Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder–decoder network

The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized deep convolutional encoder–decoder network (ConvEDNet) is proposed here to address this challenge. The training of ConvEDNet is regularized by...

Full description

Saved in:
Bibliographic Details
Published in:Neurocomputing (Amsterdam) Vol. 321; pp. 178 - 186
Main Authors: Lei, Baiying, Huang, Shan, Li, Ran, Bian, Cheng, Li, Hang, Chou, Yi-Hong, Cheng, Jie-Zhi
Format: Journal Article
Language:English
Published: Elsevier B.V 10.12.2018
Subjects:
ISSN:0925-2312, 1872-8286
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized deep convolutional encoder–decoder network (ConvEDNet) is proposed here to address this challenge. The training of ConvEDNet is regularized by the boundary cues, which carry geometrical constraints, with the deep supervision technique for better withstand of intrinsic speckle noise and posterior acoustic shadows in ultrasound images. The boundary regularization is denoted as deep boundary supervision (DBS) throughout this paper. The training of the ConvEDNet is further boosted with the adaptive domain transfer (ADT), which is realized with the bridge of encoder training for an edge detector on ultrasound images. Accordingly, the ADT is a two-stage of domain transfer for better landing the encoder on the ultrasound domain. The ADT can provide better network initialization than either the direct usage of pretrained model from natural images or random scratch. Based on the ADT and DBS techniques, the proposed ConvEDNet method achieves better segmentation performance compared with several classic deep learning segmentation methods on the same set of AWBUS images. The segmentation of breast anatomy may potentially assist the exclusion of false-positives for computer-aided detection to further improve the efficiency of clinical image reading.
AbstractList The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized deep convolutional encoder–decoder network (ConvEDNet) is proposed here to address this challenge. The training of ConvEDNet is regularized by the boundary cues, which carry geometrical constraints, with the deep supervision technique for better withstand of intrinsic speckle noise and posterior acoustic shadows in ultrasound images. The boundary regularization is denoted as deep boundary supervision (DBS) throughout this paper. The training of the ConvEDNet is further boosted with the adaptive domain transfer (ADT), which is realized with the bridge of encoder training for an edge detector on ultrasound images. Accordingly, the ADT is a two-stage of domain transfer for better landing the encoder on the ultrasound domain. The ADT can provide better network initialization than either the direct usage of pretrained model from natural images or random scratch. Based on the ADT and DBS techniques, the proposed ConvEDNet method achieves better segmentation performance compared with several classic deep learning segmentation methods on the same set of AWBUS images. The segmentation of breast anatomy may potentially assist the exclusion of false-positives for computer-aided detection to further improve the efficiency of clinical image reading.
Author Huang, Shan
Bian, Cheng
Li, Hang
Chou, Yi-Hong
Cheng, Jie-Zhi
Li, Ran
Lei, Baiying
Author_xml – sequence: 1
  givenname: Baiying
  surname: Lei
  fullname: Lei, Baiying
  organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China
– sequence: 2
  givenname: Shan
  surname: Huang
  fullname: Huang, Shan
  organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China
– sequence: 3
  givenname: Ran
  surname: Li
  fullname: Li, Ran
  organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China
– sequence: 4
  givenname: Cheng
  surname: Bian
  fullname: Bian, Cheng
  organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China
– sequence: 5
  givenname: Hang
  surname: Li
  fullname: Li, Hang
  organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China
– sequence: 6
  givenname: Yi-Hong
  orcidid: 0000-0002-7418-4514
  surname: Chou
  fullname: Chou, Yi-Hong
  organization: Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan
– sequence: 7
  givenname: Jie-Zhi
  surname: Cheng
  fullname: Cheng, Jie-Zhi
  email: jzcheng@ntu.edu.tw, leiby@szu.edu.cn, leib0001@e.ntu.edu.sg
  organization: Shanghai United Imaging Intelligence Co., Ltd. (UII), Shanghai, China
BookMark eNqFkMFO3DAQhq0KpC7QN-jBL5AwdnaTuIdKCBWohMSh5WxN7MnibdaubIfVcuIFOPGGPEmz3XLhUE7zazTfjOY7Ygc-eGLss4BSgKhPV6Wn0YR1KUG0JagS5tUHNhNtI4tWtvUBm4GSi0JWQn5kRymtAEQjpJqxpx-0XJPPmF3wPPS8i4Qpc_SYw3rL-xA5jlPETJZv7sJAryPjkCOmMHrL3RqXlPjG5Tve7ToYtzzSchwwuocJNMHfh2HcHcGBkzfBUnx5fLb0N3FPeRPirxN22OOQ6NO_esxuL779PL8qrm8uv5-fXRemgjoXaMi0TUfzVoK0KIzpJMpFZ02jsCJTg0VVyRqUMI1Y1I0yfYVAVqKCDqE6ZvP9XhNDSpF6_TtOP8StFqB3SvVK75XqnVINSk9KJ-zLG8y4vbnJhBveg7_uYZoeu3cUdTJuMkHWRTJZ2-D-v-APjF6eSQ
CitedBy_id crossref_primary_10_3390_healthcare10122480
crossref_primary_10_1088_1361_6501_add28a
crossref_primary_10_1109_JBHI_2023_3285789
crossref_primary_10_1063_1_5100577
crossref_primary_10_1109_ACCESS_2020_2974512
crossref_primary_10_1121_10_0004827
crossref_primary_10_1016_j_neucom_2020_07_002
crossref_primary_10_3389_fninf_2024_1444650
crossref_primary_10_1088_1361_6560_ad1cfa
crossref_primary_10_1016_j_artmed_2024_103012
crossref_primary_10_1109_ACCESS_2019_2896409
crossref_primary_10_1016_j_media_2020_101753
crossref_primary_10_1109_ACCESS_2020_2991845
crossref_primary_10_1109_ACCESS_2020_3003089
crossref_primary_10_3390_app12104942
crossref_primary_10_3390_brainsci11030352
crossref_primary_10_1016_j_media_2020_101918
crossref_primary_10_3389_fmolb_2021_698334
crossref_primary_10_3389_fnins_2022_1087176
crossref_primary_10_1186_s12938_024_01198_z
crossref_primary_10_1016_j_metrad_2025_100138
crossref_primary_10_1109_RBME_2024_3357877
crossref_primary_10_1016_j_asoc_2022_109549
crossref_primary_10_1016_j_autcon_2022_104152
crossref_primary_10_1016_j_media_2021_101989
crossref_primary_10_1088_1361_6560_ab7e7d
crossref_primary_10_1016_j_asoc_2022_109947
crossref_primary_10_1016_j_media_2021_102315
crossref_primary_10_3389_fonc_2025_1582035
crossref_primary_10_1016_j_neucom_2020_10_116
crossref_primary_10_1259_bjr_20190580
crossref_primary_10_1016_j_cmpb_2022_107086
crossref_primary_10_1016_j_displa_2024_102753
crossref_primary_10_1007_s00521_019_04532_y
crossref_primary_10_3390_app132011362
crossref_primary_10_1016_j_media_2022_102511
crossref_primary_10_1016_j_compmedimag_2021_101925
crossref_primary_10_1016_j_eswa_2024_123265
crossref_primary_10_1016_j_neucom_2019_10_097
crossref_primary_10_3390_jimaging8080205
crossref_primary_10_1109_TETCI_2024_3377676
crossref_primary_10_1016_j_cmpb_2021_106327
crossref_primary_10_1016_j_neunet_2024_107095
crossref_primary_10_1016_j_bspc_2024_106644
crossref_primary_10_1186_s42492_024_00155_w
crossref_primary_10_3390_s20174931
crossref_primary_10_1016_j_bspc_2023_105329
crossref_primary_10_1007_s10462_023_10511_6
crossref_primary_10_1007_s11760_024_03034_2
crossref_primary_10_1109_TIM_2021_3088421
crossref_primary_10_3390_cancers14020277
crossref_primary_10_1177_01617346221075769
Cites_doi 10.1109/42.640755
10.1109/TKDE.2009.191
10.1148/radiol.12120184
10.1109/TPAMI.2016.2644615
10.1016/j.ultrasmedbio.2013.04.003
10.1002/uog.1909
10.1118/1.4837196
10.1158/1055-9965.EPI-06-0034
10.1109/JBHI.2017.2703890
10.1109/TMI.2013.2263389
10.1109/TMI.2016.2606380
10.1109/JBHI.2015.2425041
10.1109/TMI.2012.2230403
10.1109/TMI.2002.804425
10.1109/TMI.2016.2629462
10.1109/34.927467
10.1016/j.patcog.2018.02.006
10.1109/TMI.2016.2535302
10.1109/TBME.2015.2430895
10.1016/j.media.2012.11.005
10.1007/s00330-009-1588-y
10.1109/42.981233
10.1109/TMI.2016.2528162
10.1109/TPAMI.2017.2699184
ContentType Journal Article
Copyright 2018
Copyright_xml – notice: 2018
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.09.043
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 186
ExternalDocumentID 10_1016_j_neucom_2018_09_043
S092523121831107X
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-acec87be48202da1ccb2a25bdc79a3ec60da9326091c715679cf3a0ed2a90ba03
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447385100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:16:32 EST 2025
Tue Nov 18 22:34:40 EST 2025
Fri Feb 23 02:30:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive domain transfer
Segmentation
Deep supervision
Convolutional neural network
Breast ultrasound
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-acec87be48202da1ccb2a25bdc79a3ec60da9326091c715679cf3a0ed2a90ba03
ORCID 0000-0002-7418-4514
PageCount 9
ParticipantIDs crossref_primary_10_1016_j_neucom_2018_09_043
crossref_citationtrail_10_1016_j_neucom_2018_09_043
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_09_043
PublicationCentury 2000
PublicationDate 2018-12-10
PublicationDateYYYYMMDD 2018-12-10
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-10
  day: 10
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Chen, Qin, Ji, Lei, Wang, Ni, Cheng (bib0024) 2017; 36
McCormack, dos Santos Silva (bib0003) 2006; 15
L. Wang, C.-Y. Lee, Z. Tu, S. Lazebnik, Training deeper convolutional networks with deep supervision, arXiv
Chen, Dou, Ni, Cheng, Qin, Li, Heng (bib0025) 2015
Krähenbühl, Koltun (bib0045) 2011; 24
Badrinarayanan, Kendall, Cipolla (bib0011) 2017; 39
Drukker, Sennett, Giger (bib0007) 2014; 41
Long, Shelhamer, Darrell (bib0043) 2015
Leibe, Schiele (bib0037) 2003
Kelly, Dean, Comulada, Lee (bib0005) 2010; 20
Tan, Platel, Mus, Tabar, Mann, Karssemeijer (bib0008) 2013; 32
Zhao, Shi, Qi, Wang, Jia (bib0028) 2017
A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, Enet: a deep neural network architecture for real-time semantic segmentation, arXiv
Hong, Noh, Han (bib0015) 2015; 1
Tzeng, Hoffman, Darrell, Saenko (bib0020) 2015
Song, Zhang, Chen, Ni, Lei, Wang (bib0039) 2015; 62
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (bib0040) 2016; 35
Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib0047) 2016; 35
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0044) 2018; 40
Lin, Milan, Shen, Reid (bib0018) 2017
Song, Tan, Jiang, Cheng, Ni, Chen, Lei, Wang (bib0038) 2017; 36
Lee, Bassett, Lehman (bib0004) 2012; 264
2014.
Watermann, Földi, Hanjalic‐Beck, Hasenburg, Lüghausen, Prömpeler, Gitsch, Stickeler (bib0001) 2005; 25
Pan, Yang (bib0023) 2010; 22
Lei, Han, Zhou, Yu, Qin, Elazab, Lei (bib0031) 2018; 79
Xie, Tu (bib0049) 2015
Tan, Platel, Mann, Huisman, Karssemeijer (bib0009) 2013; 17
Mitchell, Bosch, Lelieveldt, Van der Geest, Reiber, Sonka (bib0035) 2002; 21
Lee, Xie, Gallagher, Zhang, Tu (bib0027) 2015
Chen, Chen, Diao, Fang, Pang, Cheng, Li, Wang (bib0006) 2013; 39
Long, Zhu, Wang, Jordan (bib0021) 2016
Chen, Qi, Cheng, Heng (bib0033) 2016
K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv
Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (bib0017) 2015
2015.
Chen, Qi, Yu, Heng (bib0042) 2016
Cootes, Edwards, Taylor (bib0036) 2001; 23
Xiao, Brady, Noble, Zhang (bib0010) 2002; 21
Bian, Lee, Chou, Cheng (bib0032) 2017
M. Long, Y. Cao, J. Wang, M.I. Jordan, Learning transferable features with deep adaptation networks, arXiv
Liu, Lew (bib0029) 2016
Chen, Ni, Qin, Li, Yang, Wang, Heng (bib0041) 2015; 19
Chandra, Kokkinos (bib0046) 2016
Chalana, Kim (bib0051) 1997; 16
Moon, Shen, Bae, Huang, Chen, Chang (bib0002) 2013; 32
Noh, Hong, Han (bib0012) 2015
(2016).
Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0050) 2014
Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (bib0019) 2014
Li, Wang, Lei, Cheng, Qin, Wang, Li, Ni (bib0026) 2018; 22
Fergus, Perona, Zisserman (bib0034) 2003
Ronneberger, Fischer, Brox (bib0013) 2015
Eigen, Fergus (bib0016) 2015
Chen (10.1016/j.neucom.2018.09.043_bib0025) 2015
Song (10.1016/j.neucom.2018.09.043_bib0039) 2015; 62
Long (10.1016/j.neucom.2018.09.043_bib0021) 2016
Fergus (10.1016/j.neucom.2018.09.043_bib0034) 2003
Li (10.1016/j.neucom.2018.09.043_bib0026) 2018; 22
McCormack (10.1016/j.neucom.2018.09.043_bib0003) 2006; 15
Hong (10.1016/j.neucom.2018.09.043_bib0015) 2015; 1
Bian (10.1016/j.neucom.2018.09.043_bib0032) 2017
10.1016/j.neucom.2018.09.043_bib0048
Tajbakhsh (10.1016/j.neucom.2018.09.043_bib0040) 2016; 35
Watermann (10.1016/j.neucom.2018.09.043_bib0001) 2005; 25
Tan (10.1016/j.neucom.2018.09.043_bib0009) 2013; 17
Chen (10.1016/j.neucom.2018.09.043_bib0006) 2013; 39
Zheng (10.1016/j.neucom.2018.09.043_bib0017) 2015
Lin (10.1016/j.neucom.2018.09.043_bib0018) 2017
10.1016/j.neucom.2018.09.043_bib0014
Donahue (10.1016/j.neucom.2018.09.043_bib0019) 2014
Leibe (10.1016/j.neucom.2018.09.043_bib0037) 2003
Jia (10.1016/j.neucom.2018.09.043_bib0050) 2014
Tzeng (10.1016/j.neucom.2018.09.043_bib0020) 2015
Chen (10.1016/j.neucom.2018.09.043_bib0041) 2015; 19
Xiao (10.1016/j.neucom.2018.09.043_bib0010) 2002; 21
10.1016/j.neucom.2018.09.043_bib0022
Mitchell (10.1016/j.neucom.2018.09.043_bib0035) 2002; 21
Chandra (10.1016/j.neucom.2018.09.043_bib0046) 2016
Moon (10.1016/j.neucom.2018.09.043_bib0002) 2013; 32
Lee (10.1016/j.neucom.2018.09.043_bib0027) 2015
Chen (10.1016/j.neucom.2018.09.043_bib0044) 2018; 40
Badrinarayanan (10.1016/j.neucom.2018.09.043_bib0011) 2017; 39
Kelly (10.1016/j.neucom.2018.09.043_bib0005) 2010; 20
Long (10.1016/j.neucom.2018.09.043_bib0043) 2015
Noh (10.1016/j.neucom.2018.09.043_bib0012) 2015
Chen (10.1016/j.neucom.2018.09.043_bib0024) 2017; 36
Chen (10.1016/j.neucom.2018.09.043_bib0033) 2016
Eigen (10.1016/j.neucom.2018.09.043_bib0016) 2015
Pan (10.1016/j.neucom.2018.09.043_bib0023) 2010; 22
Song (10.1016/j.neucom.2018.09.043_bib0038) 2017; 36
Drukker (10.1016/j.neucom.2018.09.043_bib0007) 2014; 41
Xie (10.1016/j.neucom.2018.09.043_bib0049) 2015
10.1016/j.neucom.2018.09.043_bib0030
Cootes (10.1016/j.neucom.2018.09.043_bib0036) 2001; 23
Zhao (10.1016/j.neucom.2018.09.043_bib0028) 2017
Ronneberger (10.1016/j.neucom.2018.09.043_bib0013) 2015
Liu (10.1016/j.neucom.2018.09.043_bib0029) 2016
Shin (10.1016/j.neucom.2018.09.043_bib0047) 2016; 35
Chen (10.1016/j.neucom.2018.09.043_bib0042) 2016
Chalana (10.1016/j.neucom.2018.09.043_bib0051) 1997; 16
Tan (10.1016/j.neucom.2018.09.043_bib0008) 2013; 32
Lei (10.1016/j.neucom.2018.09.043_bib0031) 2018; 79
Lee (10.1016/j.neucom.2018.09.043_bib0004) 2012; 264
Krähenbühl (10.1016/j.neucom.2018.09.043_bib0045) 2011; 24
References_xml – volume: 41
  start-page: 012901
  year: 2014
  ident: bib0007
  article-title: Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts
  publication-title: Med. Phys.
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: bib0040
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning ?
  publication-title: IEEE Trans. Med. Imaging
– reference: M. Long, Y. Cao, J. Wang, M.I. Jordan, Learning transferable features with deep adaptation networks, arXiv:
– reference: , (2016).
– volume: 21
  start-page: 1167
  year: 2002
  end-page: 1178
  ident: bib0035
  article-title: 3-D active appearance models: segmentation of cardiac MR and ultrasound images
  publication-title: IEEE Trans. Med. Imaging
– volume: 22
  start-page: 1345
  year: 2010
  end-page: 1359
  ident: bib0023
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 79
  start-page: 290
  year: 2018
  end-page: 302
  ident: bib0031
  article-title: A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning
  publication-title: Pattern Recogn.
– start-page: 647
  year: 2014
  end-page: 655
  ident: bib0019
  article-title: Decaf: a deep convolutional activation feature for generic visual recognition
  publication-title: Proceedings of the International Conference on Machine Learning
– volume: 22
  start-page: 215
  year: 2018
  end-page: 223
  ident: bib0026
  article-title: Automatic fetal head circumference measurement in ultrasound using random forest and fast ellipse fitting
  publication-title: IEEE J. Biomed. Health Inform.
– reference: , 2015.
– volume: 16
  start-page: 642
  year: 1997
  end-page: 652
  ident: bib0051
  article-title: A methodology for evaluation of boundary detection algorithms on medical images
  publication-title: IEEE Trans. Med. Imaging
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0043
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv:
– year: 2003
  ident: bib0037
  article-title: Analyzing appearance and contour based methods for object categorization
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003
– volume: 1
  start-page: 1495
  year: 2015
  end-page: 1503
  ident: bib0015
  article-title: Decoupled deep neural network for semi-supervised semantic segmentation
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 231
  year: 2016
  end-page: 240
  ident: bib0029
  article-title: Learning relaxed deep supervision for better edge detection
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 32
  start-page: 1698
  year: 2013
  end-page: 1706
  ident: bib0008
  article-title: Computer-aided detection of cancer in automated 3-D breast ultrasound
  publication-title: IEEE Trans. Med. Imaging
– start-page: 136
  year: 2016
  end-page: 144
  ident: bib0021
  article-title: Unsupervised domain adaptation with residual transfer networks
  publication-title: Proceedings of the Advances in Neural Information Processing Systems
– volume: 35
  start-page: 1285
  year: 2016
  end-page: 1298
  ident: bib0047
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0013
  article-title: U-net: convolutional networks for biomedical image segmentation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: bib0011
  article-title: Segnet: a deep convolutional encoder–decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 259
  year: 2017
  end-page: 266
  ident: bib0032
  article-title: Boundary regularized convolutional neural network for layer parsing of breast anatomy in automated whole breast ultrasound
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 675
  year: 2014
  end-page: 678
  ident: bib0050
  article-title: Caffe: convolutional architecture for fast feature embedding
  publication-title: Proceedings of the 22nd ACM International Conference on Multimedia
– volume: 15
  start-page: 1159
  year: 2006
  end-page: 1169
  ident: bib0003
  article-title: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis
  publication-title: Cancer Epidemiol. Prev. Biomark.
– start-page: 4068
  year: 2015
  end-page: 4076
  ident: bib0020
  article-title: Simultaneous deep transfer across domains and tasks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015
– volume: 23
  start-page: 681
  year: 2001
  end-page: 685
  ident: bib0036
  article-title: Active appearance models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 40
  start-page: 834
  year: 2018
  end-page: 848
  ident: bib0044
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 507
  year: 2015
  end-page: 514
  ident: bib0025
  article-title: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– year: 2003
  ident: bib0034
  article-title: Object class recognition by unsupervised scale-invariant learning
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
– start-page: 2650
  year: 2015
  end-page: 2658
  ident: bib0016
  article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– reference: , 2014.
– start-page: 402
  year: 2016
  end-page: 418
  ident: bib0046
  article-title: Fast, exact and multi-scale inference for semantic image segmentation with deep gaussian CRFs
  publication-title: Proceedings of the European Conference on Computer Vision
– start-page: 1529
  year: 2015
  end-page: 1537
  ident: bib0017
  article-title: Conditional random fields as recurrent neural networks
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– start-page: 1167
  year: 2016
  end-page: 1173
  ident: bib0033
  article-title: Deep contextual networks for neuronal structure segmentation
  publication-title: Proceedings of the AAAI
– reference: L. Wang, C.-Y. Lee, Z. Tu, S. Lazebnik, Training deeper convolutional networks with deep supervision, arXiv:
– volume: 264
  start-page: 632
  year: 2012
  end-page: 636
  ident: bib0004
  article-title: Breast density legislation and opportunities for patient-centered outcomes research
  publication-title: Radiology
– volume: 21
  start-page: 48
  year: 2002
  end-page: 57
  ident: bib0010
  article-title: Segmentation of ultrasound B-mode images with intensity inhomogeneity correction
  publication-title: IEEE Trans. Med. Imaging
– start-page: 562
  year: 2015
  end-page: 570
  ident: bib0027
  article-title: Deeply-supervised nets
  publication-title: Proceedings of the Artificial Intelligence and Statistics
– volume: 19
  start-page: 1627
  year: 2015
  end-page: 1636
  ident: bib0041
  article-title: Standard plane localization in fetal ultrasound via domain transferred deep neural networks
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 20
  start-page: 734
  year: 2010
  end-page: 742
  ident: bib0005
  article-title: Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts
  publication-title: Eur. Radiol.
– volume: 36
  start-page: 288
  year: 2017
  end-page: 300
  ident: bib0038
  article-title: Accurate cervical cell segmentation from overlapping clumps in pap smear images
  publication-title: IEEE Trans. Med. Imaging
– volume: 17
  start-page: 1273
  year: 2013
  end-page: 1281
  ident: bib0009
  article-title: Chest wall segmentation in automated 3D breast ultrasound scans
  publication-title: Med. Image Anal.
– volume: 39
  start-page: 1735
  year: 2013
  end-page: 1742
  ident: bib0006
  article-title: Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses
  publication-title: Ultrasound Med. Biol.
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: bib0012
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– year: 2017
  ident: bib0018
  article-title: Refinenet: multi-path refinement networks for high-resolution semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 2881
  year: 2017
  end-page: 2890
  ident: bib0028
  article-title: Pyramid scene parsing network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 25
  start-page: 592
  year: 2005
  end-page: 598
  ident: bib0001
  article-title: Three‐dimensional ultrasound for the assessment of breast lesions
  publication-title: Ultrasound Obstet. Gynecol.
– start-page: 1395
  year: 2015
  end-page: 1403
  ident: bib0049
  article-title: Holistically-nested edge detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 62
  start-page: 2421
  year: 2015
  end-page: 2433
  ident: bib0039
  article-title: Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning
  publication-title: IEEE Trans. Biomed. Eng.
– reference: A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, Enet: a deep neural network architecture for real-time semantic segmentation, arXiv:
– volume: 24
  start-page: 109
  year: 2011
  end-page: 117
  ident: bib0045
  article-title: Efficient inference in fully connected CRFs with gaussian edge potentials
  publication-title: Adv. Neural Inform. Process. Syst.
– start-page: 2487
  year: 2016
  end-page: 2496
  ident: bib0042
  article-title: Dcan: deep contour-aware networks for accurate gland segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 32
  start-page: 1191
  year: 2013
  end-page: 1200
  ident: bib0002
  article-title: Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images
  publication-title: IEEE Trans. Med. Imaging
– volume: 36
  start-page: 802
  year: 2017
  end-page: 814
  ident: bib0024
  article-title: Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images
  publication-title: IEEE Trans. Med. Imaging
– year: 2017
  ident: 10.1016/j.neucom.2018.09.043_bib0018
  article-title: Refinenet: multi-path refinement networks for high-resolution semantic segmentation
– year: 2003
  ident: 10.1016/j.neucom.2018.09.043_bib0034
  article-title: Object class recognition by unsupervised scale-invariant learning
– volume: 16
  start-page: 642
  year: 1997
  ident: 10.1016/j.neucom.2018.09.043_bib0051
  article-title: A methodology for evaluation of boundary detection algorithms on medical images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.640755
– volume: 22
  start-page: 1345
  year: 2010
  ident: 10.1016/j.neucom.2018.09.043_bib0023
  article-title: A survey on transfer learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2009.191
– start-page: 2650
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0016
  article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture
– start-page: 2881
  year: 2017
  ident: 10.1016/j.neucom.2018.09.043_bib0028
  article-title: Pyramid scene parsing network
– volume: 264
  start-page: 632
  year: 2012
  ident: 10.1016/j.neucom.2018.09.043_bib0004
  article-title: Breast density legislation and opportunities for patient-centered outcomes research
  publication-title: Radiology
  doi: 10.1148/radiol.12120184
– volume: 39
  start-page: 2481
  year: 2017
  ident: 10.1016/j.neucom.2018.09.043_bib0011
  article-title: Segnet: a deep convolutional encoder–decoder architecture for image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2644615
– ident: 10.1016/j.neucom.2018.09.043_bib0014
– volume: 39
  start-page: 1735
  year: 2013
  ident: 10.1016/j.neucom.2018.09.043_bib0006
  article-title: Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses
  publication-title: Ultrasound Med. Biol.
  doi: 10.1016/j.ultrasmedbio.2013.04.003
– volume: 25
  start-page: 592
  year: 2005
  ident: 10.1016/j.neucom.2018.09.043_bib0001
  article-title: Three‐dimensional ultrasound for the assessment of breast lesions
  publication-title: Ultrasound Obstet. Gynecol.
  doi: 10.1002/uog.1909
– volume: 41
  start-page: 012901
  issue: 1
  year: 2014
  ident: 10.1016/j.neucom.2018.09.043_bib0007
  article-title: Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts
  publication-title: Med. Phys.
  doi: 10.1118/1.4837196
– start-page: 1520
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0012
  article-title: Learning deconvolution network for semantic segmentation
– start-page: 562
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0027
  article-title: Deeply-supervised nets
– volume: 15
  start-page: 1159
  year: 2006
  ident: 10.1016/j.neucom.2018.09.043_bib0003
  article-title: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis
  publication-title: Cancer Epidemiol. Prev. Biomark.
  doi: 10.1158/1055-9965.EPI-06-0034
– ident: 10.1016/j.neucom.2018.09.043_bib0022
– volume: 22
  start-page: 215
  year: 2018
  ident: 10.1016/j.neucom.2018.09.043_bib0026
  article-title: Automatic fetal head circumference measurement in ultrasound using random forest and fast ellipse fitting
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2017.2703890
– start-page: 507
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0025
  article-title: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks
– start-page: 402
  year: 2016
  ident: 10.1016/j.neucom.2018.09.043_bib0046
  article-title: Fast, exact and multi-scale inference for semantic image segmentation with deep gaussian CRFs
– volume: 32
  start-page: 1698
  year: 2013
  ident: 10.1016/j.neucom.2018.09.043_bib0008
  article-title: Computer-aided detection of cancer in automated 3-D breast ultrasound
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2263389
– volume: 36
  start-page: 288
  year: 2017
  ident: 10.1016/j.neucom.2018.09.043_bib0038
  article-title: Accurate cervical cell segmentation from overlapping clumps in pap smear images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2606380
– volume: 19
  start-page: 1627
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0041
  article-title: Standard plane localization in fetal ultrasound via domain transferred deep neural networks
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2015.2425041
– volume: 32
  start-page: 1191
  year: 2013
  ident: 10.1016/j.neucom.2018.09.043_bib0002
  article-title: Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2230403
– volume: 21
  start-page: 1167
  year: 2002
  ident: 10.1016/j.neucom.2018.09.043_bib0035
  article-title: 3-D active appearance models: segmentation of cardiac MR and ultrasound images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2002.804425
– ident: 10.1016/j.neucom.2018.09.043_bib0048
– volume: 36
  start-page: 802
  year: 2017
  ident: 10.1016/j.neucom.2018.09.043_bib0024
  article-title: Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2629462
– volume: 24
  start-page: 109
  year: 2011
  ident: 10.1016/j.neucom.2018.09.043_bib0045
  article-title: Efficient inference in fully connected CRFs with gaussian edge potentials
  publication-title: Adv. Neural Inform. Process. Syst.
– volume: 23
  start-page: 681
  year: 2001
  ident: 10.1016/j.neucom.2018.09.043_bib0036
  article-title: Active appearance models
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.927467
– start-page: 231
  year: 2016
  ident: 10.1016/j.neucom.2018.09.043_bib0029
  article-title: Learning relaxed deep supervision for better edge detection
– start-page: 1529
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0017
  article-title: Conditional random fields as recurrent neural networks
– start-page: 234
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0013
  article-title: U-net: convolutional networks for biomedical image segmentation
– year: 2003
  ident: 10.1016/j.neucom.2018.09.043_bib0037
  article-title: Analyzing appearance and contour based methods for object categorization
– start-page: 2487
  year: 2016
  ident: 10.1016/j.neucom.2018.09.043_bib0042
  article-title: Dcan: deep contour-aware networks for accurate gland segmentation
– start-page: 675
  year: 2014
  ident: 10.1016/j.neucom.2018.09.043_bib0050
  article-title: Caffe: convolutional architecture for fast feature embedding
– volume: 79
  start-page: 290
  year: 2018
  ident: 10.1016/j.neucom.2018.09.043_bib0031
  article-title: A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.02.006
– volume: 35
  start-page: 1299
  year: 2016
  ident: 10.1016/j.neucom.2018.09.043_bib0040
  article-title: Convolutional neural networks for medical image analysis: full training or fine tuning ?
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2535302
– volume: 62
  start-page: 2421
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0039
  article-title: Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2430895
– start-page: 3431
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0043
  article-title: Fully convolutional networks for semantic segmentation
– volume: 17
  start-page: 1273
  year: 2013
  ident: 10.1016/j.neucom.2018.09.043_bib0009
  article-title: Chest wall segmentation in automated 3D breast ultrasound scans
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2012.11.005
– volume: 20
  start-page: 734
  year: 2010
  ident: 10.1016/j.neucom.2018.09.043_bib0005
  article-title: Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts
  publication-title: Eur. Radiol.
  doi: 10.1007/s00330-009-1588-y
– volume: 21
  start-page: 48
  year: 2002
  ident: 10.1016/j.neucom.2018.09.043_bib0010
  article-title: Segmentation of ultrasound B-mode images with intensity inhomogeneity correction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.981233
– start-page: 4068
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0020
  article-title: Simultaneous deep transfer across domains and tasks
– start-page: 1395
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0049
  article-title: Holistically-nested edge detection
– volume: 35
  start-page: 1285
  year: 2016
  ident: 10.1016/j.neucom.2018.09.043_bib0047
  article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2528162
– start-page: 259
  year: 2017
  ident: 10.1016/j.neucom.2018.09.043_bib0032
  article-title: Boundary regularized convolutional neural network for layer parsing of breast anatomy in automated whole breast ultrasound
– start-page: 1167
  year: 2016
  ident: 10.1016/j.neucom.2018.09.043_bib0033
  article-title: Deep contextual networks for neuronal structure segmentation
– start-page: 647
  year: 2014
  ident: 10.1016/j.neucom.2018.09.043_bib0019
  article-title: Decaf: a deep convolutional activation feature for generic visual recognition
– start-page: 136
  year: 2016
  ident: 10.1016/j.neucom.2018.09.043_bib0021
  article-title: Unsupervised domain adaptation with residual transfer networks
– volume: 40
  start-page: 834
  year: 2018
  ident: 10.1016/j.neucom.2018.09.043_bib0044
  article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– ident: 10.1016/j.neucom.2018.09.043_bib0030
– volume: 1
  start-page: 1495
  year: 2015
  ident: 10.1016/j.neucom.2018.09.043_bib0015
  article-title: Decoupled deep neural network for semi-supervised semantic segmentation
  publication-title: Adv. Neural Inf. Process. Syst.
SSID ssj0017129
Score 2.4975488
Snippet The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 178
SubjectTerms Adaptive domain transfer
Breast ultrasound
Convolutional neural network
Deep supervision
Segmentation
Title Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder–decoder network
URI https://dx.doi.org/10.1016/j.neucom.2018.09.043
Volume 321
WOSCitedRecordID wos000447385100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGKQs2vFFbHvKC3Sgoj3GdLAdUBAhVCIo0u8ivQKqZtEpnStsVP8CKr-F3-BKu7etMhqJCF2yijOU4ydwT34eP7yXkqV0kZDD3RjD3VxF8iSwSoCijKpdaS2bGWgtXbILv7eXTafFuMPgR9sKczHjT5KenxdF_FTW0gbDt1tkriLsbFBrgHIQORxA7HP9J8B_MpzluKHKmoLS0c8sjB_d67umZYgmnwtqaX2x53NBlOVu04tjWWRrVc2GTP7gorXSVl9qzUevq1rf1udGOrY6vAUK22TBtJhJkTmTauN-jxpPM-xawywaiXC0JjFJM5jZZg7bI7KISb03tV0Pqs6BbHfZCdPtzj0rker5fNTyvBTIJDF6KUY0ktwwR5LdieDJlEdieazN15jdT41yb-No_qLYTn1H7gkbwwYmDZ41ZWnqQvZdLbOuTQ60n4P5NMXZ0xcCEOyj9KKUdpYyLEka5RjZSzop8SDYmr3enb7olLJ6kPtEjvkjYt-nIhRef5s92Uc_W2b9NbqKTQiceXHfIwDR3ya1QAISiPrhHvvWxRg8r6oFEEWsUsEY7rFGHtdBlhTXqsUYt1mjAGu1hja5hjSLWfn79jiijiLL75OPL3f0XryKs7xEpcFQXkVBG5VyaMVihqRaJUjIVKZNa8UJkRu3EWlj3AkxaxRO2wwtVZSI2OhVFLEWcPSDD5rAxm4QmrqanBmdfgcufaynYWGSV5lWRMybzLZKFf7dUmPze1mCZlZfJdotE3VVHPvnLX_rzILgSDVhvmJaAxkuv3L7inR6SG6uv5hEZLtqleUyuq5NFfdw-QSj-AqLkyJw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+breast+anatomy+for+automated+whole+breast+ultrasound+images+with+boundary+regularized+convolutional+encoder%E2%80%93decoder+network&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Lei%2C+Baiying&rft.au=Huang%2C+Shan&rft.au=Li%2C+Ran&rft.au=Bian%2C+Cheng&rft.date=2018-12-10&rft.issn=0925-2312&rft.volume=321&rft.spage=178&rft.epage=186&rft_id=info:doi/10.1016%2Fj.neucom.2018.09.043&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2018_09_043
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon