SAAS parallel task scheduling based on cloud service flow load algorithm

In cloud platform applications, the user’s goal is to obtain high-quality application services, while the service provider’s goal is to obtain revenue by performing the tasks submitted by the user. The platform built by the service provider’s application resources needs to improve the mapping betwee...

Full description

Saved in:
Bibliographic Details
Published in:Computer communications Vol. 182; pp. 170 - 183
Main Authors: Zhu, Jian, Li, Qian, Ying, Shi
Format: Journal Article
Language:English
Published: Elsevier B.V 15.01.2022
Subjects:
ISSN:0140-3664
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In cloud platform applications, the user’s goal is to obtain high-quality application services, while the service provider’s goal is to obtain revenue by performing the tasks submitted by the user. The platform built by the service provider’s application resources needs to improve the mapping between service requests and resources to achieve higher value. Through the current situation of resource management in the cloud environment, it is found that many task scheduling and resource allocation algorithms are still affected by factors such as the diversity, dynamics, and multiple constraints of resources and tasks. This paper focuses on Software as a Service (SaaS) applications’ task scheduling and resource configuration in a dynamic and uncertain cloud environment. It is a challenging online scheduling problem to automatically and intelligently allocate user task requests that continually reach SaaS applications to appropriate resources for execution. To this end, a real-time task scheduling method based on deep reinforcement learning is proposed, which automatically and intelligently allocates user task requests that continually reach SaaS applications to appropriate resources for execution. In this way, the limited virtual machine resources rented by SaaS providers can be used in a balanced and efficient manner. In the experiment, by comparing with other five task scheduling algorithms, it is proved that the algorithm proposed in this paper not only improves the execution efficiency of better deploying workflow in IaaS public cloud, but also makes the resources provided by SaaS are used in a balanced and efficient manner.
AbstractList In cloud platform applications, the user’s goal is to obtain high-quality application services, while the service provider’s goal is to obtain revenue by performing the tasks submitted by the user. The platform built by the service provider’s application resources needs to improve the mapping between service requests and resources to achieve higher value. Through the current situation of resource management in the cloud environment, it is found that many task scheduling and resource allocation algorithms are still affected by factors such as the diversity, dynamics, and multiple constraints of resources and tasks. This paper focuses on Software as a Service (SaaS) applications’ task scheduling and resource configuration in a dynamic and uncertain cloud environment. It is a challenging online scheduling problem to automatically and intelligently allocate user task requests that continually reach SaaS applications to appropriate resources for execution. To this end, a real-time task scheduling method based on deep reinforcement learning is proposed, which automatically and intelligently allocates user task requests that continually reach SaaS applications to appropriate resources for execution. In this way, the limited virtual machine resources rented by SaaS providers can be used in a balanced and efficient manner. In the experiment, by comparing with other five task scheduling algorithms, it is proved that the algorithm proposed in this paper not only improves the execution efficiency of better deploying workflow in IaaS public cloud, but also makes the resources provided by SaaS are used in a balanced and efficient manner.
Author Li, Qian
Ying, Shi
Zhu, Jian
Author_xml – sequence: 1
  givenname: Jian
  surname: Zhu
  fullname: Zhu, Jian
  organization: School of Computer Science, Wuhan University, Wuhan, 430072, China
– sequence: 2
  givenname: Qian
  surname: Li
  fullname: Li, Qian
  organization: School of Computer and Information Engineering, Guangxi Vocational Normal University, Nanning, 530007, China
– sequence: 3
  givenname: Shi
  orcidid: 0000-0002-1372-7044
  surname: Ying
  fullname: Ying, Shi
  email: yingshi@whu.edu.cn
  organization: School of Computer Science, Wuhan University, Wuhan, 430072, China
BookMark eNqFkMFKAzEURbOoYFv9Axf5gRlfJulk6kIoRa1QcFFdh0zypk1NJyWZVvx7p7QrFwoPLlw4F94ZkUEbWiTkjkHOgJX329yEXX95AQXrqxy4HJAhMAEZL0txTUYpbQFASMmHZLGazVZ0r6P2Hj3tdPqkyWzQHrxr17TWCS0NLTU-HCxNGI_OIG18-KI-aEu1X4fous3uhlw12ie8veSYfDw_vc8X2fLt5XU-W2aGQ9lluikrKJBLLoRllS4asKWR0lRVVYsJSi1MXUlsmongZqpBiikT2ky5qKFmgo_Jw3nXxJBSxEYZ1-nOhbaL2nnFQJ08qK06e1AnD6e299DD4he8j26n4_d_2OMZw_6xo8OoknHYGrQuoumUDe7vgR8F8X3f
CitedBy_id crossref_primary_10_1016_j_cie_2024_110523
crossref_primary_10_1109_TMC_2023_3315334
crossref_primary_10_1016_j_eswa_2025_129008
crossref_primary_10_3390_electronics12061358
crossref_primary_10_1016_j_jii_2023_100492
crossref_primary_10_1016_j_comcom_2022_06_004
crossref_primary_10_3390_machines10090775
crossref_primary_10_1007_s41660_025_00532_9
crossref_primary_10_1080_00207543_2024_2442549
crossref_primary_10_1016_j_comcom_2022_11_018
Cites_doi 10.1016/j.epsr.2016.08.031
10.1016/j.jsv.2016.11.006
10.1016/j.neucom.2016.09.027
10.1016/j.comcom.2017.02.011
10.1109/TITS.2020.2973736
10.1109/TNNLS.2016.2522401
10.1016/j.future.2018.09.039
10.1109/TIE.2018.2795555
10.1016/j.comcom.2019.12.050
10.1016/j.comcom.2020.10.005
10.1145/3178876.3185994
10.1007/s00500-015-1798-y
10.1016/j.comcom.2020.06.016
10.1016/j.jesit.2017.05.008
10.1007/s11227-020-03506-5
10.1016/j.cosrev.2018.08.002
10.1046/j.1365-246X.2003.01902.x
10.1016/j.jnca.2018.11.007
10.1109/TSC.2016.2528246
10.1002/ett.4277
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.comcom.2021.10.037
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EndPage 183
ExternalDocumentID 10_1016_j_comcom_2021_10_037
S0140366421004175
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
77K
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
RXW
SDF
SDG
SDP
SES
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
WH7
ZMT
~G-
07C
29F
77I
9DU
AAQXK
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFJKZ
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
F0J
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
TAE
UHS
VH1
VOH
WUQ
XPP
ZY4
~HD
ID FETCH-LOGICAL-c306t-af6802e37344d18a2f0d6c77c888b45e7a4cb87eff543c9a074914ac934b0b143
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794967200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0140-3664
IngestDate Tue Nov 18 22:51:07 EST 2025
Sat Nov 29 07:25:04 EST 2025
Sun Apr 06 06:54:34 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords DQN algorithm
Network space status
Parallel task management
Cloud service flow
SAAS task scheduling
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-af6802e37344d18a2f0d6c77c888b45e7a4cb87eff543c9a074914ac934b0b143
ORCID 0000-0002-1372-7044
PageCount 14
ParticipantIDs crossref_citationtrail_10_1016_j_comcom_2021_10_037
crossref_primary_10_1016_j_comcom_2021_10_037
elsevier_sciencedirect_doi_10_1016_j_comcom_2021_10_037
PublicationCentury 2000
PublicationDate 2022-01-15
PublicationDateYYYYMMDD 2022-01-15
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-15
  day: 15
PublicationDecade 2020
PublicationTitle Computer communications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Li, Chen, Zhao, Huang (b29) 2021
Xia, Zhang, Cao (b6) 2018; 5
Zhang, Huang, Zhao (b22) 2018; 32
Jadad, Touzene, Day, Alziedi, Arafeh (b30) 2019; 9
Jin, Guo, Xu, Wang, Wang (b28) 2020; 22
Sutton, Barto (b26) 2018
Guo, Yu, Yang, Liao (b31) 2019; 56
Shabestari, Rahmani, Navimipour, Jabbehdari (b33) 2019; 126
Deng, Bao, Kong, Ren, Dai (b25) 2016; 28
Wei, Fan, Song, Fan, Yang (b14) 2016; 11
Xi, Haoran, Xinna (b17) 2019; 42
Mishra, Narayan Sahoo, Satpathy (b21) 2021
Zheng, Pan, Liu (b12) 2018; 176
Harrath, Bahlool, Rashed (b27) 2019
Černe, Dovžan, Škrjanc (b3) 2018; 65
Zheng, Zhang, Li, Xi (b10) 2020; 164
Aouzal, Hafiddi, Dahchour (b20) 2020
Liu, Li, Xu, Xu, Lin, Qiu, Tang, Wang (b11) 2017
Zhang, Xia (b7) 2017; 389
Lavanya, Shanthi, Saravanan (b19) 2020; 151
Hu, Wen, Zeng, Huang (b4) 2017; 221
Boroojeni, Amini, Bahrami, Iyengar, Sarwat, Karabasoglu (b5) 2017; 142
Yang, Wang, Zhang, Zhao, Pen (b32) 2019; 42
Bhamare, Samaka, Erbad, Jain, Gupta, Chan (b13) 2017; 102
Pandiyan, Lawrence, Sathiyamoorthi, Ramasamy, Xia, Guo (b9) 2020; 160
G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N.J. Yuan, X. Xie, Z. Li, DRN: A deep reinforcement learning framework for news recommendation, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 167–176.
Li, Zhang, Han, Ji, Dong, Hu (b23) 2021; 77
Bittencourt, Goldman, Madeira, da Fonseca, Sakellariou (b15) 2018; 30
Peng, Gao, Li (b8) 2017
Cheng, Chou, Cao (b1) 2017; 21
Bingjie, Yong, Shuxin, Bin, Shucan (b18) 2020; 57
Amit, Aniban (b16) 2019; 9
Wang, Wang, Zhao, Cheng (b34) 2019; 92
Manoj, Nagarajan (b2) 2018; 153
Amit (10.1016/j.comcom.2021.10.037_b16) 2019; 9
Shabestari (10.1016/j.comcom.2021.10.037_b33) 2019; 126
Guo (10.1016/j.comcom.2021.10.037_b31) 2019; 56
Harrath (10.1016/j.comcom.2021.10.037_b27) 2019
Cheng (10.1016/j.comcom.2021.10.037_b1) 2017; 21
Li (10.1016/j.comcom.2021.10.037_b29) 2021
Černe (10.1016/j.comcom.2021.10.037_b3) 2018; 65
Jin (10.1016/j.comcom.2021.10.037_b28) 2020; 22
Bhamare (10.1016/j.comcom.2021.10.037_b13) 2017; 102
Zhang (10.1016/j.comcom.2021.10.037_b22) 2018; 32
Pandiyan (10.1016/j.comcom.2021.10.037_b9) 2020; 160
Peng (10.1016/j.comcom.2021.10.037_b8) 2017
10.1016/j.comcom.2021.10.037_b24
Aouzal (10.1016/j.comcom.2021.10.037_b20) 2020
Zheng (10.1016/j.comcom.2021.10.037_b12) 2018; 176
Mishra (10.1016/j.comcom.2021.10.037_b21) 2021
Jadad (10.1016/j.comcom.2021.10.037_b30) 2019; 9
Wei (10.1016/j.comcom.2021.10.037_b14) 2016; 11
Wang (10.1016/j.comcom.2021.10.037_b34) 2019; 92
Li (10.1016/j.comcom.2021.10.037_b23) 2021; 77
Zhang (10.1016/j.comcom.2021.10.037_b7) 2017; 389
Lavanya (10.1016/j.comcom.2021.10.037_b19) 2020; 151
Boroojeni (10.1016/j.comcom.2021.10.037_b5) 2017; 142
Xia (10.1016/j.comcom.2021.10.037_b6) 2018; 5
Bingjie (10.1016/j.comcom.2021.10.037_b18) 2020; 57
Manoj (10.1016/j.comcom.2021.10.037_b2) 2018; 153
Hu (10.1016/j.comcom.2021.10.037_b4) 2017; 221
Deng (10.1016/j.comcom.2021.10.037_b25) 2016; 28
Sutton (10.1016/j.comcom.2021.10.037_b26) 2018
Liu (10.1016/j.comcom.2021.10.037_b11) 2017
Xi (10.1016/j.comcom.2021.10.037_b17) 2019; 42
Bittencourt (10.1016/j.comcom.2021.10.037_b15) 2018; 30
Yang (10.1016/j.comcom.2021.10.037_b32) 2019; 42
Zheng (10.1016/j.comcom.2021.10.037_b10) 2020; 164
References_xml – volume: 28
  start-page: 653
  year: 2016
  end-page: 664
  ident: b25
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 65
  start-page: 7406
  year: 2018
  end-page: 7415
  ident: b3
  article-title: Short-term load forecasting by separating daily profiles and using a single fuzzy model across the entire domain
  publication-title: IEEE Trans. Ind. Electron.
– volume: 153
  start-page: 409
  year: 2018
  end-page: 423
  ident: b2
  article-title: The application of artificial neural networks to magnetotelluric time-series analysis
  publication-title: Geophys. J. R. Astron. Soc.
– volume: 56
  start-page: 810
  year: 2019
  end-page: 824
  ident: b31
  article-title: Energy modeling and plan evaluation for queries in relational databases
  publication-title: J. Comput. Res. Dev.
– volume: 102
  start-page: 1
  year: 2017
  end-page: 16
  ident: b13
  article-title: Optimal virtual network function placement in multi-cloud service function chaining architecture
  publication-title: Comput. Commun.
– volume: 9
  start-page: 1
  year: 2019
  end-page: 21
  ident: b16
  article-title: A novel meta-information management system for saas
  publication-title: Int. J. Cloud Appl. Comput. (IJCAC)
– volume: 11
  start-page: 78
  year: 2016
  end-page: 89
  ident: b14
  article-title: Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing
  publication-title: IEEE Trans. Serv. Comput.
– reference: G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N.J. Yuan, X. Xie, Z. Li, DRN: A deep reinforcement learning framework for news recommendation, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 167–176.
– volume: 32
  year: 2018
  ident: b22
  article-title: Learning structured representation for text classification via reinforcement learning
  publication-title: Proc. AAAI Conf. Artif. Intell.
– volume: 9
  start-page: 58
  year: 2019
  end-page: 74
  ident: b30
  article-title: Context-aware prediction model for offloading mobile application tasks to mobile cloud environments
  publication-title: Int. J. Cloud Appl. Comput.
– start-page: 63
  year: 2018
  end-page: 74
  ident: b26
  article-title: Reinforcement learning: An introduction
  publication-title: MIT Press
– volume: 5
  start-page: 681
  year: 2018
  end-page: 696
  ident: b6
  article-title: A hybrid application of soft computing methods with wavelet SVM and neural network to electric power load forecasting
  publication-title: J. Electr. Syst. Inf. Technol.
– volume: 160
  start-page: 512
  year: 2020
  end-page: 520
  ident: b9
  article-title: A performance-aware dynamic scheduling algorithm for cloud-based IoT applications
  publication-title: Comput. Commun.
– start-page: 1
  year: 2021
  end-page: 24
  ident: b29
  article-title: An improved DQN path planning algorithm
  publication-title: J. Supercomput.
– volume: 389
  start-page: 153
  year: 2017
  end-page: 167
  ident: b7
  article-title: An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models
  publication-title: J. Sound Vib.
– start-page: 1442
  year: 2017
  end-page: 1448
  ident: b8
  article-title: An infinite classification RBM model for radar HRRP recognition
  publication-title: 2017 International Joint Conference on Neural Networks (IJCNN)
– volume: 92
  start-page: 198
  year: 2019
  end-page: 209
  ident: b34
  article-title: Energy optimization of parallel programs in a heterogeneous system by combining processor core-shutdown and dynamic voltage scaling
  publication-title: Future Gener. Comput. Syst.
– volume: 42
  start-page: 15
  year: 2019
  ident: b17
  article-title: Short term load forecasting based on chaotic electromagnetic algorithm optimized support vector machine
  publication-title: Comput. Technol. Autom.
– year: 2019
  ident: b27
  article-title: Multi-objective genetic algorithm for tasks allocation in cloud computing
  publication-title: Int. J. Cloud Appl. Comput.
– volume: 22
  start-page: 1616
  year: 2020
  end-page: 1626
  ident: b28
  article-title: An end-to-end recommendation system for urban traffic controls and management under a parallel learning framework
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 77
  start-page: 5960
  year: 2021
  end-page: 5983
  ident: b23
  article-title: Okcm: improving parallel task scheduling in high-performance computing systems using online learning
  publication-title: J. Supercomput.
– volume: 21
  start-page: 477
  year: 2017
  end-page: 489
  ident: b1
  article-title: Nature-inspired metaheuristic multivariate adaptive regression splines for predicting refrigeration system performance
  publication-title: Soft Comput.
– volume: 30
  start-page: 31
  year: 2018
  end-page: 54
  ident: b15
  article-title: Scheduling in distributed systems: A cloud computing perspective
  publication-title: Comp. Sci. Rev.
– volume: 164
  start-page: 88
  year: 2020
  end-page: 99
  ident: b10
  article-title: 5g network-oriented hierarchical distributed cloud computing system resource optimization scheduling and allocation
  publication-title: Comput. Commun.
– volume: 57
  start-page: 1
  year: 2020
  end-page: 10
  ident: b18
  article-title: Short term load forecasting method based on load characteristic clustering and elastic net analysis
  publication-title: China Power
– start-page: 372
  year: 2017
  end-page: 382
  ident: b11
  article-title: A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning
  publication-title: IEEE 37th International Conference on Distributed Computing Systems (ICDCS)
– volume: 42
  start-page: 47
  year: 2019
  end-page: 61
  ident: b32
  article-title: Hdfs differential storage energy-saving optimal algorithm in cloud data center
  publication-title: Chinese J. Comput.
– volume: 151
  start-page: 183
  year: 2020
  end-page: 195
  ident: b19
  article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment
  publication-title: Comput. Commun.
– volume: 221
  start-page: 24
  year: 2017
  end-page: 31
  ident: b4
  article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm
  publication-title: Neurocomputing
– volume: 142
  start-page: 58
  year: 2017
  end-page: 73
  ident: b5
  article-title: A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon
  publication-title: Electr. Power Syst. Res.
– year: 2020
  ident: b20
  article-title: Policy-driven middleware for multi-tenant saas services configuration
  publication-title: 24th ACM International Systems and Software Product Line Conference
– year: 2021
  ident: b21
  article-title: H3CSA: A makespan aware task scheduling technique for cloud environments
  publication-title: Trans. Emerg. Telecommun. Technol.
– volume: 126
  start-page: 162
  year: 2019
  end-page: 177
  ident: b33
  article-title: A taxonomy of software-based and hardware-based approaches for energy efficiency management in the Hadoop
  publication-title: J. Netw. Comput. Appl.
– volume: 176
  start-page: 287
  year: 2018
  end-page: 298
  ident: b12
  article-title: Market-oriented online bi-objective service scheduling for pleasingly parallel jobs with variable resources in cloud environments
  publication-title: J. Syst. Softw.
– volume: 142
  start-page: 58
  year: 2017
  ident: 10.1016/j.comcom.2021.10.037_b5
  article-title: A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.08.031
– start-page: 372
  year: 2017
  ident: 10.1016/j.comcom.2021.10.037_b11
  article-title: A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning
– year: 2019
  ident: 10.1016/j.comcom.2021.10.037_b27
  article-title: Multi-objective genetic algorithm for tasks allocation in cloud computing
  publication-title: Int. J. Cloud Appl. Comput.
– volume: 389
  start-page: 153
  year: 2017
  ident: 10.1016/j.comcom.2021.10.037_b7
  article-title: An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models
  publication-title: J. Sound Vib.
  doi: 10.1016/j.jsv.2016.11.006
– volume: 221
  start-page: 24
  year: 2017
  ident: 10.1016/j.comcom.2021.10.037_b4
  article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.09.027
– start-page: 63
  year: 2018
  ident: 10.1016/j.comcom.2021.10.037_b26
  article-title: Reinforcement learning: An introduction
  publication-title: MIT Press
– volume: 102
  start-page: 1
  year: 2017
  ident: 10.1016/j.comcom.2021.10.037_b13
  article-title: Optimal virtual network function placement in multi-cloud service function chaining architecture
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2017.02.011
– volume: 42
  start-page: 47
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2021.10.037_b32
  article-title: Hdfs differential storage energy-saving optimal algorithm in cloud data center
  publication-title: Chinese J. Comput.
– volume: 22
  start-page: 1616
  issue: 3
  year: 2020
  ident: 10.1016/j.comcom.2021.10.037_b28
  article-title: An end-to-end recommendation system for urban traffic controls and management under a parallel learning framework
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.2973736
– volume: 28
  start-page: 653
  issue: 3
  year: 2016
  ident: 10.1016/j.comcom.2021.10.037_b25
  article-title: Deep direct reinforcement learning for financial signal representation and trading
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2522401
– volume: 42
  start-page: 15
  issue: 8
  year: 2019
  ident: 10.1016/j.comcom.2021.10.037_b17
  article-title: Short term load forecasting based on chaotic electromagnetic algorithm optimized support vector machine
  publication-title: Comput. Technol. Autom.
– volume: 92
  start-page: 198
  year: 2019
  ident: 10.1016/j.comcom.2021.10.037_b34
  article-title: Energy optimization of parallel programs in a heterogeneous system by combining processor core-shutdown and dynamic voltage scaling
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.09.039
– volume: 65
  start-page: 7406
  issue: 9
  year: 2018
  ident: 10.1016/j.comcom.2021.10.037_b3
  article-title: Short-term load forecasting by separating daily profiles and using a single fuzzy model across the entire domain
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2018.2795555
– volume: 151
  start-page: 183
  year: 2020
  ident: 10.1016/j.comcom.2021.10.037_b19
  article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2019.12.050
– year: 2020
  ident: 10.1016/j.comcom.2021.10.037_b20
  article-title: Policy-driven middleware for multi-tenant saas services configuration
– volume: 56
  start-page: 810
  issue: 4
  year: 2019
  ident: 10.1016/j.comcom.2021.10.037_b31
  article-title: Energy modeling and plan evaluation for queries in relational databases
  publication-title: J. Comput. Res. Dev.
– volume: 57
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.comcom.2021.10.037_b18
  article-title: Short term load forecasting method based on load characteristic clustering and elastic net analysis
  publication-title: China Power
– volume: 164
  start-page: 88
  year: 2020
  ident: 10.1016/j.comcom.2021.10.037_b10
  article-title: 5g network-oriented hierarchical distributed cloud computing system resource optimization scheduling and allocation
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.10.005
– start-page: 1442
  year: 2017
  ident: 10.1016/j.comcom.2021.10.037_b8
  article-title: An infinite classification RBM model for radar HRRP recognition
– ident: 10.1016/j.comcom.2021.10.037_b24
  doi: 10.1145/3178876.3185994
– volume: 21
  start-page: 477
  issue: 2
  year: 2017
  ident: 10.1016/j.comcom.2021.10.037_b1
  article-title: Nature-inspired metaheuristic multivariate adaptive regression splines for predicting refrigeration system performance
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1798-y
– volume: 160
  start-page: 512
  year: 2020
  ident: 10.1016/j.comcom.2021.10.037_b9
  article-title: A performance-aware dynamic scheduling algorithm for cloud-based IoT applications
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2020.06.016
– volume: 5
  start-page: 681
  issue: 3
  year: 2018
  ident: 10.1016/j.comcom.2021.10.037_b6
  article-title: A hybrid application of soft computing methods with wavelet SVM and neural network to electric power load forecasting
  publication-title: J. Electr. Syst. Inf. Technol.
  doi: 10.1016/j.jesit.2017.05.008
– volume: 77
  start-page: 5960
  issue: 6
  year: 2021
  ident: 10.1016/j.comcom.2021.10.037_b23
  article-title: Okcm: improving parallel task scheduling in high-performance computing systems using online learning
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-020-03506-5
– volume: 30
  start-page: 31
  year: 2018
  ident: 10.1016/j.comcom.2021.10.037_b15
  article-title: Scheduling in distributed systems: A cloud computing perspective
  publication-title: Comp. Sci. Rev.
  doi: 10.1016/j.cosrev.2018.08.002
– start-page: 1
  year: 2021
  ident: 10.1016/j.comcom.2021.10.037_b29
  article-title: An improved DQN path planning algorithm
  publication-title: J. Supercomput.
– volume: 9
  start-page: 58
  issue: 3
  year: 2019
  ident: 10.1016/j.comcom.2021.10.037_b30
  article-title: Context-aware prediction model for offloading mobile application tasks to mobile cloud environments
  publication-title: Int. J. Cloud Appl. Comput.
– volume: 153
  start-page: 409
  issue: 2
  year: 2018
  ident: 10.1016/j.comcom.2021.10.037_b2
  article-title: The application of artificial neural networks to magnetotelluric time-series analysis
  publication-title: Geophys. J. R. Astron. Soc.
  doi: 10.1046/j.1365-246X.2003.01902.x
– volume: 176
  start-page: 287
  year: 2018
  ident: 10.1016/j.comcom.2021.10.037_b12
  article-title: Market-oriented online bi-objective service scheduling for pleasingly parallel jobs with variable resources in cloud environments
  publication-title: J. Syst. Softw.
– volume: 126
  start-page: 162
  year: 2019
  ident: 10.1016/j.comcom.2021.10.037_b33
  article-title: A taxonomy of software-based and hardware-based approaches for energy efficiency management in the Hadoop
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2018.11.007
– volume: 9
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.comcom.2021.10.037_b16
  article-title: A novel meta-information management system for saas
  publication-title: Int. J. Cloud Appl. Comput. (IJCAC)
– volume: 11
  start-page: 78
  issue: 1
  year: 2016
  ident: 10.1016/j.comcom.2021.10.037_b14
  article-title: Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2016.2528246
– volume: 32
  issue: 1
  year: 2018
  ident: 10.1016/j.comcom.2021.10.037_b22
  article-title: Learning structured representation for text classification via reinforcement learning
  publication-title: Proc. AAAI Conf. Artif. Intell.
– year: 2021
  ident: 10.1016/j.comcom.2021.10.037_b21
  article-title: H3CSA: A makespan aware task scheduling technique for cloud environments
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.4277
SSID ssj0004773
Score 2.388436
Snippet In cloud platform applications, the user’s goal is to obtain high-quality application services, while the service provider’s goal is to obtain revenue by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 170
SubjectTerms Cloud service flow
DQN algorithm
Network space status
Parallel task management
SAAS task scheduling
Title SAAS parallel task scheduling based on cloud service flow load algorithm
URI https://dx.doi.org/10.1016/j.comcom.2021.10.037
Volume 182
WOSCitedRecordID wos000794967200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0140-3664
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004773
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywEOiKdYXvKBWxSUh1M7xwotWtBqBeqCCpfIcWzaJSSrNoX9-czYThNRxEviEkVWnETzTcbjycx8hDzLkI9GGhFqiaEbzdJQGhmFTEaJlIpLZul83p_w01OxWORvPN_9xtIJ8KYRl5f5xX-FGsYAbCyd_Qu4dzeFATgH0OEIsMPxj4Cfz2bzADt617Wug05uPgewg4UVxRae46pV4R8CVbfbKtg4UxGYuv0W1K2sAll_aterbvll7Lb23A-YgT7Uk-zc8Y_LrdWGkaqd2CyBt6ORD549Zb5cjUMNCeZshK7Y0sW_9mpgfEgSLPnU9SIfbGoysoqx4wbxC2zsmGv2bLcLI5yj6DGRB14gfo6Jd64pzA9dsW1SGj41wZZ34ANdJQcJz3IxIQezV0eL10NxLHdpBv1r9vWTNslv_1k_909GPsfZLXLTbxbozIF8m1zRzR1yY9RC8i45RrhpDzdFuOkAN7Vw07ahFm7q4aYIN0W46Q7ue-Tdy6OzF8ehZ8cIFWzzOvikpiJKdMpTxqpYyMRE1VRxroQQJcs0fGaqFFwbk7FU5RJ8xTxmUuUpK6MS3OT7ZNK0jX5AaKzScirijFdZyWKh80ibiKtMRJqbkptDkvYyKZRvHY8MJnXR5wieF06SBUoSR0GShyTczbpwrVN-cz3vxV1498-5dQVoyC9nPvznmY_I9UHRH5NJt97qJ-Sa-tqtNuunXpW-A6DRgC8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAAS+parallel+task+scheduling+based+on+cloud+service+flow+load+algorithm&rft.jtitle=Computer+communications&rft.au=Zhu%2C+Jian&rft.au=Li%2C+Qian&rft.au=Ying%2C+Shi&rft.date=2022-01-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.volume=182&rft.spage=170&rft.epage=183&rft_id=info:doi/10.1016%2Fj.comcom.2021.10.037&rft.externalDocID=S0140366421004175
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon