Sparse and robust support vector machine with capped squared loss for large-scale pattern classification

Support vector machine (SVM), being considered one of the most efficient tools for classification, has received widespread attention in various fields. However, its performance is hindered when dealing with large-scale pattern classification tasks due to high memory requirements and running very slo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 153; S. 110544
Hauptverfasser: Wang, Huajun, Zhang, Hongwei, Li, Wenqian
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2024
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Support vector machine (SVM), being considered one of the most efficient tools for classification, has received widespread attention in various fields. However, its performance is hindered when dealing with large-scale pattern classification tasks due to high memory requirements and running very slow. To address this challenge, we construct a novel sparse and robust SVM based on our newly proposed capped squared loss (named as Lcsl-SVM). To solve Lcsl-SVM, we first focus on establishing optimality theory of Lcsl-SVM via our defined proximal stationary point, which is convenient for us to efficiently characterize the Lcsl support vectors of Lcsl-SVM. We subsequently demonstrate that the Lcsl support vectors comprise merely a minor fraction of entire training data. This observation leads us to introduce the concept of the working set. Furthermore, we design a novel subspace fast algorithm with working set (named as Lcsl-ADMM) for solving Lcsl-SVM, which is proven that Lcsl-ADMM has both global convergence and relatively low computational complexity. Finally, numerical experiments show that Lcsl-ADMM has excellent performances in terms of getting the best classification accuracy, using the shortest time and presenting the smallest numbers of support vectors when solving large-scale pattern classification problems. •We establish a novel SVM model called capped squared loss SVM.•We prove the optimality theory for capped squared loss SVM.•We propose a novel subspace fast algorithm with working set to address the capped squared loss SVM.•We demonstrate that our algorithm can efficiently solve the capped squared loss SVM.
AbstractList Support vector machine (SVM), being considered one of the most efficient tools for classification, has received widespread attention in various fields. However, its performance is hindered when dealing with large-scale pattern classification tasks due to high memory requirements and running very slow. To address this challenge, we construct a novel sparse and robust SVM based on our newly proposed capped squared loss (named as Lcsl-SVM). To solve Lcsl-SVM, we first focus on establishing optimality theory of Lcsl-SVM via our defined proximal stationary point, which is convenient for us to efficiently characterize the Lcsl support vectors of Lcsl-SVM. We subsequently demonstrate that the Lcsl support vectors comprise merely a minor fraction of entire training data. This observation leads us to introduce the concept of the working set. Furthermore, we design a novel subspace fast algorithm with working set (named as Lcsl-ADMM) for solving Lcsl-SVM, which is proven that Lcsl-ADMM has both global convergence and relatively low computational complexity. Finally, numerical experiments show that Lcsl-ADMM has excellent performances in terms of getting the best classification accuracy, using the shortest time and presenting the smallest numbers of support vectors when solving large-scale pattern classification problems. •We establish a novel SVM model called capped squared loss SVM.•We prove the optimality theory for capped squared loss SVM.•We propose a novel subspace fast algorithm with working set to address the capped squared loss SVM.•We demonstrate that our algorithm can efficiently solve the capped squared loss SVM.
ArticleNumber 110544
Author Zhang, Hongwei
Wang, Huajun
Li, Wenqian
Author_xml – sequence: 1
  givenname: Huajun
  surname: Wang
  fullname: Wang, Huajun
  email: huajunwang2023@163.com
  organization: Department of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, PR China
– sequence: 2
  givenname: Hongwei
  surname: Zhang
  fullname: Zhang, Hongwei
  email: optimization2024@163.com
  organization: Department of Mathematics and Statistics, Changsha University of Science and Technology, Changsha, PR China
– sequence: 3
  givenname: Wenqian
  surname: Li
  fullname: Li, Wenqian
  email: optimization_li@163.com
  organization: College of Life Science, Hunan Normal University, Changsha, PR China
BookMark eNqFkM1OwzAQhC1UJErhDTj4BVLsOE4IByRU8SdV4kDv1sZet67SJNhuEW-PSzhxgNMcdmc0852TSdd3SMgVZ3POeHm9nQ8Qdb-e5ywv5pwzWRQnZMpvKpFJXuQTMmVM8EzkTJyR8xC2jPEqHaZk8zaAD0ihM9T3zT5EGvbD0PtID6hj7-kO9MZ1SD9c3FANw4CGhvc9-KRtHwK16akFv8YsaGiRpi4RfUd1CyE46zRE13cX5NRCG_DyR2dk9fiwWjxny9enl8X9MtOClTFrCgEMtGwMIq8bgaUBmQaVJRbSSrAgGitrDVJXpqktL8GWlZGsKWrDUcxIMcZqn7p5tGrwbgf-U3GmjrDUVo2w1BGWGmEl2-0vm3bxu3f04Nr_zHejGdOug0OvgnbYaTTOJ4bK9O7vgC-pzY2T
CitedBy_id crossref_primary_10_1016_j_neucom_2025_130893
crossref_primary_10_1016_j_neunet_2024_107087
crossref_primary_10_1016_j_patcog_2024_111288
crossref_primary_10_2478_amns_2024_1984
crossref_primary_10_3390_pr13092858
crossref_primary_10_1016_j_asoc_2024_112331
Cites_doi 10.1007/s11590-021-01756-7
10.1016/j.patcog.2021.107860
10.1016/j.patrec.2010.06.017
10.1016/j.ins.2023.119136
10.1109/TPAMI.2013.178
10.1109/TSMC.2024.3375021
10.1016/j.patcog.2017.09.035
10.1016/j.chemolab.2018.04.003
10.1109/TMI.2023.3306781
10.1016/j.patcog.2023.109478
10.1023/A:1018628609742
10.1007/s10489-023-04511-w
10.1109/TNNLS.2016.2547324
10.1016/j.asoc.2021.107099
10.1016/j.patcog.2020.107395
10.1109/ICDMW.2018.00173
10.1007/s00521-019-04436-x
10.1109/TPAMI.2021.3092177
10.1007/s11063-015-9456-z
10.1007/s00521-022-07460-6
10.1007/s00521-020-04741-w
10.1162/NECO_a_00837
10.1016/j.engappai.2020.103635
10.1007/s11042-023-16412-8
10.1016/j.patcog.2023.109479
10.1016/j.patcog.2017.03.011
10.1007/s00521-020-05225-7
10.1109/TNNLS.2015.2513006
10.1007/BF00994018
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.110544
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2024_110544
S0031320324002954
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-b43a0ac5bdee19b3e6da510566e45f5afa3bf59ca5c7db9f16af67d50b49d1e3
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001241408500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Tue Nov 18 21:53:52 EST 2025
Sat Nov 29 03:52:39 EST 2025
Sat Jun 01 15:41:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Working set
Fast algorithm
Support vectors
Capped squared loss
Low computational complexity
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-b43a0ac5bdee19b3e6da510566e45f5afa3bf59ca5c7db9f16af67d50b49d1e3
ParticipantIDs crossref_primary_10_1016_j_patcog_2024_110544
crossref_citationtrail_10_1016_j_patcog_2024_110544
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110544
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xu, Yang, Pan (b20) 2017; 28
Feng, Xu (b13) 2022; 34
Wang, Shao, Zhou, Zhang, Xiu (b24) 2022; 40
Huang, Shi, Suykens (b9) 2014; 36
Gao, Chen (b2) 2023; 140
Huang, Zheng, Sun, Hotta, Fujimoto, Naoi (b17) 2010; 31
Wang, Shao, Xiu (b30) 2022; 16
Wang, Shao (b16) 2023; 53
Wang, Zhou, Shao (b35) 2023; 283
Yuan, Xu (b18) 2021; 114
Zhou, Xiu, Qi (b32) 2021; 22
Xu, Caramanis, Mannor (b15) 2009; 10
Hazarika, Gupta (b27) 2022; 215
Wang, Xu, Zhou (b10) 2021; 33
Shen, Niu, Qi, Tian (b12) 2017; 68
L. Guan, L. Qiao, D. Li, T. Sun, K. Ge, X. Lu, An efficient ADMM-based algorithm to nonconvex penalized support vector machines, in: Proc. IEEE Int. Conf. Data Mining Workshops, 2018, pp. 1209–1216.
Gupta, Hazarika, Berlin (b26) 2020; 32
Rockafellar, Wets (b36) 2009
Wang, Chen, Liu, Elliott, Kwok, Pena, Frazer, Mccarthy, Carneiro (b38) 2024; 43
Xi, Huang, Suykens, Wang (b7) 2016; 43
Suykens, Vandewalle (b6) 1999; 9
Wang, Shao (b39) 2024
Yang, Dong (b34) 2018; 177
Borah, Gupta (b28) 2020; 32
Huang, Shi, Suykens (b19) 2017; 28
Wang, Zhu, Shao (b21) 2024
Zhu, Song, Xiao (b5) 2020; 91
Cortes, Vapnik (b1) 1995; 20
Golub, Van-Loan (b37) 1996
Wang, Li, Wang (b31) 2023; 642
Yu, Li, Liu (b3) 2023; 139
Allen-Zhu (b8) 2018; 18
Gupta, Gupta, Sarma (b11) 2024; 83
Wang, Xiu, Zhou (b33) 2022
Feng, Yang, Huang, Mehrkanoon, Suykens (b4) 2016; 28
Gupta, Gupta (b22) 2021; 102
Singla, Ghosh, Shukla, Pedrycz (b29) 2020; 105
Yan, Ye, Zhang, Yu, Yuan, Xu, Fu (b23) 2018; 74
Wang, Shao (b25) 2023; 26
Wang (10.1016/j.patcog.2024.110544_b25) 2023; 26
Wang (10.1016/j.patcog.2024.110544_b39) 2024
Wang (10.1016/j.patcog.2024.110544_b10) 2021; 33
Shen (10.1016/j.patcog.2024.110544_b12) 2017; 68
Wang (10.1016/j.patcog.2024.110544_b16) 2023; 53
Feng (10.1016/j.patcog.2024.110544_b13) 2022; 34
Suykens (10.1016/j.patcog.2024.110544_b6) 1999; 9
Singla (10.1016/j.patcog.2024.110544_b29) 2020; 105
Xu (10.1016/j.patcog.2024.110544_b20) 2017; 28
Wang (10.1016/j.patcog.2024.110544_b38) 2024; 43
Wang (10.1016/j.patcog.2024.110544_b35) 2023; 283
Wang (10.1016/j.patcog.2024.110544_b21) 2024
Yan (10.1016/j.patcog.2024.110544_b23) 2018; 74
Wang (10.1016/j.patcog.2024.110544_b24) 2022; 40
Zhou (10.1016/j.patcog.2024.110544_b32) 2021; 22
Allen-Zhu (10.1016/j.patcog.2024.110544_b8) 2018; 18
Cortes (10.1016/j.patcog.2024.110544_b1) 1995; 20
Gao (10.1016/j.patcog.2024.110544_b2) 2023; 140
Zhu (10.1016/j.patcog.2024.110544_b5) 2020; 91
Wang (10.1016/j.patcog.2024.110544_b31) 2023; 642
Huang (10.1016/j.patcog.2024.110544_b19) 2017; 28
Hazarika (10.1016/j.patcog.2024.110544_b27) 2022; 215
Huang (10.1016/j.patcog.2024.110544_b17) 2010; 31
Borah (10.1016/j.patcog.2024.110544_b28) 2020; 32
Wang (10.1016/j.patcog.2024.110544_b33) 2022
Huang (10.1016/j.patcog.2024.110544_b9) 2014; 36
Golub (10.1016/j.patcog.2024.110544_b37) 1996
Xu (10.1016/j.patcog.2024.110544_b15) 2009; 10
10.1016/j.patcog.2024.110544_b14
Gupta (10.1016/j.patcog.2024.110544_b22) 2021; 102
Gupta (10.1016/j.patcog.2024.110544_b26) 2020; 32
Yu (10.1016/j.patcog.2024.110544_b3) 2023; 139
Xi (10.1016/j.patcog.2024.110544_b7) 2016; 43
Yuan (10.1016/j.patcog.2024.110544_b18) 2021; 114
Feng (10.1016/j.patcog.2024.110544_b4) 2016; 28
Rockafellar (10.1016/j.patcog.2024.110544_b36) 2009
Gupta (10.1016/j.patcog.2024.110544_b11) 2024; 83
Wang (10.1016/j.patcog.2024.110544_b30) 2022; 16
Yang (10.1016/j.patcog.2024.110544_b34) 2018; 177
References_xml – volume: 18
  start-page: 1
  year: 2018
  end-page: 51
  ident: b8
  article-title: Katyusha: the first direct acceleration of stochastic gradient methods
  publication-title: J. Mach. Learn. Res.
– volume: 34
  start-page: 18643
  year: 2022
  end-page: 18661
  ident: b13
  article-title: Support matrix machine with pinball loss for classification
  publication-title: Neural Comput. Appl.
– volume: 16
  start-page: 999
  year: 2022
  end-page: 1014
  ident: b30
  article-title: Proximal operator and optimality conditions for ramp loss SVM
  publication-title: Optim. Lett.
– volume: 177
  start-page: 89
  year: 2018
  end-page: 99
  ident: b34
  article-title: Support vector machine with truncated pinball loss and its application in pattern recognition
  publication-title: Chemometr. Intell. Lab. Syst.
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b6
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
– volume: 32
  start-page: 12971
  year: 2020
  end-page: 12998
  ident: b26
  article-title: Robust regularized extreme learning machine with asymmetric Huber loss function
  publication-title: Neural Comput. Appl.
– volume: 28
  start-page: 1217
  year: 2016
  end-page: 1247
  ident: b4
  article-title: Robust support vector machines for classification with nonconvex and smooth losses
  publication-title: Neural Comput.
– volume: 53
  start-page: 19647
  year: 2023
  end-page: 19671
  ident: b16
  article-title: Sparse and robust SVM classifier for large scale classification
  publication-title: Appl. Intell.
– volume: 114
  year: 2021
  ident: b18
  article-title: Bound estimation-based safe acceleration for maximum margin of twin spheres machine with pinball loss
  publication-title: Pattern Recognit.
– year: 2024
  ident: b21
  article-title: Fast support vector machine with low computational complexity for large-scale classification
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
– volume: 140
  year: 2023
  ident: b2
  article-title: Multicycle disassembly-based decomposition algorithm to train multiclass support vector machines
  publication-title: Pattern Recognit.
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b1
  article-title: Support vector networks
  publication-title: Mach. Learn.
– volume: 215
  year: 2022
  ident: b27
  article-title: Random vector functional link with
  publication-title: Comput. Meth. Prg. Bio.
– volume: 22
  start-page: 1
  year: 2021
  end-page: 45
  ident: b32
  article-title: Global and quadratic convergence of Newton hard-thresholding pursuit
  publication-title: J. Mach. Learn. Res.
– volume: 28
  start-page: 1584
  year: 2017
  end-page: 1593
  ident: b19
  article-title: Solution path for pin-SVM classifiers with positive and negative
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– year: 2022
  ident: b33
  article-title: An extended Newton-type algorithm for L2-regularized sparse logistic regression and its efficiency for classifying large-scale datasets
  publication-title: J. Comput. Appl. Math.
– volume: 26
  year: 2023
  ident: b25
  article-title: Fast truncated Huber loss SVM for large scale classification
  publication-title: Knowl. Based. Syst.
– volume: 68
  start-page: 199
  year: 2017
  end-page: 210
  ident: b12
  article-title: Support vector machine classifier with truncated pinball loss
  publication-title: Pattern Recognit.
– reference: L. Guan, L. Qiao, D. Li, T. Sun, K. Ge, X. Lu, An efficient ADMM-based algorithm to nonconvex penalized support vector machines, in: Proc. IEEE Int. Conf. Data Mining Workshops, 2018, pp. 1209–1216.
– volume: 642
  year: 2023
  ident: b31
  article-title: Fast SVM classifier for large-scale classification problems
  publication-title: Inform. Sci.
– volume: 36
  start-page: 984
  year: 2014
  end-page: 997
  ident: b9
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 105
  year: 2020
  ident: b29
  article-title: Robust twin support vector regression based on rescaled hinge loss
  publication-title: Pattern Recognit.
– volume: 33
  start-page: 3781
  year: 2021
  end-page: 3798
  ident: b10
  article-title: Twin-parametric margin support vector machine with truncated pinball loss
  publication-title: Neural Comput. Appl.
– volume: 283
  start-page: 1
  year: 2023
  end-page: 16
  ident: b35
  article-title: A new fast ADMM for kernelless SVM classifier with truncated fraction loss
  publication-title: Knowl.-Based. Syst.
– volume: 91
  year: 2020
  ident: b5
  article-title: Support vector machine classifier with huberized pinball loss
  publication-title: Eng. Appl. Artif. Intell.
– volume: 102
  year: 2021
  ident: b22
  article-title: On robust asymmetric Lagrangian
  publication-title: Appl. Soft Comput.
– volume: 74
  start-page: 434
  year: 2018
  end-page: 447
  ident: b23
  article-title: Least squares twin bounded support vector machines based on L1-norm distance metric for classification
  publication-title: Pattern Recognit.
– start-page: 1
  year: 2024
  end-page: 13
  ident: b39
  article-title: Fast generalized ramp loss support vector machine for pattern classification
  publication-title: Pattern Recognit.
– volume: 43
  start-page: 887
  year: 2016
  end-page: 903
  ident: b7
  article-title: Coordinate descent algorithm for ramp loss linear programming support vector machines
  publication-title: Neural Process. Lett.
– volume: 43
  start-page: 392
  year: 2024
  end-page: 404
  ident: b38
  article-title: An interpretable and accurate deep-learning diagnosis framework modelled with fully and semi-supervised reciprocal learning
  publication-title: IEEE Trans. Med. Imaging
– year: 1996
  ident: b37
  article-title: Matrix Computations
– volume: 28
  start-page: 359
  year: 2017
  end-page: 370
  ident: b20
  article-title: A novel twin support vector machine with pinball loss
  publication-title: IEEE Trans. Neural Netw. Learn.
– volume: 83
  start-page: 22119
  year: 2024
  end-page: 22151
  ident: b11
  article-title: Functional iterative approach for Universum-based primal twin bounded support vector machine to EEG classification (FUPTBSVM)
  publication-title: Multimed. Tools. Appl.
– volume: 10
  start-page: 1485
  year: 2009
  end-page: 1510
  ident: b15
  article-title: Robustness and regularization of support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 32
  start-page: 9245
  year: 2020
  end-page: 9265
  ident: b28
  article-title: Functional iterative approaches for solving support vector classification problems based on generalized huber loss
  publication-title: Neural Comput. Appl.
– volume: 139
  year: 2023
  ident: b3
  article-title: Fast support vector machine training via three-term conjugate-like SMO algorithm
  publication-title: Pattern Recognit.
– volume: 40
  start-page: 7253
  year: 2022
  end-page: 7265
  ident: b24
  article-title: Support vector machine classifier via
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2009
  ident: b36
  article-title: Variational Analysis
– volume: 31
  start-page: 1944
  year: 2010
  end-page: 1951
  ident: b17
  article-title: Sparse learning for support vector classification
  publication-title: Pattern Recognit. Lett.
– volume: 16
  start-page: 999
  issue: 3
  year: 2022
  ident: 10.1016/j.patcog.2024.110544_b30
  article-title: Proximal operator and optimality conditions for ramp loss SVM
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-021-01756-7
– volume: 283
  start-page: 1
  year: 2023
  ident: 10.1016/j.patcog.2024.110544_b35
  article-title: A new fast ADMM for kernelless SVM classifier with truncated fraction loss
  publication-title: Knowl.-Based. Syst.
– volume: 114
  year: 2021
  ident: 10.1016/j.patcog.2024.110544_b18
  article-title: Bound estimation-based safe acceleration for maximum margin of twin spheres machine with pinball loss
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107860
– volume: 31
  start-page: 1944
  issue: 13
  year: 2010
  ident: 10.1016/j.patcog.2024.110544_b17
  article-title: Sparse learning for support vector classification
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2010.06.017
– volume: 642
  year: 2023
  ident: 10.1016/j.patcog.2024.110544_b31
  article-title: Fast SVM classifier for large-scale classification problems
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2023.119136
– volume: 36
  start-page: 984
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2024.110544_b9
  article-title: Support vector machine classifier with pinball loss
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.178
– year: 2024
  ident: 10.1016/j.patcog.2024.110544_b21
  article-title: Fast support vector machine with low computational complexity for large-scale classification
  publication-title: IEEE Trans. Syst. Man, Cybern. Syst.
  doi: 10.1109/TSMC.2024.3375021
– volume: 74
  start-page: 434
  year: 2018
  ident: 10.1016/j.patcog.2024.110544_b23
  article-title: Least squares twin bounded support vector machines based on L1-norm distance metric for classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.035
– volume: 177
  start-page: 89
  year: 2018
  ident: 10.1016/j.patcog.2024.110544_b34
  article-title: Support vector machine with truncated pinball loss and its application in pattern recognition
  publication-title: Chemometr. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2018.04.003
– volume: 43
  start-page: 392
  issue: 1
  year: 2024
  ident: 10.1016/j.patcog.2024.110544_b38
  article-title: An interpretable and accurate deep-learning diagnosis framework modelled with fully and semi-supervised reciprocal learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2023.3306781
– volume: 139
  year: 2023
  ident: 10.1016/j.patcog.2024.110544_b3
  article-title: Fast support vector machine training via three-term conjugate-like SMO algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109478
– volume: 9
  start-page: 293
  year: 1999
  ident: 10.1016/j.patcog.2024.110544_b6
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– volume: 26
  year: 2023
  ident: 10.1016/j.patcog.2024.110544_b25
  article-title: Fast truncated Huber loss SVM for large scale classification
  publication-title: Knowl. Based. Syst.
– volume: 53
  start-page: 19647
  year: 2023
  ident: 10.1016/j.patcog.2024.110544_b16
  article-title: Sparse and robust SVM classifier for large scale classification
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04511-w
– start-page: 1
  year: 2024
  ident: 10.1016/j.patcog.2024.110544_b39
  article-title: Fast generalized ramp loss support vector machine for pattern classification
  publication-title: Pattern Recognit.
– volume: 28
  start-page: 1584
  issue: 7
  year: 2017
  ident: 10.1016/j.patcog.2024.110544_b19
  article-title: Solution path for pin-SVM classifiers with positive and negative τ values
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2547324
– volume: 102
  year: 2021
  ident: 10.1016/j.patcog.2024.110544_b22
  article-title: On robust asymmetric Lagrangian ν-twin support vector regression using pinball loss function
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107099
– year: 2022
  ident: 10.1016/j.patcog.2024.110544_b33
  article-title: An extended Newton-type algorithm for L2-regularized sparse logistic regression and its efficiency for classifying large-scale datasets
  publication-title: J. Comput. Appl. Math.
– volume: 105
  year: 2020
  ident: 10.1016/j.patcog.2024.110544_b29
  article-title: Robust twin support vector regression based on rescaled hinge loss
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107395
– year: 2009
  ident: 10.1016/j.patcog.2024.110544_b36
– ident: 10.1016/j.patcog.2024.110544_b14
  doi: 10.1109/ICDMW.2018.00173
– volume: 32
  start-page: 9245
  issue: 13
  year: 2020
  ident: 10.1016/j.patcog.2024.110544_b28
  article-title: Functional iterative approaches for solving support vector classification problems based on generalized huber loss
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04436-x
– volume: 40
  start-page: 7253
  issue: 10
  year: 2022
  ident: 10.1016/j.patcog.2024.110544_b24
  article-title: Support vector machine classifier via L0/1 soft-margin loss
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2021.3092177
– volume: 43
  start-page: 887
  year: 2016
  ident: 10.1016/j.patcog.2024.110544_b7
  article-title: Coordinate descent algorithm for ramp loss linear programming support vector machines
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-015-9456-z
– volume: 34
  start-page: 18643
  issue: 21
  year: 2022
  ident: 10.1016/j.patcog.2024.110544_b13
  article-title: Support matrix machine with pinball loss for classification
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-022-07460-6
– volume: 32
  start-page: 12971
  issue: 16
  year: 2020
  ident: 10.1016/j.patcog.2024.110544_b26
  article-title: Robust regularized extreme learning machine with asymmetric Huber loss function
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04741-w
– volume: 28
  start-page: 1217
  issue: 6
  year: 2016
  ident: 10.1016/j.patcog.2024.110544_b4
  article-title: Robust support vector machines for classification with nonconvex and smooth losses
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00837
– volume: 91
  year: 2020
  ident: 10.1016/j.patcog.2024.110544_b5
  article-title: Support vector machine classifier with huberized pinball loss
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2020.103635
– volume: 22
  start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2024.110544_b32
  article-title: Global and quadratic convergence of Newton hard-thresholding pursuit
  publication-title: J. Mach. Learn. Res.
– volume: 10
  start-page: 1485
  issue: 7
  year: 2009
  ident: 10.1016/j.patcog.2024.110544_b15
  article-title: Robustness and regularization of support vector machines
  publication-title: J. Mach. Learn. Res.
– volume: 215
  year: 2022
  ident: 10.1016/j.patcog.2024.110544_b27
  article-title: Random vector functional link with ɛ-insensitive Huber loss function for biomedical data classification
  publication-title: Comput. Meth. Prg. Bio.
– year: 1996
  ident: 10.1016/j.patcog.2024.110544_b37
– volume: 83
  start-page: 22119
  year: 2024
  ident: 10.1016/j.patcog.2024.110544_b11
  article-title: Functional iterative approach for Universum-based primal twin bounded support vector machine to EEG classification (FUPTBSVM)
  publication-title: Multimed. Tools. Appl.
  doi: 10.1007/s11042-023-16412-8
– volume: 140
  year: 2023
  ident: 10.1016/j.patcog.2024.110544_b2
  article-title: Multicycle disassembly-based decomposition algorithm to train multiclass support vector machines
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109479
– volume: 68
  start-page: 199
  year: 2017
  ident: 10.1016/j.patcog.2024.110544_b12
  article-title: Support vector machine classifier with truncated pinball loss
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.03.011
– volume: 18
  start-page: 1
  issue: 221
  year: 2018
  ident: 10.1016/j.patcog.2024.110544_b8
  article-title: Katyusha: the first direct acceleration of stochastic gradient methods
  publication-title: J. Mach. Learn. Res.
– volume: 33
  start-page: 3781
  year: 2021
  ident: 10.1016/j.patcog.2024.110544_b10
  article-title: Twin-parametric margin support vector machine with truncated pinball loss
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-05225-7
– volume: 28
  start-page: 359
  issue: 2
  year: 2017
  ident: 10.1016/j.patcog.2024.110544_b20
  article-title: A novel twin support vector machine with pinball loss
  publication-title: IEEE Trans. Neural Netw. Learn.
  doi: 10.1109/TNNLS.2015.2513006
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.patcog.2024.110544_b1
  article-title: Support vector networks
  publication-title: Mach. Learn.
  doi: 10.1007/BF00994018
SSID ssj0017142
Score 2.4932413
Snippet Support vector machine (SVM), being considered one of the most efficient tools for classification, has received widespread attention in various fields....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110544
SubjectTerms Capped squared loss
Fast algorithm
Low computational complexity
Support vectors
Working set
Title Sparse and robust support vector machine with capped squared loss for large-scale pattern classification
URI https://dx.doi.org/10.1016/j.patcog.2024.110544
Volume 153
WOSCitedRecordID wos001241408500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECVcp4deuhdNuoCH3gwF2kiKx6BI4fYQBIiB-KaS1KiN4cqKZbn5_AxFSk6aohvQi2AQomRxnkaPwzdDQt6ZOIaIizIoS7ChGx0HlkYEIPBjEkPBQ5N1m02Ik5NsPpeno9HnPhdmuxRVlV1dyfq_mhrb0Ng2dfYvzD1cFBvwNxodj2h2PP6R4c9qnKu6RYH1SrfNZtK0tWXZk20XoZ986_ST4FXnqq6RczaXbadEX-I3s1MeLq1CPGjQgmBrr9qw4cRYpm2lRTtrelp76s8Y5Ei7xf1zH5CetmrRDq1DnHq6qr58h4tBF9SJC86huuxh6yMScTpIrnyYrE-V2emSOteLCEji0HkzcN42E0mAjO22O3bFg--4dhdlWBziM-OjHNob2xwG5spH_lA0-8zVpAxtucHQLmXeI3uxYDIbk72jj8fzT8NKk4hSV1He_70-vbLTAN6918_pyw1KMntMHvq5BD1yGHhCRlA9JY_6fTqod9vPyFcHCYqQoA4S1EOCOkhQDwlqIUEdJKiHBLWQoAgJegMS1EOC3obEczL7cDx7Pw38DhuBwaniJtBpokJlmC4AIqkT4IWyjJtzSFnJVKkSXTJpFDOi0LKMuCq5KFioU1lEkLwg42pVwUtCJZdglEZ6GLO0FCqTwIDFTPNE80KrfZL045YbX33eboKyzHuZ4SJ3o53b0c7daO-TYOhVu-orvzlf9CbJPYN0zDBHFP2y58E_93xFHuxegtdkvFm38IbcN9vNRbN-6-F2DeiUnIY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sparse+and+robust+support+vector+machine+with+capped+squared+loss+for+large-scale+pattern+classification&rft.jtitle=Pattern+recognition&rft.au=Wang%2C+Huajun&rft.au=Zhang%2C+Hongwei&rft.au=Li%2C+Wenqian&rft.date=2024-09-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=153&rft_id=info:doi/10.1016%2Fj.patcog.2024.110544&rft.externalDocID=S0031320324002954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon