SAAS parallel task scheduling based on cloud service flow load algorithm
In cloud platform applications, the user’s goal is to obtain high-quality application services, while the service provider’s goal is to obtain revenue by performing the tasks submitted by the user. The platform built by the service provider’s application resources needs to improve the mapping betwee...
Saved in:
| Published in: | Computer communications Vol. 182; pp. 170 - 183 |
|---|---|
| Main Authors: | , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
15.01.2022
|
| Subjects: | |
| ISSN: | 0140-3664 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | In cloud platform applications, the user’s goal is to obtain high-quality application services, while the service provider’s goal is to obtain revenue by performing the tasks submitted by the user. The platform built by the service provider’s application resources needs to improve the mapping between service requests and resources to achieve higher value. Through the current situation of resource management in the cloud environment, it is found that many task scheduling and resource allocation algorithms are still affected by factors such as the diversity, dynamics, and multiple constraints of resources and tasks. This paper focuses on Software as a Service (SaaS) applications’ task scheduling and resource configuration in a dynamic and uncertain cloud environment. It is a challenging online scheduling problem to automatically and intelligently allocate user task requests that continually reach SaaS applications to appropriate resources for execution. To this end, a real-time task scheduling method based on deep reinforcement learning is proposed, which automatically and intelligently allocates user task requests that continually reach SaaS applications to appropriate resources for execution. In this way, the limited virtual machine resources rented by SaaS providers can be used in a balanced and efficient manner. In the experiment, by comparing with other five task scheduling algorithms, it is proved that the algorithm proposed in this paper not only improves the execution efficiency of better deploying workflow in IaaS public cloud, but also makes the resources provided by SaaS are used in a balanced and efficient manner. |
|---|---|
| AbstractList | In cloud platform applications, the user’s goal is to obtain high-quality application services, while the service provider’s goal is to obtain revenue by performing the tasks submitted by the user. The platform built by the service provider’s application resources needs to improve the mapping between service requests and resources to achieve higher value. Through the current situation of resource management in the cloud environment, it is found that many task scheduling and resource allocation algorithms are still affected by factors such as the diversity, dynamics, and multiple constraints of resources and tasks. This paper focuses on Software as a Service (SaaS) applications’ task scheduling and resource configuration in a dynamic and uncertain cloud environment. It is a challenging online scheduling problem to automatically and intelligently allocate user task requests that continually reach SaaS applications to appropriate resources for execution. To this end, a real-time task scheduling method based on deep reinforcement learning is proposed, which automatically and intelligently allocates user task requests that continually reach SaaS applications to appropriate resources for execution. In this way, the limited virtual machine resources rented by SaaS providers can be used in a balanced and efficient manner. In the experiment, by comparing with other five task scheduling algorithms, it is proved that the algorithm proposed in this paper not only improves the execution efficiency of better deploying workflow in IaaS public cloud, but also makes the resources provided by SaaS are used in a balanced and efficient manner. |
| Author | Li, Qian Ying, Shi Zhu, Jian |
| Author_xml | – sequence: 1 givenname: Jian surname: Zhu fullname: Zhu, Jian organization: School of Computer Science, Wuhan University, Wuhan, 430072, China – sequence: 2 givenname: Qian surname: Li fullname: Li, Qian organization: School of Computer and Information Engineering, Guangxi Vocational Normal University, Nanning, 530007, China – sequence: 3 givenname: Shi orcidid: 0000-0002-1372-7044 surname: Ying fullname: Ying, Shi email: yingshi@whu.edu.cn organization: School of Computer Science, Wuhan University, Wuhan, 430072, China |
| BookMark | eNqFkMFKAzEURbOoYFv9Axf5gRlfJulk6kIoRa1QcFFdh0zypk1NJyWZVvx7p7QrFwoPLlw4F94ZkUEbWiTkjkHOgJX329yEXX95AQXrqxy4HJAhMAEZL0txTUYpbQFASMmHZLGazVZ0r6P2Hj3tdPqkyWzQHrxr17TWCS0NLTU-HCxNGI_OIG18-KI-aEu1X4fous3uhlw12ie8veSYfDw_vc8X2fLt5XU-W2aGQ9lluikrKJBLLoRllS4asKWR0lRVVYsJSi1MXUlsmongZqpBiikT2ky5qKFmgo_Jw3nXxJBSxEYZ1-nOhbaL2nnFQJ08qK06e1AnD6e299DD4he8j26n4_d_2OMZw_6xo8OoknHYGrQuoumUDe7vgR8F8X3f |
| CitedBy_id | crossref_primary_10_1016_j_cie_2024_110523 crossref_primary_10_1109_TMC_2023_3315334 crossref_primary_10_1016_j_eswa_2025_129008 crossref_primary_10_3390_electronics12061358 crossref_primary_10_1016_j_jii_2023_100492 crossref_primary_10_1016_j_comcom_2022_06_004 crossref_primary_10_3390_machines10090775 crossref_primary_10_1007_s41660_025_00532_9 crossref_primary_10_1080_00207543_2024_2442549 crossref_primary_10_1016_j_comcom_2022_11_018 |
| Cites_doi | 10.1016/j.epsr.2016.08.031 10.1016/j.jsv.2016.11.006 10.1016/j.neucom.2016.09.027 10.1016/j.comcom.2017.02.011 10.1109/TITS.2020.2973736 10.1109/TNNLS.2016.2522401 10.1016/j.future.2018.09.039 10.1109/TIE.2018.2795555 10.1016/j.comcom.2019.12.050 10.1016/j.comcom.2020.10.005 10.1145/3178876.3185994 10.1007/s00500-015-1798-y 10.1016/j.comcom.2020.06.016 10.1016/j.jesit.2017.05.008 10.1007/s11227-020-03506-5 10.1016/j.cosrev.2018.08.002 10.1046/j.1365-246X.2003.01902.x 10.1016/j.jnca.2018.11.007 10.1109/TSC.2016.2528246 10.1002/ett.4277 |
| ContentType | Journal Article |
| Copyright | 2021 |
| Copyright_xml | – notice: 2021 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.comcom.2021.10.037 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 183 |
| ExternalDocumentID | 10_1016_j_comcom_2021_10_037 S0140366421004175 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 77K 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD AXJTR BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ RXW SDF SDG SDP SES SPC SPCBC SSH SST SSV SSZ T5K WH7 ZMT ~G- 07C 29F 77I 9DU AAQXK AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEUPX AFJKZ AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD F0J FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW TAE UHS VH1 VOH WUQ XPP ZY4 ~HD |
| ID | FETCH-LOGICAL-c306t-af6802e37344d18a2f0d6c77c888b45e7a4cb87eff543c9a074914ac934b0b143 |
| ISICitedReferencesCount | 11 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000794967200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0140-3664 |
| IngestDate | Tue Nov 18 22:51:07 EST 2025 Sat Nov 29 07:25:04 EST 2025 Sun Apr 06 06:54:34 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DQN algorithm Network space status Parallel task management Cloud service flow SAAS task scheduling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-af6802e37344d18a2f0d6c77c888b45e7a4cb87eff543c9a074914ac934b0b143 |
| ORCID | 0000-0002-1372-7044 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_comcom_2021_10_037 crossref_primary_10_1016_j_comcom_2021_10_037 elsevier_sciencedirect_doi_10_1016_j_comcom_2021_10_037 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-15 |
| PublicationDateYYYYMMDD | 2022-01-15 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Computer communications |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Li, Chen, Zhao, Huang (b29) 2021 Xia, Zhang, Cao (b6) 2018; 5 Zhang, Huang, Zhao (b22) 2018; 32 Jadad, Touzene, Day, Alziedi, Arafeh (b30) 2019; 9 Jin, Guo, Xu, Wang, Wang (b28) 2020; 22 Sutton, Barto (b26) 2018 Guo, Yu, Yang, Liao (b31) 2019; 56 Shabestari, Rahmani, Navimipour, Jabbehdari (b33) 2019; 126 Deng, Bao, Kong, Ren, Dai (b25) 2016; 28 Wei, Fan, Song, Fan, Yang (b14) 2016; 11 Xi, Haoran, Xinna (b17) 2019; 42 Mishra, Narayan Sahoo, Satpathy (b21) 2021 Zheng, Pan, Liu (b12) 2018; 176 Harrath, Bahlool, Rashed (b27) 2019 Černe, Dovžan, Škrjanc (b3) 2018; 65 Zheng, Zhang, Li, Xi (b10) 2020; 164 Aouzal, Hafiddi, Dahchour (b20) 2020 Liu, Li, Xu, Xu, Lin, Qiu, Tang, Wang (b11) 2017 Zhang, Xia (b7) 2017; 389 Lavanya, Shanthi, Saravanan (b19) 2020; 151 Hu, Wen, Zeng, Huang (b4) 2017; 221 Boroojeni, Amini, Bahrami, Iyengar, Sarwat, Karabasoglu (b5) 2017; 142 Yang, Wang, Zhang, Zhao, Pen (b32) 2019; 42 Bhamare, Samaka, Erbad, Jain, Gupta, Chan (b13) 2017; 102 Pandiyan, Lawrence, Sathiyamoorthi, Ramasamy, Xia, Guo (b9) 2020; 160 G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N.J. Yuan, X. Xie, Z. Li, DRN: A deep reinforcement learning framework for news recommendation, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 167–176. Li, Zhang, Han, Ji, Dong, Hu (b23) 2021; 77 Bittencourt, Goldman, Madeira, da Fonseca, Sakellariou (b15) 2018; 30 Peng, Gao, Li (b8) 2017 Cheng, Chou, Cao (b1) 2017; 21 Bingjie, Yong, Shuxin, Bin, Shucan (b18) 2020; 57 Amit, Aniban (b16) 2019; 9 Wang, Wang, Zhao, Cheng (b34) 2019; 92 Manoj, Nagarajan (b2) 2018; 153 Amit (10.1016/j.comcom.2021.10.037_b16) 2019; 9 Shabestari (10.1016/j.comcom.2021.10.037_b33) 2019; 126 Guo (10.1016/j.comcom.2021.10.037_b31) 2019; 56 Harrath (10.1016/j.comcom.2021.10.037_b27) 2019 Cheng (10.1016/j.comcom.2021.10.037_b1) 2017; 21 Li (10.1016/j.comcom.2021.10.037_b29) 2021 Černe (10.1016/j.comcom.2021.10.037_b3) 2018; 65 Jin (10.1016/j.comcom.2021.10.037_b28) 2020; 22 Bhamare (10.1016/j.comcom.2021.10.037_b13) 2017; 102 Zhang (10.1016/j.comcom.2021.10.037_b22) 2018; 32 Pandiyan (10.1016/j.comcom.2021.10.037_b9) 2020; 160 Peng (10.1016/j.comcom.2021.10.037_b8) 2017 10.1016/j.comcom.2021.10.037_b24 Aouzal (10.1016/j.comcom.2021.10.037_b20) 2020 Zheng (10.1016/j.comcom.2021.10.037_b12) 2018; 176 Mishra (10.1016/j.comcom.2021.10.037_b21) 2021 Jadad (10.1016/j.comcom.2021.10.037_b30) 2019; 9 Wei (10.1016/j.comcom.2021.10.037_b14) 2016; 11 Wang (10.1016/j.comcom.2021.10.037_b34) 2019; 92 Li (10.1016/j.comcom.2021.10.037_b23) 2021; 77 Zhang (10.1016/j.comcom.2021.10.037_b7) 2017; 389 Lavanya (10.1016/j.comcom.2021.10.037_b19) 2020; 151 Boroojeni (10.1016/j.comcom.2021.10.037_b5) 2017; 142 Xia (10.1016/j.comcom.2021.10.037_b6) 2018; 5 Bingjie (10.1016/j.comcom.2021.10.037_b18) 2020; 57 Manoj (10.1016/j.comcom.2021.10.037_b2) 2018; 153 Hu (10.1016/j.comcom.2021.10.037_b4) 2017; 221 Deng (10.1016/j.comcom.2021.10.037_b25) 2016; 28 Sutton (10.1016/j.comcom.2021.10.037_b26) 2018 Liu (10.1016/j.comcom.2021.10.037_b11) 2017 Xi (10.1016/j.comcom.2021.10.037_b17) 2019; 42 Bittencourt (10.1016/j.comcom.2021.10.037_b15) 2018; 30 Yang (10.1016/j.comcom.2021.10.037_b32) 2019; 42 Zheng (10.1016/j.comcom.2021.10.037_b10) 2020; 164 |
| References_xml | – volume: 28 start-page: 653 year: 2016 end-page: 664 ident: b25 article-title: Deep direct reinforcement learning for financial signal representation and trading publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 65 start-page: 7406 year: 2018 end-page: 7415 ident: b3 article-title: Short-term load forecasting by separating daily profiles and using a single fuzzy model across the entire domain publication-title: IEEE Trans. Ind. Electron. – volume: 153 start-page: 409 year: 2018 end-page: 423 ident: b2 article-title: The application of artificial neural networks to magnetotelluric time-series analysis publication-title: Geophys. J. R. Astron. Soc. – volume: 56 start-page: 810 year: 2019 end-page: 824 ident: b31 article-title: Energy modeling and plan evaluation for queries in relational databases publication-title: J. Comput. Res. Dev. – volume: 102 start-page: 1 year: 2017 end-page: 16 ident: b13 article-title: Optimal virtual network function placement in multi-cloud service function chaining architecture publication-title: Comput. Commun. – volume: 9 start-page: 1 year: 2019 end-page: 21 ident: b16 article-title: A novel meta-information management system for saas publication-title: Int. J. Cloud Appl. Comput. (IJCAC) – volume: 11 start-page: 78 year: 2016 end-page: 89 ident: b14 article-title: Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing publication-title: IEEE Trans. Serv. Comput. – reference: G. Zheng, F. Zhang, Z. Zheng, Y. Xiang, N.J. Yuan, X. Xie, Z. Li, DRN: A deep reinforcement learning framework for news recommendation, in: Proceedings of the 2018 World Wide Web Conference, 2018, pp. 167–176. – volume: 32 year: 2018 ident: b22 article-title: Learning structured representation for text classification via reinforcement learning publication-title: Proc. AAAI Conf. Artif. Intell. – volume: 9 start-page: 58 year: 2019 end-page: 74 ident: b30 article-title: Context-aware prediction model for offloading mobile application tasks to mobile cloud environments publication-title: Int. J. Cloud Appl. Comput. – start-page: 63 year: 2018 end-page: 74 ident: b26 article-title: Reinforcement learning: An introduction publication-title: MIT Press – volume: 5 start-page: 681 year: 2018 end-page: 696 ident: b6 article-title: A hybrid application of soft computing methods with wavelet SVM and neural network to electric power load forecasting publication-title: J. Electr. Syst. Inf. Technol. – volume: 160 start-page: 512 year: 2020 end-page: 520 ident: b9 article-title: A performance-aware dynamic scheduling algorithm for cloud-based IoT applications publication-title: Comput. Commun. – start-page: 1 year: 2021 end-page: 24 ident: b29 article-title: An improved DQN path planning algorithm publication-title: J. Supercomput. – volume: 389 start-page: 153 year: 2017 end-page: 167 ident: b7 article-title: An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models publication-title: J. Sound Vib. – start-page: 1442 year: 2017 end-page: 1448 ident: b8 article-title: An infinite classification RBM model for radar HRRP recognition publication-title: 2017 International Joint Conference on Neural Networks (IJCNN) – volume: 92 start-page: 198 year: 2019 end-page: 209 ident: b34 article-title: Energy optimization of parallel programs in a heterogeneous system by combining processor core-shutdown and dynamic voltage scaling publication-title: Future Gener. Comput. Syst. – volume: 42 start-page: 15 year: 2019 ident: b17 article-title: Short term load forecasting based on chaotic electromagnetic algorithm optimized support vector machine publication-title: Comput. Technol. Autom. – year: 2019 ident: b27 article-title: Multi-objective genetic algorithm for tasks allocation in cloud computing publication-title: Int. J. Cloud Appl. Comput. – volume: 22 start-page: 1616 year: 2020 end-page: 1626 ident: b28 article-title: An end-to-end recommendation system for urban traffic controls and management under a parallel learning framework publication-title: IEEE Trans. Intell. Transp. Syst. – volume: 77 start-page: 5960 year: 2021 end-page: 5983 ident: b23 article-title: Okcm: improving parallel task scheduling in high-performance computing systems using online learning publication-title: J. Supercomput. – volume: 21 start-page: 477 year: 2017 end-page: 489 ident: b1 article-title: Nature-inspired metaheuristic multivariate adaptive regression splines for predicting refrigeration system performance publication-title: Soft Comput. – volume: 30 start-page: 31 year: 2018 end-page: 54 ident: b15 article-title: Scheduling in distributed systems: A cloud computing perspective publication-title: Comp. Sci. Rev. – volume: 164 start-page: 88 year: 2020 end-page: 99 ident: b10 article-title: 5g network-oriented hierarchical distributed cloud computing system resource optimization scheduling and allocation publication-title: Comput. Commun. – volume: 57 start-page: 1 year: 2020 end-page: 10 ident: b18 article-title: Short term load forecasting method based on load characteristic clustering and elastic net analysis publication-title: China Power – start-page: 372 year: 2017 end-page: 382 ident: b11 article-title: A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning publication-title: IEEE 37th International Conference on Distributed Computing Systems (ICDCS) – volume: 42 start-page: 47 year: 2019 end-page: 61 ident: b32 article-title: Hdfs differential storage energy-saving optimal algorithm in cloud data center publication-title: Chinese J. Comput. – volume: 151 start-page: 183 year: 2020 end-page: 195 ident: b19 article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment publication-title: Comput. Commun. – volume: 221 start-page: 24 year: 2017 end-page: 31 ident: b4 article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm publication-title: Neurocomputing – volume: 142 start-page: 58 year: 2017 end-page: 73 ident: b5 article-title: A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon publication-title: Electr. Power Syst. Res. – year: 2020 ident: b20 article-title: Policy-driven middleware for multi-tenant saas services configuration publication-title: 24th ACM International Systems and Software Product Line Conference – year: 2021 ident: b21 article-title: H3CSA: A makespan aware task scheduling technique for cloud environments publication-title: Trans. Emerg. Telecommun. Technol. – volume: 126 start-page: 162 year: 2019 end-page: 177 ident: b33 article-title: A taxonomy of software-based and hardware-based approaches for energy efficiency management in the Hadoop publication-title: J. Netw. Comput. Appl. – volume: 176 start-page: 287 year: 2018 end-page: 298 ident: b12 article-title: Market-oriented online bi-objective service scheduling for pleasingly parallel jobs with variable resources in cloud environments publication-title: J. Syst. Softw. – volume: 142 start-page: 58 year: 2017 ident: 10.1016/j.comcom.2021.10.037_b5 article-title: A novel multi-time-scale modeling for electric power demand forecasting: From short-term to medium-term horizon publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.08.031 – start-page: 372 year: 2017 ident: 10.1016/j.comcom.2021.10.037_b11 article-title: A hierarchical framework of cloud resource allocation and power management using deep reinforcement learning – year: 2019 ident: 10.1016/j.comcom.2021.10.037_b27 article-title: Multi-objective genetic algorithm for tasks allocation in cloud computing publication-title: Int. J. Cloud Appl. Comput. – volume: 389 start-page: 153 year: 2017 ident: 10.1016/j.comcom.2021.10.037_b7 article-title: An improved PSO algorithm for parameter identification of nonlinear dynamic hysteretic models publication-title: J. Sound Vib. doi: 10.1016/j.jsv.2016.11.006 – volume: 221 start-page: 24 year: 2017 ident: 10.1016/j.comcom.2021.10.037_b4 article-title: A short-term power load forecasting model based on the generalized regression neural network with decreasing step fruit fly optimization algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.09.027 – start-page: 63 year: 2018 ident: 10.1016/j.comcom.2021.10.037_b26 article-title: Reinforcement learning: An introduction publication-title: MIT Press – volume: 102 start-page: 1 year: 2017 ident: 10.1016/j.comcom.2021.10.037_b13 article-title: Optimal virtual network function placement in multi-cloud service function chaining architecture publication-title: Comput. Commun. doi: 10.1016/j.comcom.2017.02.011 – volume: 42 start-page: 47 issue: 4 year: 2019 ident: 10.1016/j.comcom.2021.10.037_b32 article-title: Hdfs differential storage energy-saving optimal algorithm in cloud data center publication-title: Chinese J. Comput. – volume: 22 start-page: 1616 issue: 3 year: 2020 ident: 10.1016/j.comcom.2021.10.037_b28 article-title: An end-to-end recommendation system for urban traffic controls and management under a parallel learning framework publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2020.2973736 – volume: 28 start-page: 653 issue: 3 year: 2016 ident: 10.1016/j.comcom.2021.10.037_b25 article-title: Deep direct reinforcement learning for financial signal representation and trading publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2522401 – volume: 42 start-page: 15 issue: 8 year: 2019 ident: 10.1016/j.comcom.2021.10.037_b17 article-title: Short term load forecasting based on chaotic electromagnetic algorithm optimized support vector machine publication-title: Comput. Technol. Autom. – volume: 92 start-page: 198 year: 2019 ident: 10.1016/j.comcom.2021.10.037_b34 article-title: Energy optimization of parallel programs in a heterogeneous system by combining processor core-shutdown and dynamic voltage scaling publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.09.039 – volume: 65 start-page: 7406 issue: 9 year: 2018 ident: 10.1016/j.comcom.2021.10.037_b3 article-title: Short-term load forecasting by separating daily profiles and using a single fuzzy model across the entire domain publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2018.2795555 – volume: 151 start-page: 183 year: 2020 ident: 10.1016/j.comcom.2021.10.037_b19 article-title: Multi objective task scheduling algorithm based on SLA and processing time suitable for cloud environment publication-title: Comput. Commun. doi: 10.1016/j.comcom.2019.12.050 – year: 2020 ident: 10.1016/j.comcom.2021.10.037_b20 article-title: Policy-driven middleware for multi-tenant saas services configuration – volume: 56 start-page: 810 issue: 4 year: 2019 ident: 10.1016/j.comcom.2021.10.037_b31 article-title: Energy modeling and plan evaluation for queries in relational databases publication-title: J. Comput. Res. Dev. – volume: 57 start-page: 1 issue: 1 year: 2020 ident: 10.1016/j.comcom.2021.10.037_b18 article-title: Short term load forecasting method based on load characteristic clustering and elastic net analysis publication-title: China Power – volume: 164 start-page: 88 year: 2020 ident: 10.1016/j.comcom.2021.10.037_b10 article-title: 5g network-oriented hierarchical distributed cloud computing system resource optimization scheduling and allocation publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.10.005 – start-page: 1442 year: 2017 ident: 10.1016/j.comcom.2021.10.037_b8 article-title: An infinite classification RBM model for radar HRRP recognition – ident: 10.1016/j.comcom.2021.10.037_b24 doi: 10.1145/3178876.3185994 – volume: 21 start-page: 477 issue: 2 year: 2017 ident: 10.1016/j.comcom.2021.10.037_b1 article-title: Nature-inspired metaheuristic multivariate adaptive regression splines for predicting refrigeration system performance publication-title: Soft Comput. doi: 10.1007/s00500-015-1798-y – volume: 160 start-page: 512 year: 2020 ident: 10.1016/j.comcom.2021.10.037_b9 article-title: A performance-aware dynamic scheduling algorithm for cloud-based IoT applications publication-title: Comput. Commun. doi: 10.1016/j.comcom.2020.06.016 – volume: 5 start-page: 681 issue: 3 year: 2018 ident: 10.1016/j.comcom.2021.10.037_b6 article-title: A hybrid application of soft computing methods with wavelet SVM and neural network to electric power load forecasting publication-title: J. Electr. Syst. Inf. Technol. doi: 10.1016/j.jesit.2017.05.008 – volume: 77 start-page: 5960 issue: 6 year: 2021 ident: 10.1016/j.comcom.2021.10.037_b23 article-title: Okcm: improving parallel task scheduling in high-performance computing systems using online learning publication-title: J. Supercomput. doi: 10.1007/s11227-020-03506-5 – volume: 30 start-page: 31 year: 2018 ident: 10.1016/j.comcom.2021.10.037_b15 article-title: Scheduling in distributed systems: A cloud computing perspective publication-title: Comp. Sci. Rev. doi: 10.1016/j.cosrev.2018.08.002 – start-page: 1 year: 2021 ident: 10.1016/j.comcom.2021.10.037_b29 article-title: An improved DQN path planning algorithm publication-title: J. Supercomput. – volume: 9 start-page: 58 issue: 3 year: 2019 ident: 10.1016/j.comcom.2021.10.037_b30 article-title: Context-aware prediction model for offloading mobile application tasks to mobile cloud environments publication-title: Int. J. Cloud Appl. Comput. – volume: 153 start-page: 409 issue: 2 year: 2018 ident: 10.1016/j.comcom.2021.10.037_b2 article-title: The application of artificial neural networks to magnetotelluric time-series analysis publication-title: Geophys. J. R. Astron. Soc. doi: 10.1046/j.1365-246X.2003.01902.x – volume: 176 start-page: 287 year: 2018 ident: 10.1016/j.comcom.2021.10.037_b12 article-title: Market-oriented online bi-objective service scheduling for pleasingly parallel jobs with variable resources in cloud environments publication-title: J. Syst. Softw. – volume: 126 start-page: 162 year: 2019 ident: 10.1016/j.comcom.2021.10.037_b33 article-title: A taxonomy of software-based and hardware-based approaches for energy efficiency management in the Hadoop publication-title: J. Netw. Comput. Appl. doi: 10.1016/j.jnca.2018.11.007 – volume: 9 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.comcom.2021.10.037_b16 article-title: A novel meta-information management system for saas publication-title: Int. J. Cloud Appl. Comput. (IJCAC) – volume: 11 start-page: 78 issue: 1 year: 2016 ident: 10.1016/j.comcom.2021.10.037_b14 article-title: Imperfect information dynamic stackelberg game based resource allocation using hidden Markov for cloud computing publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2016.2528246 – volume: 32 issue: 1 year: 2018 ident: 10.1016/j.comcom.2021.10.037_b22 article-title: Learning structured representation for text classification via reinforcement learning publication-title: Proc. AAAI Conf. Artif. Intell. – year: 2021 ident: 10.1016/j.comcom.2021.10.037_b21 article-title: H3CSA: A makespan aware task scheduling technique for cloud environments publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.4277 |
| SSID | ssj0004773 |
| Score | 2.388436 |
| Snippet | In cloud platform applications, the user’s goal is to obtain high-quality application services, while the service provider’s goal is to obtain revenue by... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 170 |
| SubjectTerms | Cloud service flow DQN algorithm Network space status Parallel task management SAAS task scheduling |
| Title | SAAS parallel task scheduling based on cloud service flow load algorithm |
| URI | https://dx.doi.org/10.1016/j.comcom.2021.10.037 |
| Volume | 182 |
| WOSCitedRecordID | wos000794967200003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0140-3664 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004773 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lj9MwELagywEOiKdYXvKBWxSUh1M7xwotWtBqBeqCCpfIcWzaJSSrNoX9-czYThNRxEviEkVWnETzTcbjycx8hDzLkI9GGhFqiaEbzdJQGhmFTEaJlIpLZul83p_w01OxWORvPN_9xtIJ8KYRl5f5xX-FGsYAbCyd_Qu4dzeFATgH0OEIsMPxj4Cfz2bzADt617Wug05uPgewg4UVxRae46pV4R8CVbfbKtg4UxGYuv0W1K2sAll_aterbvll7Lb23A-YgT7Uk-zc8Y_LrdWGkaqd2CyBt6ORD549Zb5cjUMNCeZshK7Y0sW_9mpgfEgSLPnU9SIfbGoysoqx4wbxC2zsmGv2bLcLI5yj6DGRB14gfo6Jd64pzA9dsW1SGj41wZZ34ANdJQcJz3IxIQezV0eL10NxLHdpBv1r9vWTNslv_1k_909GPsfZLXLTbxbozIF8m1zRzR1yY9RC8i45RrhpDzdFuOkAN7Vw07ahFm7q4aYIN0W46Q7ue-Tdy6OzF8ehZ8cIFWzzOvikpiJKdMpTxqpYyMRE1VRxroQQJcs0fGaqFFwbk7FU5RJ8xTxmUuUpK6MS3OT7ZNK0jX5AaKzScirijFdZyWKh80ibiKtMRJqbkptDkvYyKZRvHY8MJnXR5wieF06SBUoSR0GShyTczbpwrVN-cz3vxV1498-5dQVoyC9nPvznmY_I9UHRH5NJt97qJ-Sa-tqtNuunXpW-A6DRgC8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SAAS+parallel+task+scheduling+based+on+cloud+service+flow+load+algorithm&rft.jtitle=Computer+communications&rft.au=Zhu%2C+Jian&rft.au=Li%2C+Qian&rft.au=Ying%2C+Shi&rft.date=2022-01-15&rft.pub=Elsevier+B.V&rft.issn=0140-3664&rft.volume=182&rft.spage=170&rft.epage=183&rft_id=info:doi/10.1016%2Fj.comcom.2021.10.037&rft.externalDocID=S0140366421004175 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0140-3664&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0140-3664&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0140-3664&client=summon |