 article-title: A light-weight authentication scheme for air force internet of things – start-page: 1 year: 2016 ident: 10.1016/j.comcom.2020.03.039_b11 article-title: RF spectrum sensing receiver system with improved frequency channel selectivity for cognitive iot sensor network applications – ident: 10.1016/j.comcom.2020.03.039_b13 doi: 10.1109/ACCESS.2016.2600633 – volume: 10 start-page: 16 issue: 4 year: 2019 ident: 10.1016/j.comcom.2020.03.039_b2 article-title: A simple guide to low-power wireless technologies: Balancing the tradeoffs for the internet of things and medical applications publication-title: IEEE Solid-State Circuits Mag. doi: 10.1109/MSSC.2018.2867404 – volume: 2019 issue: 1 year: 2019 ident: 10.1016/j.comcom.2020.03.039_b26 article-title: Reinforcement learning-based dynamic band and channel selection in cognitive radio ad-hoc networks publication-title: EURASIP J. Wireless Commun. Networking doi: 10.1186/s13638-019-1433-1 – start-page: 566 year: 2014 ident: 10.1016/j.comcom.2020.03.039_b18 article-title: Optimising the location of wireless base stations within a dynamic indoor environment – start-page: 1 year: 2015 ident: 10.1016/j.comcom.2020.03.039_b19 article-title: Optimal location of the base station based on measured interference power – volume: 2019 start-page: 1 issue: 1 year: 2019 ident: 10.1016/j.comcom.2020.03.039_b5 article-title: Attribute reduction based on genetic algorithm for the coevolution of meteorological data in the industrial internet of things publication-title: Wirel. Commun. Mobile Comput. – start-page: 1 year: 2016 ident: 10.1016/j.comcom.2020.03.039_b15 article-title: Co-channel interference constrained spectrum allocation with simultaneous power and network capacity optimization using PSO in cognitive radio network – start-page: 176 year: 2014 ident: 10.1016/j.comcom.2020.03.039_b21 article-title: Positional proportional fairness scheduling based on spectrum aggregation in cognitive radio |
| SSID | ssj0004773 |
| Score | 2.412119 |
| Snippet | Aiming at the problem that the location of the secondary base station affects the interference between the primary and secondary systems directly and the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 91 |
| SubjectTerms | Cognitive radio Frequency spectrum Improved chaos firefly algorithm Interference attack IoT sensor network Resource allocation algorithm Throughput |
| Title | Resource allocation solution for sensor networks using improved chaotic firefly algorithm in IoT environment |
| URI | https://dx.doi.org/10.1016/j.comcom.2020.03.039 |
| Volume | 156 |
| WOSCitedRecordID | wos000528265900009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection - Elsevier customDbUrl: eissn: 1873-703X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004773 issn: 0140-3664 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF6l0EM5VNCHCoVqD71FWzm212sfUQUqHBCHIKJerPV6tzFybZQHAs788M6-Yrep2oJUKXKsVdbe7HwZz0y-mUHoI7jILEnEiDCeJSQupSI8i2OSaL6QLHWnGmGaTbCzs3Qyyc4HgwefC3NTs6ZJb2-z6_8qahgDYevU2UeIe3VRGIBzEDocQexw_CfB-4D8UP-lbgNyQ39HQyqcg-cKb40lgM-HSxMuqEx0AcxPMeWtruKqQBmq-g4u862dVYvpdx0aOWnH_dy4vmnr-0NolnqXc7Iy2S9dYPrrtLpr3eNSE4GqpbXju6HTtlZcVjb9BhZxz_uhiVDzRIlNzrTxsrWcGRfCBM2f2Nrln6RVuymLCOieyU96mfY1q-3p5Z7RI1PddF3920jElZae5gLpNZkStrZe0i-FtQ2vTS8kBEUXgtv4DG2GjGagGzcPT44mp11-LbNMBb9yn4JpeILr9_q9idMzW8bb6KXzN_ChxckOGsjmFdrqVaF8jWqPGNwhBnvEYEAMtojBHjHYIAZ7xGCHGOwQg1eIwVWDATG4h5g36OL4aPz5C3FNOIgAb3JBirSEr5TGtEyUVAWobw4-elxSypliJeU0UqFKgyLKChUXqiwkWNhCiRh8ERmo6C3aaNpGvkN4RCUNElEEaaZ0TUyuRFSKJIgl-MxK0F0U-X3LhatQrxul1LmnIl7ldrdzvdt5EMEr20VkNevaVmj5y-eZF0nurExrPeaAoj_O3HvyzPfoRff72Ecbi9lSHqDn4mZRzWcfHNx-AB1Mqfs |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Resource+allocation+solution+for+sensor+networks+using+improved+chaotic+firefly+algorithm+in+IoT+environment&rft.jtitle=Computer+communications&rft.au=Wang%2C+Zhiyong&rft.au=Liu%2C+Dong&rft.au=Jolfaei%2C+Alireza&rft.date=2020-04-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.eissn=1873-703X&rft.volume=156&rft.spage=91&rft.epage=100&rft_id=info:doi/10.1016%2Fj.comcom.2020.03.039&rft.externalDocID=S0140366420302164 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |