A ResNet-101 deep learning framework induced transfer learning strategy for moving object detection

Background subtraction is a crucial stage in many visual surveillance systems. The prime objective of any such system is to detect moving objects such that the system could be utilized to face many real-time challenges. In the last few decades, various methods have been developed to detect moving ob...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Image and vision computing Jg. 146; S. 105021
Hauptverfasser: Panigrahi, Upasana, Sahoo, Prabodh Kumar, Panda, Manoj Kumar, Panda, Ganapati
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2024
Schlagworte:
ISSN:0262-8856, 1872-8138
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Background subtraction is a crucial stage in many visual surveillance systems. The prime objective of any such system is to detect moving objects such that the system could be utilized to face many real-time challenges. In the last few decades, various methods have been developed to detect moving objects. However, the performance of many existing methods needs further improvement for slow, moderate, and fast-moving object detection in videos simultaneously and also for unseen video setups. In this article, a noteworthy effort is made to detect moving objects in complex videos by harnessing the potential of an encoder-decoder-type deep framework, employing a customized ResNet-101 model along with a feature pooling framework (FPF). The proposed algorithm has four-fold innovations including: A pre-trained modified ResNet-101 network with a transfer learning technique is proposed as an encoder to learn the challenging video scene adequately. The proposed encoder network employs a total of twenty three numbers of layers with skip connections making the model less complex. In between the encoder and decoder framework, the FPF module is used that combines a max-pooling layer, a convolutional layer, and multiple convolutional layers with varying sampling rates. This FPM module can preserve multi-scale and multi-dimensional features across different levels accurately. A decoder architecture consisting of stacked convolution layers is implemented to transform the features into image space efficiently. The efficiency of the proposed scheme is corroborated using subjective and objective analysis. The efficiency of the developed model is highlighted through a comparison with thirty-three existing methods, effectively illustrating its superior efficacy. •A ResNet-101 encoder-decoder with feature pooling is developed for moving object detection.•Transfer learning updates the modified ResNet-101 weights on challenging video datasets.•The modified ResNet-101 network with 23 layers is computationally efficient.•The technique detects objects of varying speeds with high accuracy on challenging datasets.
AbstractList Background subtraction is a crucial stage in many visual surveillance systems. The prime objective of any such system is to detect moving objects such that the system could be utilized to face many real-time challenges. In the last few decades, various methods have been developed to detect moving objects. However, the performance of many existing methods needs further improvement for slow, moderate, and fast-moving object detection in videos simultaneously and also for unseen video setups. In this article, a noteworthy effort is made to detect moving objects in complex videos by harnessing the potential of an encoder-decoder-type deep framework, employing a customized ResNet-101 model along with a feature pooling framework (FPF). The proposed algorithm has four-fold innovations including: A pre-trained modified ResNet-101 network with a transfer learning technique is proposed as an encoder to learn the challenging video scene adequately. The proposed encoder network employs a total of twenty three numbers of layers with skip connections making the model less complex. In between the encoder and decoder framework, the FPF module is used that combines a max-pooling layer, a convolutional layer, and multiple convolutional layers with varying sampling rates. This FPM module can preserve multi-scale and multi-dimensional features across different levels accurately. A decoder architecture consisting of stacked convolution layers is implemented to transform the features into image space efficiently. The efficiency of the proposed scheme is corroborated using subjective and objective analysis. The efficiency of the developed model is highlighted through a comparison with thirty-three existing methods, effectively illustrating its superior efficacy. •A ResNet-101 encoder-decoder with feature pooling is developed for moving object detection.•Transfer learning updates the modified ResNet-101 weights on challenging video datasets.•The modified ResNet-101 network with 23 layers is computationally efficient.•The technique detects objects of varying speeds with high accuracy on challenging datasets.
ArticleNumber 105021
Author Panda, Ganapati
Panigrahi, Upasana
Panda, Manoj Kumar
Sahoo, Prabodh Kumar
Author_xml – sequence: 1
  givenname: Upasana
  surname: Panigrahi
  fullname: Panigrahi, Upasana
  organization: Department of Electronics and Communication Engineering, C V Raman Global University, Mahura, Janla, Bhubaneswar 752054, Odisha, India
– sequence: 2
  givenname: Prabodh Kumar
  surname: Sahoo
  fullname: Sahoo, Prabodh Kumar
  email: sahooprabodhkumar@gmail.com
  organization: Department of Mechatronics Engineering, Parul Institute of Technology, Parul University, Waghodia, Vadodara 391760, Gujarat, India
– sequence: 3
  givenname: Manoj Kumar
  surname: Panda
  fullname: Panda, Manoj Kumar
  email: manojkumarpanda@giet.edu
  organization: Department of Electronics and Communication Engineering, GIET University, Gunupur, Rayagada 765022, Odisha, India
– sequence: 4
  givenname: Ganapati
  surname: Panda
  fullname: Panda, Ganapati
  organization: Department of Electronics and Communication Engineering, C V Raman Global University, Mahura, Janla, Bhubaneswar 752054, Odisha, India
BookMark eNqFkN1KAzEQhYNUsK2-gRd5ga1JNrvJeiGU4h-Iguh1iMmkZG2zJVkrfXuzrCB4oVczHOYc5nwzNAldAITOKVlQQuuLduG3eu_TghHGs1QRRo_QlErBCklLOUFTwuq8y6o-QbOUWkKIIKKZIrPEz5AeoS9yErYAO7wBHYMPa-yi3sJnF9-xD_bDgMV91CE5iD83KUs9rA_YdRFvu_2gdW8tmD6H9Xn4LpyiY6c3Cc6-5xy93ly_rO6Kh6fb-9XyoTAlqftCu1JyToUQRgjgktQEONONrQQ4qCUjXFJnqGW6kiAtOALUUjC8bBqpm3KO-JhrYpdSBKd2MYOJB0WJGkCpVo2g1ABKjaCy7fKXzfheD4_nbn7zn_lqNEMutvcQVTIeQoblY26vbOf_DvgCbXGJrg
CitedBy_id crossref_primary_10_3389_fmats_2025_1583615
crossref_primary_10_3390_sym17020162
crossref_primary_10_1109_ACCESS_2025_3545829
crossref_primary_10_1109_LGRS_2025_3593475
crossref_primary_10_1016_j_mtcomm_2025_113184
crossref_primary_10_1016_j_dsp_2025_105594
crossref_primary_10_1016_j_sasc_2024_200170
crossref_primary_10_1016_j_neucom_2025_130808
crossref_primary_10_1016_j_ijpvp_2024_105327
crossref_primary_10_1109_ACCESS_2025_3588450
crossref_primary_10_1109_TIFS_2024_3447237
crossref_primary_10_1016_j_eswa_2025_129374
crossref_primary_10_1109_ACCESS_2025_3555518
crossref_primary_10_3390_foods14111987
Cites_doi 10.1007/s11760-017-1093-8
10.1016/j.cosrev.2014.04.001
10.1016/j.cviu.2022.103501
10.1016/j.ijleo.2018.04.047
10.1016/j.neunet.2019.04.024
10.1016/j.imavis.2006.01.001
10.1117/1.JEI.27.2.023002
10.1109/TPAMI.2003.1233909
10.1109/TIP.2017.2695882
10.1109/34.120329
10.1109/ACCESS.2018.2861223
10.1007/s11760-016-0975-5
10.1016/j.patrec.2016.09.014
10.1109/ACCESS.2018.2812880
10.1016/j.aasri.2012.06.077
10.1016/j.imavis.2009.11.014
10.3390/brainsci13040555
10.1016/j.eswa.2017.12.009
10.1109/TIP.2010.2101613
10.1109/TSMCC.2004.829274
10.1016/j.aeue.2011.07.009
10.1049/iet-cvi.2018.5642
10.1109/TCSVT.2021.3088130
10.1016/j.neucom.2019.04.088
10.1016/j.neucom.2016.12.038
10.1142/S0129065717500563
10.1109/ACCESS.2016.2608847
10.1109/TMI.2016.2528162
10.1007/s11760-018-1278-9
10.1109/ACCESS.2021.3071163
10.1109/ACCESS.2019.2914961
10.1016/j.patcog.2017.09.040
10.1109/TITS.2006.874722
10.1109/TCSVT.2020.3014663
10.1109/TEVC.2017.2694160
10.1109/TCSVT.2017.2711659
10.1007/s11042-019-7411-0
10.1016/j.eswa.2020.114544
10.3390/sym11050621
10.1109/TIT.2020.2983698
10.1109/TPAMI.2011.155
10.1109/TITS.2020.3030801
10.1007/s11760-014-0747-z
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.imavis.2024.105021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1872-8138
ExternalDocumentID 10_1016_j_imavis_2024_105021
S0262885624001252
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29I
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABOCM
ABTAH
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UHS
UNMZH
VOH
WUQ
XFK
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-af38441777c77e48060e42a9d57efe6820481fc1d2a58e8def0e1d1ec43998a93
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001230297600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0262-8856
IngestDate Sat Nov 29 01:53:30 EST 2025
Tue Nov 18 22:45:15 EST 2025
Sat May 25 15:41:54 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning architecture
Feature pooling framework
Background subtraction
Transfer learning
Contrast normalization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-af38441777c77e48060e42a9d57efe6820481fc1d2a58e8def0e1d1ec43998a93
ParticipantIDs crossref_primary_10_1016_j_imavis_2024_105021
crossref_citationtrail_10_1016_j_imavis_2024_105021
elsevier_sciencedirect_doi_10_1016_j_imavis_2024_105021
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Image and vision computing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Sengar, Mukhopadhyay (bb0155) 2017; 11
He, Zhang, Ren, Sun (bb0240) 2016
Rout, Subudhi, Veerakumar, Chaudhury (bb0030) 2018; 97
Kalsotra, Arora (bb0040) 2019; 7
Dollar, Wojek, Schiele, Perona (bb0110) 2012; 34
Zheng, Wang, Wang (bb0260) 2020; 394
Viola, Jones (bb0105) 2001; vol. 1
Ren, He, Girshick, Sun (bb0180) 2016
Panda, Subudhi, Veerakumar, Jakhetiya (bb0005) 2023
Huang, Zou, Zheng, Zhu (bb0140) 2019
Fan, Zhang, Wenli (bb0145) 2021; 170
Braham, Piérard, Van Droogenbroeck (bb0290) 2017
Sahoo, Kanungo, Parvathi (bb0090) 2014
Yang, Ruan, Zhang, Cheng, Zhang, Xie (bb0360) 2021; 32
Xu, Ye, Li, Liu, Yang, Ding (bb0375) 2014
Paolo Spagnolo, Leo (bb0230) 2006; 24
Zhang, Xiao, Huang, Zhang, Han (bb0170) 2021; 31
St-Charles, Bilodeau, Bergevin (bb0315) 2015
Mandal, Vipparthi (bb0010) 2020; 23
Christopher Montgomery (bb0085) 2004
Lee, Lee, Yoo, Kwon (bb0270) 2019; 11
Fisher, Chen-Burger, Giordano, Hardman, Lin (bb0355) 2016; vol. 104
Zhihang, Turki, Phan, Wang (bb0035) 2018; 6
Tezcan, Ishwar, Konrad (bb0255) 2021; 9
De Gregorio, Giordano (bb0320) 2017
Subudhi, Nanda (bb0245) 2008
Abdullahi, Bature, Gabralla, Chiroma (bb0235) 2023; 13
Zhu, Wang (bb0250) 2012; 66
Panda, Subudhi, Bouwmans, Jakheytiya, Veerakumar (bb0285) 2022
Xia, Song, He (bb0210) 2016; 10
Fatih Savaş, Demirel, Erkal (bb0165) 2018; 168
Sajid, Cheung (bb0325) 2017; 26
KaewTraKulPong, Bowden (bb0135) 2002
Işık, Özkan, Günal, Gerek (bb0305) 2018; 27
Wang, Jodoin, Porikli, Konrad, Benezeth, Ishwar (bb0075) 2014
Zhang, Liu, Lian, Wang (bb0225) 2010
Kebir, Taibi (bb0390) 2022; 12
Liu, Anguelov, Erhan, Szegedy, Reed, Cheng-ang, Berg (bb0175) 2016
Allebosch, Van Hamme, Deboeverie, Veelaert, Philips (bb0370) 2016
Sahoo, Kanungo, Mishra (bb0120) 2018; 12
Barnich, Van Droogenbroeck (bb0205) 2011; 20
Gracewell, John (bb0385) 2020; 79
Weiming, Tan, Wang, Maybank (bb0025) 2004; 34
Huang, Wu, Huang (bb0160) 2012; 1
Bouwmans (bb0050) 2014; 11
Kanungo, Narayan, Sahoo, Mishra (bb0130) 2017
Bianco, Ciocca, Schettini (bb0295) 2017; 21
Subudhi, Panda, Veerakumar, Jakhetiya, Esakkirajan (bb0045) 2022
Poppe (bb0015) 2010; 28
Mondéjar-Guerra, Rouco, Novo, Ortega (bb0300) 2019
López-Rubio, Molina-Cabello, Luque-Baena, Domínguez (bb0350) 2018; 28
Shin, Roth, Gao, Le, Ziyue, Nogues, Yao, Mollura, Summers (bb0070) 2016; 35
Duncan, Chou (bb0095) 1992; 14
An, Xu, Yu, Guo, Zhao, Tang, Wang (bb0365) 2023
Lin, Goyal, Girshick, He, Dollar (bb0185) Oct 2017
Zhu, Jiao, Tse (bb0200) 2020; 66
Wang, Luo, Jodoin (bb0280) 2017; 96
Law, Deng (bb0195) 2018
Guo, Wang, Bai, Zhang, Li (bb0150) sep 2017; 242
Cioppa, Van Droogenbroeck, Braham (bb0340) 2020
Hsieh, Shih, Chen, Wen (bb0020) 2006; 7
Jiang, Xiaobo (bb0335) 2017; 28
Zhou, Wang, Krähenbühl (bb0190) 2019
Redmon, Divvala, Girshick, Farhadi (bb0115) 2016
Panda, Sharma, Bajpai, Subudhi, Thangaraj, Jakhetiya (bb0055) 2022; 222
Reisslein, Karam, Seeling, Fitzek (bb0080) 2000
Choudhury, Sa, Bakshi, Majhi (bb0100) 2016; 4
Tezcan, Ishwar, Konrad (bb0265) 2020
Dou, Qin, Zimei (bb0215) 2017; 11
Wang, Gou, Wang (bb0345) 2018; 6
Toyama, Krumm, Brumitt, Meyers (bb0380) 1999; vol. 1
Cucchiara, Grana, Piccardi, Prati (bb0125) 2003; 25
Babaee, Dinh, Rigoll (bb0275) 2018; 76
Işık, Özkan, Gerek (bb0310) 2019; 13
Sahoo, Kanungo, Mishra, Mohanty (bb0220) 2022; 34
Martins, Carvalho, Corte-Real, Alba-Castro (bb0330) 2017
Liu, Wang, Liu, Zeng, Liu, Alsaadi (bb0060) 2017; 234
Bouwmans, Javed, Sultana, Jung (bb0065) 2019; 117
Sauvalle, de La Fortelle (bb0395) 2023
Mondéjar-Guerra (10.1016/j.imavis.2024.105021_bb0300) 2019
Jiang (10.1016/j.imavis.2024.105021_bb0335) 2017; 28
Rout (10.1016/j.imavis.2024.105021_bb0030) 2018; 97
Panda (10.1016/j.imavis.2024.105021_bb0055) 2022; 222
Shin (10.1016/j.imavis.2024.105021_bb0070) 2016; 35
Liu (10.1016/j.imavis.2024.105021_bb0175) 2016
Hsieh (10.1016/j.imavis.2024.105021_bb0020) 2006; 7
Paolo Spagnolo (10.1016/j.imavis.2024.105021_bb0230) 2006; 24
Guo (10.1016/j.imavis.2024.105021_bb0150) 2017; 242
Işık (10.1016/j.imavis.2024.105021_bb0305) 2018; 27
Liu (10.1016/j.imavis.2024.105021_bb0060) 2017; 234
Panda (10.1016/j.imavis.2024.105021_bb0285) 2022
Duncan (10.1016/j.imavis.2024.105021_bb0095) 1992; 14
Panda (10.1016/j.imavis.2024.105021_bb0005) 2023
Subudhi (10.1016/j.imavis.2024.105021_bb0245) 2008
Zhang (10.1016/j.imavis.2024.105021_bb0170) 2021; 31
Barnich (10.1016/j.imavis.2024.105021_bb0205) 2011; 20
Toyama (10.1016/j.imavis.2024.105021_bb0380) 1999; vol. 1
Zhu (10.1016/j.imavis.2024.105021_bb0250) 2012; 66
López-Rubio (10.1016/j.imavis.2024.105021_bb0350) 2018; 28
Mandal (10.1016/j.imavis.2024.105021_bb0010) 2020; 23
Ren (10.1016/j.imavis.2024.105021_bb0180) 2016
Poppe (10.1016/j.imavis.2024.105021_bb0015) 2010; 28
Lin (10.1016/j.imavis.2024.105021_bb0185) 2017
Babaee (10.1016/j.imavis.2024.105021_bb0275) 2018; 76
Kalsotra (10.1016/j.imavis.2024.105021_bb0040) 2019; 7
Choudhury (10.1016/j.imavis.2024.105021_bb0100) 2016; 4
Xu (10.1016/j.imavis.2024.105021_bb0375) 2014
Xia (10.1016/j.imavis.2024.105021_bb0210) 2016; 10
Wang (10.1016/j.imavis.2024.105021_bb0345) 2018; 6
Sajid (10.1016/j.imavis.2024.105021_bb0325) 2017; 26
Tezcan (10.1016/j.imavis.2024.105021_bb0255) 2021; 9
Martins (10.1016/j.imavis.2024.105021_bb0330) 2017
Kebir (10.1016/j.imavis.2024.105021_bb0390) 2022; 12
Law (10.1016/j.imavis.2024.105021_bb0195) 2018
Fan (10.1016/j.imavis.2024.105021_bb0145) 2021; 170
Zhang (10.1016/j.imavis.2024.105021_bb0225) 2010
Redmon (10.1016/j.imavis.2024.105021_bb0115) 2016
Gracewell (10.1016/j.imavis.2024.105021_bb0385) 2020; 79
Huang (10.1016/j.imavis.2024.105021_bb0140) 2019
Abdullahi (10.1016/j.imavis.2024.105021_bb0235) 2023; 13
Tezcan (10.1016/j.imavis.2024.105021_bb0265) 2020
Zheng (10.1016/j.imavis.2024.105021_bb0260) 2020; 394
Wang (10.1016/j.imavis.2024.105021_bb0280) 2017; 96
St-Charles (10.1016/j.imavis.2024.105021_bb0315) 2015
Işık (10.1016/j.imavis.2024.105021_bb0310) 2019; 13
He (10.1016/j.imavis.2024.105021_bb0240) 2016
An (10.1016/j.imavis.2024.105021_bb0365) 2023
Sahoo (10.1016/j.imavis.2024.105021_bb0120) 2018; 12
Fatih Savaş (10.1016/j.imavis.2024.105021_bb0165) 2018; 168
Zhihang (10.1016/j.imavis.2024.105021_bb0035) 2018; 6
Dollar (10.1016/j.imavis.2024.105021_bb0110) 2012; 34
Dou (10.1016/j.imavis.2024.105021_bb0215) 2017; 11
Wang (10.1016/j.imavis.2024.105021_bb0075) 2014
Subudhi (10.1016/j.imavis.2024.105021_bb0045) 2022
Viola (10.1016/j.imavis.2024.105021_bb0105) 2001; vol. 1
Kanungo (10.1016/j.imavis.2024.105021_bb0130) 2017
KaewTraKulPong (10.1016/j.imavis.2024.105021_bb0135) 2002
De Gregorio (10.1016/j.imavis.2024.105021_bb0320) 2017
Huang (10.1016/j.imavis.2024.105021_bb0160) 2012; 1
Lee (10.1016/j.imavis.2024.105021_bb0270) 2019; 11
Fisher (10.1016/j.imavis.2024.105021_bb0355) 2016; vol. 104
Weiming (10.1016/j.imavis.2024.105021_bb0025) 2004; 34
Bouwmans (10.1016/j.imavis.2024.105021_bb0065) 2019; 117
Bouwmans (10.1016/j.imavis.2024.105021_bb0050) 2014; 11
Braham (10.1016/j.imavis.2024.105021_bb0290) 2017
Allebosch (10.1016/j.imavis.2024.105021_bb0370) 2016
Cucchiara (10.1016/j.imavis.2024.105021_bb0125) 2003; 25
Sahoo (10.1016/j.imavis.2024.105021_bb0220) 2022; 34
Sahoo (10.1016/j.imavis.2024.105021_bb0090) 2014
Zhu (10.1016/j.imavis.2024.105021_bb0200) 2020; 66
Yang (10.1016/j.imavis.2024.105021_bb0360) 2021; 32
Sengar (10.1016/j.imavis.2024.105021_bb0155) 2017; 11
Reisslein (10.1016/j.imavis.2024.105021_bb0080) 2000
Bianco (10.1016/j.imavis.2024.105021_bb0295) 2017; 21
Christopher Montgomery (10.1016/j.imavis.2024.105021_bb0085) 2004
Cioppa (10.1016/j.imavis.2024.105021_bb0340) 2020
Zhou (10.1016/j.imavis.2024.105021_bb0190) 2019
Sauvalle (10.1016/j.imavis.2024.105021_bb0395) 2023
References_xml – volume: 28
  start-page: 1750056
  year: 2018
  ident: bb0350
  article-title: Foreground detection by competitive learning for varying input distributions
  publication-title: Int. J. Neural Syst.
– volume: 79
  start-page: 4639
  year: 2020
  end-page: 4659
  ident: bb0385
  article-title: Dynamic background modeling using deep learning autoencoder network
  publication-title: Multimed. Tools Appl.
– volume: 242
  year: sep 2017
  ident: bb0150
  article-title: A new moving object detection method based on frame-difference and background subtraction
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– start-page: 433
  year: 2016
  end-page: 454
  ident: bb0370
  article-title: C-efic: Color and edge based foreground background segmentation with interior classification
  publication-title: Computer Vision, Imaging and Computer Graphics Theory and Applications: 10th International Joint Conference, VISIGRAPP 2015, Berlin, Germany, March 11–14, 2015, Revised Selected Papers 10
– start-page: 1
  year: 2017
  end-page: 6
  ident: bb0130
  article-title: Neighborhood based codebook model for moving object segmentation
  publication-title: Proceedings of the 2nd International Conference on Man and Machine Interfacing
– year: Oct 2017
  ident: bb0185
  article-title: Focal loss for dense object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– start-page: 107
  year: 2014
  end-page: 116
  ident: bb0375
  article-title: Dynamic background learning through deep auto-encoder networks
  publication-title: Proceedings of the 22nd ACM international conference on Multimedia
– volume: 21
  start-page: 914
  year: 2017
  end-page: 928
  ident: bb0295
  article-title: Combination of video change detection algorithms by genetic programming
  publication-title: IEEE Trans. Evol. Comput.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 15
  ident: bb0270
  article-title: WisenetMD: motion detection using dynamic background region analysis
  publication-title: Symmetry
– volume: vol. 1
  start-page: 255
  year: 1999
  end-page: 261
  ident: bb0380
  article-title: Wallflower: Principles and practice of background maintenance
  publication-title: Proceedings of the 7th IEEE International Conference on Computer Vision
– start-page: 1
  year: 2023
  end-page: 14
  ident: bb0005
  article-title: Modified ResNet-152 network with hybrid pyramidal pooling for local change detection
  publication-title: IEEE Trans. Artif. Intell.
– volume: 6
  start-page: 43450
  year: 2018
  end-page: 43459
  ident: bb0035
  article-title: A 3D Atrous convolutional long short-term memory network for background subtraction
  publication-title: IEEE Access
– volume: 66
  start-page: 249
  year: 2012
  end-page: 254
  ident: bb0250
  article-title: A hybrid algorithm for automatic segmentation of slowly moving objects
  publication-title: AEU Int. J. Electron. Commun.
– volume: 11
  start-page: 31
  year: 2014
  end-page: 66
  ident: bb0050
  article-title: Traditional and recent approaches in background modeling for foreground detection: an overview
  publication-title: Comput. Sci. Rev.
– volume: 13
  start-page: 555
  year: 2023
  ident: bb0235
  article-title: Lie recognition with multi-modal spatial–temporal state transition patterns based on hybrid convolutional neural network–bidirectional long short-term memory
  publication-title: Brain Sci.
– volume: 9
  start-page: 53849
  year: 2021
  end-page: 53860
  ident: bb0255
  article-title: Bsuv-net 2.0: spatio-temporal data augmentations for video-agnostic supervised background subtraction
  publication-title: IEEE Access
– volume: 4
  start-page: 6133
  year: 2016
  end-page: 6150
  ident: bb0100
  article-title: An evaluation of background subtraction for object detection vis-a-vis mitigating challenging scenarios
  publication-title: IEEE Access
– volume: vol. 104
  year: 2016
  ident: bb0355
  article-title: Fish4Knowledge: Collecting and Analyzing Massive Coral Reef Fish Video Data
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bb0070
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 779
  year: 2016
  end-page: 788
  ident: bb0115
  article-title: You only look once: Unified, real-time object detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 31
  start-page: 1804
  year: 2021
  end-page: 1818
  ident: bb0170
  article-title: Revisiting feature fusion for rgb-t salient object detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 76
  start-page: 635
  year: 2018
  end-page: 649
  ident: bb0275
  article-title: A deep convolutional neural network for video sequence background subtraction
  publication-title: Pattern Recogn.
– volume: 23
  start-page: 2031
  year: 2020
  end-page: 2044
  ident: bb0010
  article-title: Scene independency matters: an empirical study of scene dependent and scene independent evaluation for CNN-based change detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 32
  start-page: 2145
  year: 2021
  end-page: 2157
  ident: bb0360
  article-title: Stpnet: a spatial-temporal propagation network for background subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 28
  start-page: 976
  year: 2010
  end-page: 990
  ident: bb0015
  article-title: A survey on vision-based human action recognition
  publication-title: Image Vis. Comput.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bb0240
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 10
  start-page: 343
  year: 2016
  end-page: 350
  ident: bb0210
  article-title: A modified gaussian mixture background model via spatiotemporal distribution with shadow detection
  publication-title: SIViP
– volume: 27
  start-page: 023002
  year: 2018
  ident: bb0305
  article-title: Swcd: a sliding window and self-regulated learning-based background updating method for change detection in videos
  publication-title: J. Electron Imaging
– volume: 12
  year: 2022
  ident: bb0390
  article-title: End-to-end deep auto-encoder for segmenting a moving object with limited training data
  publication-title: Int. J. Electric. Comput. Eng. (2088–8708)
– start-page: 4552
  year: 2017
  end-page: 4556
  ident: bb0290
  article-title: Semantic background subtraction
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– volume: 20
  start-page: 1709
  year: 2011
  end-page: 1724
  ident: bb0205
  article-title: ViBe: a universal background subtraction algorithm for video sequences
  publication-title: IEEE Trans. Image Process.
– start-page: 3244
  year: 2023
  end-page: 3255
  ident: bb0395
  article-title: Autoencoder-based background reconstruction and foreground segmentation with background noise estimation
  publication-title: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision
– year: 2017
  ident: bb0320
  article-title: WiSARDrp for change detection in video sequences
  publication-title: Proceedings of the European Symposium on Artificial Neural Networks
– start-page: 990
  year: 2015
  end-page: 997
  ident: bb0315
  article-title: A self-adjusting approach to change detection based on background word consensus
  publication-title: Proceedings of the IEEE Winter Conference on Applications of Computer Vision
– volume: 222
  start-page: 103501
  year: 2022
  ident: bb0055
  article-title: Encoder and decoder network with ResNet-50 and global average feature pooling for local change detection
  publication-title: Comput. Vis. Image Underst.
– start-page: 2375
  year: 2010
  end-page: 2380
  ident: bb0225
  article-title: Study on moving-objects detection technique in video surveillance system
  publication-title: Proceedings of the IEEE Chinese Control and Decision Conference
– start-page: 734
  year: 2018
  end-page: 750
  ident: bb0195
  article-title: Cornernet: Detecting objects as paired keypoints
  publication-title: Proceedings of the European conference on computer vision (ECCV)
– volume: 96
  start-page: 66
  year: 2017
  end-page: 75
  ident: bb0280
  article-title: Interactive deep learning method for segmenting moving objects
  publication-title: Pattern Recogn. Lett.
– start-page: 5272
  year: 2019
  end-page: 5277
  ident: bb0140
  article-title: An efficient optical flow based motion detection method for non-stationary scenes
  publication-title: Proceedings of the Chinese Control And Decision Conference
– volume: vol. 1
  year: 2001
  ident: bb0105
  article-title: Rapid object detection using a boosted cascade of simple features
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– volume: 7
  start-page: 175
  year: 2006
  end-page: 187
  ident: bb0020
  article-title: Automatic traffic surveillance system for vehicle tracking and classification
  publication-title: IEEE Trans. Intell. Transp. Syst.
– volume: 34
  start-page: 743
  year: 2012
  end-page: 761
  ident: bb0110
  article-title: Pedestrian detection: an evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 50
  year: 2017
  end-page: 57
  ident: bb0330
  article-title: Bmog: boosted gaussian mixture model with controlled complexity
  publication-title: Pattern Recognition and Image Analysis: 8th Iberian Conference, IbPRIA 2017, Faro, Portugal, June 20–23, 2017, Proceedings 8
– volume: 97
  start-page: 117
  year: 2018
  end-page: 136
  ident: bb0030
  article-title: Spatio-contextual Gaussian mixture model for local change detection in underwater video
  publication-title: Expert Syst. Appl.
– volume: 170
  start-page: 1
  year: 2021
  end-page: 8
  ident: bb0145
  article-title: Optical-flow-based framework to boost video object detection performance with object enhancement
  publication-title: Expert Syst. Appl.
– year: 2019
  ident: bb0190
  article-title: Objects as points
– volume: 25
  start-page: 1337
  year: 2003
  end-page: 1342
  ident: bb0125
  article-title: Detecting moving objects, ghosts, and shadows in video streams
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 7
  start-page: 59143
  year: 2019
  end-page: 59171
  ident: bb0040
  article-title: A comprehensive survey of video datasets for background subtraction
  publication-title: IEEE Access
– volume: 11
  start-page: 407
  year: 2017
  end-page: 414
  ident: bb0215
  article-title: Background subtraction based on circulant matrix
  publication-title: SIViP
– start-page: 2774
  year: 2020
  end-page: 2783
  ident: bb0265
  article-title: BSUV-Net: A fully-convolutional neural network for background subtraction of unseen videos
  publication-title: Proceedings of the IEEE Winter Conference on Applications of Computer Vision
– volume: 66
  start-page: 7155
  year: 2020
  end-page: 7179
  ident: bb0200
  article-title: Deconstructing generative adversarial networks
  publication-title: IEEE Trans. Inf. Theory
– start-page: 1
  year: 2022
  end-page: 8
  ident: bb0285
  article-title: An end to end encoder-decoder network with multi-scale feature pulling for detecting local changes from video scene
  publication-title: Proceedings of the 18th IEEE International Conference on Advanced Video and Signal Based Surveillance
– volume: 394
  start-page: 178
  year: 2020
  end-page: 200
  ident: bb0260
  article-title: A novel background subtraction algorithm based on parallel vision and Bayesian GANs
  publication-title: Neurocomputing
– volume: 13
  start-page: 719
  year: 2019
  end-page: 729
  ident: bb0310
  article-title: Cvabs: moving object segmentation with common vector approach for videos
  publication-title: IET Comput. Vis.
– volume: 26
  start-page: 3249
  year: 2017
  end-page: 3260
  ident: bb0325
  article-title: Universal multimode background subtraction
  publication-title: IEEE Trans. Image Process.
– volume: 6
  start-page: 15505
  year: 2018
  end-page: 15520
  ident: bb0345
  article-title: : a robust change detection method for intelligent visual surveillance
  publication-title: IEEE Access
– volume: 168
  start-page: 605
  year: 2018
  end-page: 618
  ident: bb0165
  article-title: Moving object detection using an adaptive background subtraction method based on block-based structure in dynamic scene
  publication-title: Optik
– start-page: 21
  year: 2016
  end-page: 37
  ident: bb0175
  article-title: Ssd: Single shot multibox detector
  publication-title: Computer Vision – ECCV 2016
– volume: 14
  start-page: 346
  year: 1992
  end-page: 352
  ident: bb0095
  article-title: On the detection of motion and the computation of optical flow
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 135
  year: 2002
  end-page: 144
  ident: bb0135
  article-title: An Improved Adaptive Background Mixture Model for Real-Time Tracking with Shadow Detection
– volume: 34
  start-page: 334
  year: 2004
  end-page: 352
  ident: bb0025
  article-title: A survey on visual surveillance of object motion and behaviors
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
– start-page: 266
  year: 2019
  ident: bb0300
  article-title: An end-to-end deep learning approach for simultaneous background modeling and subtraction
  publication-title: Proceedings of the British Machine Vision Conference
– volume: 11
  start-page: 1357
  year: 2017
  end-page: 1364
  ident: bb0155
  article-title: Moving object detection based on frame difference and w4
  publication-title: SIViP
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: bb0060
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 12
  start-page: 1265
  year: 2018
  end-page: 1272
  ident: bb0120
  article-title: A fast valley-based segmentation for detection of slowly moving objects
  publication-title: SIViP
– volume: 1
  start-page: 492
  year: 2012
  end-page: 497
  ident: bb0160
  article-title: Moving-object detection based on sparse representation and dictionary learning
  publication-title: AASRI Procedia
– volume: 24
  start-page: 411
  year: 2006
  end-page: 423
  ident: bb0230
  article-title: Moving object segmentation by background subtraction and temporal analysis
  publication-title: Image Vis. Comput.
– start-page: 6355
  year: 2023
  end-page: 6364
  ident: bb0365
  article-title: Zbs: Zero-shot background subtraction via instance-level background modeling and foreground selection
  publication-title: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2022
  end-page: 12
  ident: bb0045
  article-title: Kernel-induced possibilistic fuzzy associate background subtraction for video scene
  publication-title: IEEE Trans. Comput. Soc. Syst.
– volume: 117
  start-page: 8
  year: 2019
  end-page: 66
  ident: bb0065
  article-title: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation
  publication-title: Neural Netw.
– year: 2000
  ident: bb0080
  article-title: Yuv video sequences
– volume: 28
  start-page: 2105
  year: 2017
  end-page: 2115
  ident: bb0335
  article-title: WeSamBE: a weight-sample-based method for background subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– start-page: 3214
  year: 2020
  end-page: 3218
  ident: bb0340
  article-title: Real-time semantic background subtraction
  publication-title: Proceedings of the IEEE International Conference on Image Processing
– year: 2016
  ident: bb0180
  article-title: Faster r-cnn: Towards real-time object detection with region proposal networks
– start-page: 1
  year: 2014
  end-page: 5
  ident: bb0090
  article-title: Three frame based adaptive background subtraction
  publication-title: Proceedings of the International Conference on High Performance Computing and Applications
– year: 2004
  ident: bb0085
  article-title: Xiph.org video test media [derf’s collection]
– volume: 34
  start-page: 5296
  year: 2022
  end-page: 5304
  ident: bb0220
  article-title: Entropy feature and peak-means clustering based slowly moving object detection in head and shoulder video sequences
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
– start-page: 387
  year: 2014
  end-page: 394
  ident: bb0075
  article-title: Cdnet 2014: An expanded change detection benchmark dataset
  publication-title: Proceedings of the IEEE conference on computer vision and pattern recognition workshops
– start-page: 1
  year: 2008
  end-page: 6
  ident: bb0245
  article-title: Detection of slow moving video objects using compound markov random field model
  publication-title: TENCON 2008–2008 IEEE Region 10 Conference
– volume: 11
  start-page: 1357
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0155
  article-title: Moving object detection based on frame difference and w4
  publication-title: SIViP
  doi: 10.1007/s11760-017-1093-8
– start-page: 734
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0195
  article-title: Cornernet: Detecting objects as paired keypoints
– start-page: 1
  year: 2022
  ident: 10.1016/j.imavis.2024.105021_bb0285
  article-title: An end to end encoder-decoder network with multi-scale feature pulling for detecting local changes from video scene
– volume: 11
  start-page: 31
  year: 2014
  ident: 10.1016/j.imavis.2024.105021_bb0050
  article-title: Traditional and recent approaches in background modeling for foreground detection: an overview
  publication-title: Comput. Sci. Rev.
  doi: 10.1016/j.cosrev.2014.04.001
– volume: 222
  start-page: 103501
  year: 2022
  ident: 10.1016/j.imavis.2024.105021_bb0055
  article-title: Encoder and decoder network with ResNet-50 and global average feature pooling for local change detection
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1016/j.cviu.2022.103501
– volume: 242
  issue: 1
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0150
  article-title: A new moving object detection method based on frame-difference and background subtraction
  publication-title: IOP Conf. Ser. Mater. Sci. Eng.
– volume: 168
  start-page: 605
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0165
  article-title: Moving object detection using an adaptive background subtraction method based on block-based structure in dynamic scene
  publication-title: Optik
  doi: 10.1016/j.ijleo.2018.04.047
– volume: 117
  start-page: 8
  year: 2019
  ident: 10.1016/j.imavis.2024.105021_bb0065
  article-title: Deep neural network concepts for background subtraction: a systematic review and comparative evaluation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.04.024
– volume: 24
  start-page: 411
  issue: 5
  year: 2006
  ident: 10.1016/j.imavis.2024.105021_bb0230
  article-title: Moving object segmentation by background subtraction and temporal analysis
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2006.01.001
– volume: 27
  start-page: 023002
  issue: 2
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0305
  article-title: Swcd: a sliding window and self-regulated learning-based background updating method for change detection in videos
  publication-title: J. Electron Imaging
  doi: 10.1117/1.JEI.27.2.023002
– volume: vol. 1
  start-page: 255
  year: 1999
  ident: 10.1016/j.imavis.2024.105021_bb0380
  article-title: Wallflower: Principles and practice of background maintenance
– volume: 25
  start-page: 1337
  issue: 10
  year: 2003
  ident: 10.1016/j.imavis.2024.105021_bb0125
  article-title: Detecting moving objects, ghosts, and shadows in video streams
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1233909
– volume: 26
  start-page: 3249
  issue: 7
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0325
  article-title: Universal multimode background subtraction
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2695882
– volume: 14
  start-page: 346
  issue: 03
  year: 1992
  ident: 10.1016/j.imavis.2024.105021_bb0095
  article-title: On the detection of motion and the computation of optical flow
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.120329
– volume: 34
  start-page: 5296
  issue: 8
  year: 2022
  ident: 10.1016/j.imavis.2024.105021_bb0220
  article-title: Entropy feature and peak-means clustering based slowly moving object detection in head and shoulder video sequences
  publication-title: J. King Saud Univ. Comput. Inform. Sci.
– start-page: 1
  year: 2023
  ident: 10.1016/j.imavis.2024.105021_bb0005
  article-title: Modified ResNet-152 network with hybrid pyramidal pooling for local change detection
  publication-title: IEEE Trans. Artif. Intell.
– volume: 6
  start-page: 43450
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0035
  article-title: A 3D Atrous convolutional long short-term memory network for background subtraction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2861223
– year: 2019
  ident: 10.1016/j.imavis.2024.105021_bb0190
– volume: 11
  start-page: 407
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0215
  article-title: Background subtraction based on circulant matrix
  publication-title: SIViP
  doi: 10.1007/s11760-016-0975-5
– start-page: 770
  year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0240
  article-title: Deep residual learning for image recognition
– start-page: 3244
  year: 2023
  ident: 10.1016/j.imavis.2024.105021_bb0395
  article-title: Autoencoder-based background reconstruction and foreground segmentation with background noise estimation
– volume: 96
  start-page: 66
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0280
  article-title: Interactive deep learning method for segmenting moving objects
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2016.09.014
– year: 2000
  ident: 10.1016/j.imavis.2024.105021_bb0080
– start-page: 1
  year: 2008
  ident: 10.1016/j.imavis.2024.105021_bb0245
  article-title: Detection of slow moving video objects using compound markov random field model
– volume: 6
  start-page: 15505
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0345
  article-title: M4CD: a robust change detection method for intelligent visual surveillance
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812880
– start-page: 1
  year: 2014
  ident: 10.1016/j.imavis.2024.105021_bb0090
  article-title: Three frame based adaptive background subtraction
– volume: 1
  start-page: 492
  year: 2012
  ident: 10.1016/j.imavis.2024.105021_bb0160
  article-title: Moving-object detection based on sparse representation and dictionary learning
  publication-title: AASRI Procedia
  doi: 10.1016/j.aasri.2012.06.077
– volume: 28
  start-page: 976
  issue: 6
  year: 2010
  ident: 10.1016/j.imavis.2024.105021_bb0015
  article-title: A survey on vision-based human action recognition
  publication-title: Image Vis. Comput.
  doi: 10.1016/j.imavis.2009.11.014
– volume: 13
  start-page: 555
  issue: 4
  year: 2023
  ident: 10.1016/j.imavis.2024.105021_bb0235
  article-title: Lie recognition with multi-modal spatial–temporal state transition patterns based on hybrid convolutional neural network–bidirectional long short-term memory
  publication-title: Brain Sci.
  doi: 10.3390/brainsci13040555
– volume: vol. 104
  year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0355
– start-page: 1
  year: 2022
  ident: 10.1016/j.imavis.2024.105021_bb0045
  article-title: Kernel-induced possibilistic fuzzy associate background subtraction for video scene
  publication-title: IEEE Trans. Comput. Soc. Syst.
– start-page: 2375
  year: 2010
  ident: 10.1016/j.imavis.2024.105021_bb0225
  article-title: Study on moving-objects detection technique in video surveillance system
– start-page: 779
  year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0115
  article-title: You only look once: Unified, real-time object detection
– start-page: 50
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0330
  article-title: Bmog: boosted gaussian mixture model with controlled complexity
– volume: 97
  start-page: 117
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0030
  article-title: Spatio-contextual Gaussian mixture model for local change detection in underwater video
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2017.12.009
– start-page: 4552
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0290
  article-title: Semantic background subtraction
– volume: 20
  start-page: 1709
  issue: 6
  year: 2011
  ident: 10.1016/j.imavis.2024.105021_bb0205
  article-title: ViBe: a universal background subtraction algorithm for video sequences
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2101613
– year: 2004
  ident: 10.1016/j.imavis.2024.105021_bb0085
– volume: 34
  start-page: 334
  issue: 3
  year: 2004
  ident: 10.1016/j.imavis.2024.105021_bb0025
  article-title: A survey on visual surveillance of object motion and behaviors
  publication-title: IEEE Trans. Syst. Man Cybern. Part C Appl. Rev.
  doi: 10.1109/TSMCC.2004.829274
– start-page: 135
  year: 2002
  ident: 10.1016/j.imavis.2024.105021_bb0135
– volume: 66
  start-page: 249
  issue: 3
  year: 2012
  ident: 10.1016/j.imavis.2024.105021_bb0250
  article-title: A hybrid algorithm for automatic segmentation of slowly moving objects
  publication-title: AEU Int. J. Electron. Commun.
  doi: 10.1016/j.aeue.2011.07.009
– start-page: 2774
  year: 2020
  ident: 10.1016/j.imavis.2024.105021_bb0265
  article-title: BSUV-Net: A fully-convolutional neural network for background subtraction of unseen videos
– start-page: 107
  year: 2014
  ident: 10.1016/j.imavis.2024.105021_bb0375
  article-title: Dynamic background learning through deep auto-encoder networks
– volume: vol. 1
  year: 2001
  ident: 10.1016/j.imavis.2024.105021_bb0105
  article-title: Rapid object detection using a boosted cascade of simple features
– volume: 13
  start-page: 719
  issue: 8
  year: 2019
  ident: 10.1016/j.imavis.2024.105021_bb0310
  article-title: Cvabs: moving object segmentation with common vector approach for videos
  publication-title: IET Comput. Vis.
  doi: 10.1049/iet-cvi.2018.5642
– volume: 32
  start-page: 2145
  issue: 4
  year: 2021
  ident: 10.1016/j.imavis.2024.105021_bb0360
  article-title: Stpnet: a spatial-temporal propagation network for background subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3088130
– start-page: 990
  year: 2015
  ident: 10.1016/j.imavis.2024.105021_bb0315
  article-title: A self-adjusting approach to change detection based on background word consensus
– volume: 394
  start-page: 178
  year: 2020
  ident: 10.1016/j.imavis.2024.105021_bb0260
  article-title: A novel background subtraction algorithm based on parallel vision and Bayesian GANs
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.04.088
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0060
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0180
– volume: 28
  start-page: 1750056
  issue: 05
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0350
  article-title: Foreground detection by competitive learning for varying input distributions
  publication-title: Int. J. Neural Syst.
  doi: 10.1142/S0129065717500563
– volume: 4
  start-page: 6133
  year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0100
  article-title: An evaluation of background subtraction for object detection vis-a-vis mitigating challenging scenarios
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2608847
– volume: 35
  start-page: 1285
  issue: 5
  year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0070
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– volume: 12
  start-page: 1265
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0120
  article-title: A fast valley-based segmentation for detection of slowly moving objects
  publication-title: SIViP
  doi: 10.1007/s11760-018-1278-9
– start-page: 21
  year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0175
  article-title: Ssd: Single shot multibox detector
– volume: 9
  start-page: 53849
  year: 2021
  ident: 10.1016/j.imavis.2024.105021_bb0255
  article-title: Bsuv-net 2.0: spatio-temporal data augmentations for video-agnostic supervised background subtraction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3071163
– start-page: 433
  year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0370
  article-title: C-efic: Color and edge based foreground background segmentation with interior classification
– volume: 7
  start-page: 59143
  year: 2019
  ident: 10.1016/j.imavis.2024.105021_bb0040
  article-title: A comprehensive survey of video datasets for background subtraction
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2914961
– start-page: 5272
  year: 2019
  ident: 10.1016/j.imavis.2024.105021_bb0140
  article-title: An efficient optical flow based motion detection method for non-stationary scenes
– volume: 76
  start-page: 635
  year: 2018
  ident: 10.1016/j.imavis.2024.105021_bb0275
  article-title: A deep convolutional neural network for video sequence background subtraction
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2017.09.040
– volume: 7
  start-page: 175
  issue: 2
  year: 2006
  ident: 10.1016/j.imavis.2024.105021_bb0020
  article-title: Automatic traffic surveillance system for vehicle tracking and classification
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2006.874722
– volume: 31
  start-page: 1804
  issue: 5
  year: 2021
  ident: 10.1016/j.imavis.2024.105021_bb0170
  article-title: Revisiting feature fusion for rgb-t salient object detection
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.3014663
– start-page: 1
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0130
  article-title: Neighborhood based codebook model for moving object segmentation
– volume: 21
  start-page: 914
  issue: 6
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0295
  article-title: Combination of video change detection algorithms by genetic programming
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2017.2694160
– volume: 28
  start-page: 2105
  issue: 9
  year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0335
  article-title: WeSamBE: a weight-sample-based method for background subtraction
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2017.2711659
– volume: 79
  start-page: 4639
  year: 2020
  ident: 10.1016/j.imavis.2024.105021_bb0385
  article-title: Dynamic background modeling using deep learning autoencoder network
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-7411-0
– volume: 170
  start-page: 1
  year: 2021
  ident: 10.1016/j.imavis.2024.105021_bb0145
  article-title: Optical-flow-based framework to boost video object detection performance with object enhancement
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2020.114544
– volume: 11
  start-page: 1
  issue: 5
  year: 2019
  ident: 10.1016/j.imavis.2024.105021_bb0270
  article-title: WisenetMD: motion detection using dynamic background region analysis
  publication-title: Symmetry
  doi: 10.3390/sym11050621
– volume: 66
  start-page: 7155
  issue: 11
  year: 2020
  ident: 10.1016/j.imavis.2024.105021_bb0200
  article-title: Deconstructing generative adversarial networks
  publication-title: IEEE Trans. Inf. Theory
  doi: 10.1109/TIT.2020.2983698
– year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0320
  article-title: WiSARDrp for change detection in video sequences
– volume: 12
  issue: 6
  year: 2022
  ident: 10.1016/j.imavis.2024.105021_bb0390
  article-title: End-to-end deep auto-encoder for segmenting a moving object with limited training data
  publication-title: Int. J. Electric. Comput. Eng. (2088–8708)
– volume: 34
  start-page: 743
  issue: 4
  year: 2012
  ident: 10.1016/j.imavis.2024.105021_bb0110
  article-title: Pedestrian detection: an evaluation of the state of the art
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2011.155
– start-page: 6355
  year: 2023
  ident: 10.1016/j.imavis.2024.105021_bb0365
  article-title: Zbs: Zero-shot background subtraction via instance-level background modeling and foreground selection
– start-page: 387
  year: 2014
  ident: 10.1016/j.imavis.2024.105021_bb0075
  article-title: Cdnet 2014: An expanded change detection benchmark dataset
– start-page: 266
  year: 2019
  ident: 10.1016/j.imavis.2024.105021_bb0300
  article-title: An end-to-end deep learning approach for simultaneous background modeling and subtraction
– start-page: 3214
  year: 2020
  ident: 10.1016/j.imavis.2024.105021_bb0340
  article-title: Real-time semantic background subtraction
– volume: 23
  start-page: 2031
  issue: 3
  year: 2020
  ident: 10.1016/j.imavis.2024.105021_bb0010
  article-title: Scene independency matters: an empirical study of scene dependent and scene independent evaluation for CNN-based change detection
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2020.3030801
– year: 2017
  ident: 10.1016/j.imavis.2024.105021_bb0185
  article-title: Focal loss for dense object detection
– volume: 10
  start-page: 343
  year: 2016
  ident: 10.1016/j.imavis.2024.105021_bb0210
  article-title: A modified gaussian mixture background model via spatiotemporal distribution with shadow detection
  publication-title: SIViP
  doi: 10.1007/s11760-014-0747-z
SSID ssj0007079
Score 2.5098653
Snippet Background subtraction is a crucial stage in many visual surveillance systems. The prime objective of any such system is to detect moving objects such that the...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105021
SubjectTerms Background subtraction
Contrast normalization
Deep learning architecture
Feature pooling framework
Transfer learning
Title A ResNet-101 deep learning framework induced transfer learning strategy for moving object detection
URI https://dx.doi.org/10.1016/j.imavis.2024.105021
Volume 146
WOSCitedRecordID wos001230297600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1872-8138
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007079
  issn: 0262-8856
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBYh20N76GPb0u0LHXoLXiK_JB9D2bZbSljYXcjNKPZ4N2HjhNhZ9lf0N3dGsmzT9A0lYIKsh9F8Ho3G34wYe-cXYRIIiL3Y1-CFKpx7yg8iDyDSY4gkgsYECn-R06mazZKzweCri4W5vZFlqe7uks1_FTWWobApdPYvxN12igX4H4WOVxQ7Xv9I8ERwq6ZQo-oToxxg406GuBoVjok1wp34jr7818ZuhW1Xp7Lpai2Pc2X9Des5eWuws9oQt8q-RXu6ItYPud9tmLohqe9qtyKar1Pl4gp1muENXG50pct2LTjX12vjrD3bIhrz65GhfPda5tpGFJXr5U_ufcTuiBbe91_4Ycezsk61vcAao_v8GBW1ipos2VY3K4llwiaDaZW3dWDuLQTWJ7E8XqwoWcMxDUxHGo9tOPZ3KbbPaTgajQi1aPHhkn7gyyhRQ3YwOT2ZfW7XdsonaL129vFcMKZhDO6P9WNjp2fAXDxmD5udB59YxDxhAygP2aNmF8IbHV8dsge9FJVPWTbhHZw4wYk7qPAWTryBE3dw6uo4OHGEE7dw4hZOvIXTM3b54eTi_SevOZjDy3CHWXu6CBQdXSdlJiWEahyPIfR1kkcSCogVJYMWRSZyX0cKVA7FGEQuIKPNr9JJ8JwNy3UJLxifK18KjWZ4RLnykkjLXCQikBp_SRjAEQvcDKZZk7WeDk-5SR09cZnaeU9p3lM770fMa1ttbNaW39SXTjhpY3laizJFPP2y5ct_bvmK3e9eh9dsWG938Ibdy27rRbV92wDvG7O4qo4
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+ResNet-101+deep+learning+framework+induced+transfer+learning+strategy+for+moving+object+detection&rft.jtitle=Image+and+vision+computing&rft.au=Panigrahi%2C+Upasana&rft.au=Sahoo%2C+Prabodh+Kumar&rft.au=Panda%2C+Manoj+Kumar&rft.au=Panda%2C+Ganapati&rft.date=2024-06-01&rft.pub=Elsevier+B.V&rft.issn=0262-8856&rft.eissn=1872-8138&rft.volume=146&rft_id=info:doi/10.1016%2Fj.imavis.2024.105021&rft.externalDocID=S0262885624001252
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0262-8856&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0262-8856&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0262-8856&client=summon