Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder–decoder network
The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized deep convolutional encoder–decoder network (ConvEDNet) is proposed here to address this challenge. The training of ConvEDNet is regularized by...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 321; pp. 178 - 186 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
10.12.2018
|
| Subjects: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized deep convolutional encoder–decoder network (ConvEDNet) is proposed here to address this challenge. The training of ConvEDNet is regularized by the boundary cues, which carry geometrical constraints, with the deep supervision technique for better withstand of intrinsic speckle noise and posterior acoustic shadows in ultrasound images. The boundary regularization is denoted as deep boundary supervision (DBS) throughout this paper. The training of the ConvEDNet is further boosted with the adaptive domain transfer (ADT), which is realized with the bridge of encoder training for an edge detector on ultrasound images. Accordingly, the ADT is a two-stage of domain transfer for better landing the encoder on the ultrasound domain. The ADT can provide better network initialization than either the direct usage of pretrained model from natural images or random scratch. Based on the ADT and DBS techniques, the proposed ConvEDNet method achieves better segmentation performance compared with several classic deep learning segmentation methods on the same set of AWBUS images. The segmentation of breast anatomy may potentially assist the exclusion of false-positives for computer-aided detection to further improve the efficiency of clinical image reading. |
|---|---|
| AbstractList | The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized deep convolutional encoder–decoder network (ConvEDNet) is proposed here to address this challenge. The training of ConvEDNet is regularized by the boundary cues, which carry geometrical constraints, with the deep supervision technique for better withstand of intrinsic speckle noise and posterior acoustic shadows in ultrasound images. The boundary regularization is denoted as deep boundary supervision (DBS) throughout this paper. The training of the ConvEDNet is further boosted with the adaptive domain transfer (ADT), which is realized with the bridge of encoder training for an edge detector on ultrasound images. Accordingly, the ADT is a two-stage of domain transfer for better landing the encoder on the ultrasound domain. The ADT can provide better network initialization than either the direct usage of pretrained model from natural images or random scratch. Based on the ADT and DBS techniques, the proposed ConvEDNet method achieves better segmentation performance compared with several classic deep learning segmentation methods on the same set of AWBUS images. The segmentation of breast anatomy may potentially assist the exclusion of false-positives for computer-aided detection to further improve the efficiency of clinical image reading. |
| Author | Huang, Shan Bian, Cheng Li, Hang Chou, Yi-Hong Cheng, Jie-Zhi Li, Ran Lei, Baiying |
| Author_xml | – sequence: 1 givenname: Baiying surname: Lei fullname: Lei, Baiying organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China – sequence: 2 givenname: Shan surname: Huang fullname: Huang, Shan organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China – sequence: 3 givenname: Ran surname: Li fullname: Li, Ran organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China – sequence: 4 givenname: Cheng surname: Bian fullname: Bian, Cheng organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China – sequence: 5 givenname: Hang surname: Li fullname: Li, Hang organization: School of Biomedical Engineering, Health Science Center, Shenzhen University, National–Regional Key Technology Engineering Laboratory for Medical Ultrasound, Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Nanhai Ave 3688, 518060 Shenzhen, Guangdong, China – sequence: 6 givenname: Yi-Hong orcidid: 0000-0002-7418-4514 surname: Chou fullname: Chou, Yi-Hong organization: Department of Radiology, Taipei Veterans General Hospital, Taipei, Taiwan – sequence: 7 givenname: Jie-Zhi surname: Cheng fullname: Cheng, Jie-Zhi email: jzcheng@ntu.edu.tw, leiby@szu.edu.cn, leib0001@e.ntu.edu.sg organization: Shanghai United Imaging Intelligence Co., Ltd. (UII), Shanghai, China |
| BookMark | eNqFkMFO3DAQhq0KpC7QN-jBL5AwdnaTuIdKCBWohMSh5WxN7MnibdaubIfVcuIFOPGGPEmz3XLhUE7zazTfjOY7Ygc-eGLss4BSgKhPV6Wn0YR1KUG0JagS5tUHNhNtI4tWtvUBm4GSi0JWQn5kRymtAEQjpJqxpx-0XJPPmF3wPPS8i4Qpc_SYw3rL-xA5jlPETJZv7sJAryPjkCOmMHrL3RqXlPjG5Tve7ToYtzzSchwwuocJNMHfh2HcHcGBkzfBUnx5fLb0N3FPeRPirxN22OOQ6NO_esxuL779PL8qrm8uv5-fXRemgjoXaMi0TUfzVoK0KIzpJMpFZ02jsCJTg0VVyRqUMI1Y1I0yfYVAVqKCDqE6ZvP9XhNDSpF6_TtOP8StFqB3SvVK75XqnVINSk9KJ-zLG8y4vbnJhBveg7_uYZoeu3cUdTJuMkHWRTJZ2-D-v-APjF6eSQ |
| CitedBy_id | crossref_primary_10_3390_healthcare10122480 crossref_primary_10_1088_1361_6501_add28a crossref_primary_10_1109_JBHI_2023_3285789 crossref_primary_10_1063_1_5100577 crossref_primary_10_1109_ACCESS_2020_2974512 crossref_primary_10_1121_10_0004827 crossref_primary_10_1016_j_neucom_2020_07_002 crossref_primary_10_3389_fninf_2024_1444650 crossref_primary_10_1088_1361_6560_ad1cfa crossref_primary_10_1016_j_artmed_2024_103012 crossref_primary_10_1109_ACCESS_2019_2896409 crossref_primary_10_1016_j_media_2020_101753 crossref_primary_10_1109_ACCESS_2020_2991845 crossref_primary_10_1109_ACCESS_2020_3003089 crossref_primary_10_3390_app12104942 crossref_primary_10_3390_brainsci11030352 crossref_primary_10_1016_j_media_2020_101918 crossref_primary_10_3389_fmolb_2021_698334 crossref_primary_10_3389_fnins_2022_1087176 crossref_primary_10_1186_s12938_024_01198_z crossref_primary_10_1016_j_metrad_2025_100138 crossref_primary_10_1109_RBME_2024_3357877 crossref_primary_10_1016_j_asoc_2022_109549 crossref_primary_10_1016_j_autcon_2022_104152 crossref_primary_10_1016_j_media_2021_101989 crossref_primary_10_1088_1361_6560_ab7e7d crossref_primary_10_1016_j_asoc_2022_109947 crossref_primary_10_1016_j_media_2021_102315 crossref_primary_10_3389_fonc_2025_1582035 crossref_primary_10_1016_j_neucom_2020_10_116 crossref_primary_10_1259_bjr_20190580 crossref_primary_10_1016_j_cmpb_2022_107086 crossref_primary_10_1016_j_displa_2024_102753 crossref_primary_10_1007_s00521_019_04532_y crossref_primary_10_3390_app132011362 crossref_primary_10_1016_j_media_2022_102511 crossref_primary_10_1016_j_compmedimag_2021_101925 crossref_primary_10_1016_j_eswa_2024_123265 crossref_primary_10_1016_j_neucom_2019_10_097 crossref_primary_10_3390_jimaging8080205 crossref_primary_10_1109_TETCI_2024_3377676 crossref_primary_10_1016_j_cmpb_2021_106327 crossref_primary_10_1016_j_neunet_2024_107095 crossref_primary_10_1016_j_bspc_2024_106644 crossref_primary_10_1186_s42492_024_00155_w crossref_primary_10_3390_s20174931 crossref_primary_10_1016_j_bspc_2023_105329 crossref_primary_10_1007_s10462_023_10511_6 crossref_primary_10_1007_s11760_024_03034_2 crossref_primary_10_1109_TIM_2021_3088421 crossref_primary_10_3390_cancers14020277 crossref_primary_10_1177_01617346221075769 |
| Cites_doi | 10.1109/42.640755 10.1109/TKDE.2009.191 10.1148/radiol.12120184 10.1109/TPAMI.2016.2644615 10.1016/j.ultrasmedbio.2013.04.003 10.1002/uog.1909 10.1118/1.4837196 10.1158/1055-9965.EPI-06-0034 10.1109/JBHI.2017.2703890 10.1109/TMI.2013.2263389 10.1109/TMI.2016.2606380 10.1109/JBHI.2015.2425041 10.1109/TMI.2012.2230403 10.1109/TMI.2002.804425 10.1109/TMI.2016.2629462 10.1109/34.927467 10.1016/j.patcog.2018.02.006 10.1109/TMI.2016.2535302 10.1109/TBME.2015.2430895 10.1016/j.media.2012.11.005 10.1007/s00330-009-1588-y 10.1109/42.981233 10.1109/TMI.2016.2528162 10.1109/TPAMI.2017.2699184 |
| ContentType | Journal Article |
| Copyright | 2018 |
| Copyright_xml | – notice: 2018 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2018.09.043 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| EndPage | 186 |
| ExternalDocumentID | 10_1016_j_neucom_2018_09_043 S092523121831107X |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-acec87be48202da1ccb2a25bdc79a3ec60da9326091c715679cf3a0ed2a90ba03 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000447385100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:16:32 EST 2025 Tue Nov 18 22:34:40 EST 2025 Fri Feb 23 02:30:26 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive domain transfer Segmentation Deep supervision Convolutional neural network Breast ultrasound |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-acec87be48202da1ccb2a25bdc79a3ec60da9326091c715679cf3a0ed2a90ba03 |
| ORCID | 0000-0002-7418-4514 |
| PageCount | 9 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2018_09_043 crossref_citationtrail_10_1016_j_neucom_2018_09_043 elsevier_sciencedirect_doi_10_1016_j_neucom_2018_09_043 |
| PublicationCentury | 2000 |
| PublicationDate | 2018-12-10 |
| PublicationDateYYYYMMDD | 2018-12-10 |
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Chen, Qin, Ji, Lei, Wang, Ni, Cheng (bib0024) 2017; 36 McCormack, dos Santos Silva (bib0003) 2006; 15 L. Wang, C.-Y. Lee, Z. Tu, S. Lazebnik, Training deeper convolutional networks with deep supervision, arXiv Chen, Dou, Ni, Cheng, Qin, Li, Heng (bib0025) 2015 Krähenbühl, Koltun (bib0045) 2011; 24 Badrinarayanan, Kendall, Cipolla (bib0011) 2017; 39 Drukker, Sennett, Giger (bib0007) 2014; 41 Long, Shelhamer, Darrell (bib0043) 2015 Leibe, Schiele (bib0037) 2003 Kelly, Dean, Comulada, Lee (bib0005) 2010; 20 Tan, Platel, Mus, Tabar, Mann, Karssemeijer (bib0008) 2013; 32 Zhao, Shi, Qi, Wang, Jia (bib0028) 2017 A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, Enet: a deep neural network architecture for real-time semantic segmentation, arXiv Hong, Noh, Han (bib0015) 2015; 1 Tzeng, Hoffman, Darrell, Saenko (bib0020) 2015 Song, Zhang, Chen, Ni, Lei, Wang (bib0039) 2015; 62 Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (bib0040) 2016; 35 Shin, Roth, Gao, Lu, Xu, Nogues, Yao, Mollura, Summers (bib0047) 2016; 35 Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0044) 2018; 40 Lin, Milan, Shen, Reid (bib0018) 2017 Song, Tan, Jiang, Cheng, Ni, Chen, Lei, Wang (bib0038) 2017; 36 Lee, Bassett, Lehman (bib0004) 2012; 264 2014. Watermann, Földi, Hanjalic‐Beck, Hasenburg, Lüghausen, Prömpeler, Gitsch, Stickeler (bib0001) 2005; 25 Pan, Yang (bib0023) 2010; 22 Lei, Han, Zhou, Yu, Qin, Elazab, Lei (bib0031) 2018; 79 Xie, Tu (bib0049) 2015 Tan, Platel, Mann, Huisman, Karssemeijer (bib0009) 2013; 17 Mitchell, Bosch, Lelieveldt, Van der Geest, Reiber, Sonka (bib0035) 2002; 21 Lee, Xie, Gallagher, Zhang, Tu (bib0027) 2015 Chen, Chen, Diao, Fang, Pang, Cheng, Li, Wang (bib0006) 2013; 39 Long, Zhu, Wang, Jordan (bib0021) 2016 Chen, Qi, Cheng, Heng (bib0033) 2016 K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (bib0017) 2015 2015. Chen, Qi, Yu, Heng (bib0042) 2016 Cootes, Edwards, Taylor (bib0036) 2001; 23 Xiao, Brady, Noble, Zhang (bib0010) 2002; 21 Bian, Lee, Chou, Cheng (bib0032) 2017 M. Long, Y. Cao, J. Wang, M.I. Jordan, Learning transferable features with deep adaptation networks, arXiv Liu, Lew (bib0029) 2016 Chen, Ni, Qin, Li, Yang, Wang, Heng (bib0041) 2015; 19 Chandra, Kokkinos (bib0046) 2016 Chalana, Kim (bib0051) 1997; 16 Moon, Shen, Bae, Huang, Chen, Chang (bib0002) 2013; 32 Noh, Hong, Han (bib0012) 2015 (2016). Jia, Shelhamer, Donahue, Karayev, Long, Girshick, Guadarrama, Darrell (bib0050) 2014 Donahue, Jia, Vinyals, Hoffman, Zhang, Tzeng, Darrell (bib0019) 2014 Li, Wang, Lei, Cheng, Qin, Wang, Li, Ni (bib0026) 2018; 22 Fergus, Perona, Zisserman (bib0034) 2003 Ronneberger, Fischer, Brox (bib0013) 2015 Eigen, Fergus (bib0016) 2015 Chen (10.1016/j.neucom.2018.09.043_bib0025) 2015 Song (10.1016/j.neucom.2018.09.043_bib0039) 2015; 62 Long (10.1016/j.neucom.2018.09.043_bib0021) 2016 Fergus (10.1016/j.neucom.2018.09.043_bib0034) 2003 Li (10.1016/j.neucom.2018.09.043_bib0026) 2018; 22 McCormack (10.1016/j.neucom.2018.09.043_bib0003) 2006; 15 Hong (10.1016/j.neucom.2018.09.043_bib0015) 2015; 1 Bian (10.1016/j.neucom.2018.09.043_bib0032) 2017 10.1016/j.neucom.2018.09.043_bib0048 Tajbakhsh (10.1016/j.neucom.2018.09.043_bib0040) 2016; 35 Watermann (10.1016/j.neucom.2018.09.043_bib0001) 2005; 25 Tan (10.1016/j.neucom.2018.09.043_bib0009) 2013; 17 Chen (10.1016/j.neucom.2018.09.043_bib0006) 2013; 39 Zheng (10.1016/j.neucom.2018.09.043_bib0017) 2015 Lin (10.1016/j.neucom.2018.09.043_bib0018) 2017 10.1016/j.neucom.2018.09.043_bib0014 Donahue (10.1016/j.neucom.2018.09.043_bib0019) 2014 Leibe (10.1016/j.neucom.2018.09.043_bib0037) 2003 Jia (10.1016/j.neucom.2018.09.043_bib0050) 2014 Tzeng (10.1016/j.neucom.2018.09.043_bib0020) 2015 Chen (10.1016/j.neucom.2018.09.043_bib0041) 2015; 19 Xiao (10.1016/j.neucom.2018.09.043_bib0010) 2002; 21 10.1016/j.neucom.2018.09.043_bib0022 Mitchell (10.1016/j.neucom.2018.09.043_bib0035) 2002; 21 Chandra (10.1016/j.neucom.2018.09.043_bib0046) 2016 Moon (10.1016/j.neucom.2018.09.043_bib0002) 2013; 32 Lee (10.1016/j.neucom.2018.09.043_bib0027) 2015 Chen (10.1016/j.neucom.2018.09.043_bib0044) 2018; 40 Badrinarayanan (10.1016/j.neucom.2018.09.043_bib0011) 2017; 39 Kelly (10.1016/j.neucom.2018.09.043_bib0005) 2010; 20 Long (10.1016/j.neucom.2018.09.043_bib0043) 2015 Noh (10.1016/j.neucom.2018.09.043_bib0012) 2015 Chen (10.1016/j.neucom.2018.09.043_bib0024) 2017; 36 Chen (10.1016/j.neucom.2018.09.043_bib0033) 2016 Eigen (10.1016/j.neucom.2018.09.043_bib0016) 2015 Pan (10.1016/j.neucom.2018.09.043_bib0023) 2010; 22 Song (10.1016/j.neucom.2018.09.043_bib0038) 2017; 36 Drukker (10.1016/j.neucom.2018.09.043_bib0007) 2014; 41 Xie (10.1016/j.neucom.2018.09.043_bib0049) 2015 10.1016/j.neucom.2018.09.043_bib0030 Cootes (10.1016/j.neucom.2018.09.043_bib0036) 2001; 23 Zhao (10.1016/j.neucom.2018.09.043_bib0028) 2017 Ronneberger (10.1016/j.neucom.2018.09.043_bib0013) 2015 Liu (10.1016/j.neucom.2018.09.043_bib0029) 2016 Shin (10.1016/j.neucom.2018.09.043_bib0047) 2016; 35 Chen (10.1016/j.neucom.2018.09.043_bib0042) 2016 Chalana (10.1016/j.neucom.2018.09.043_bib0051) 1997; 16 Tan (10.1016/j.neucom.2018.09.043_bib0008) 2013; 32 Lei (10.1016/j.neucom.2018.09.043_bib0031) 2018; 79 Lee (10.1016/j.neucom.2018.09.043_bib0004) 2012; 264 Krähenbühl (10.1016/j.neucom.2018.09.043_bib0045) 2011; 24 |
| References_xml | – volume: 41 start-page: 012901 year: 2014 ident: bib0007 article-title: Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts publication-title: Med. Phys. – volume: 35 start-page: 1299 year: 2016 end-page: 1312 ident: bib0040 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning ? publication-title: IEEE Trans. Med. Imaging – reference: M. Long, Y. Cao, J. Wang, M.I. Jordan, Learning transferable features with deep adaptation networks, arXiv: – reference: , (2016). – volume: 21 start-page: 1167 year: 2002 end-page: 1178 ident: bib0035 article-title: 3-D active appearance models: segmentation of cardiac MR and ultrasound images publication-title: IEEE Trans. Med. Imaging – volume: 22 start-page: 1345 year: 2010 end-page: 1359 ident: bib0023 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. – volume: 79 start-page: 290 year: 2018 end-page: 302 ident: bib0031 article-title: A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning publication-title: Pattern Recogn. – start-page: 647 year: 2014 end-page: 655 ident: bib0019 article-title: Decaf: a deep convolutional activation feature for generic visual recognition publication-title: Proceedings of the International Conference on Machine Learning – volume: 22 start-page: 215 year: 2018 end-page: 223 ident: bib0026 article-title: Automatic fetal head circumference measurement in ultrasound using random forest and fast ellipse fitting publication-title: IEEE J. Biomed. Health Inform. – reference: , 2015. – volume: 16 start-page: 642 year: 1997 end-page: 652 ident: bib0051 article-title: A methodology for evaluation of boundary detection algorithms on medical images publication-title: IEEE Trans. Med. Imaging – start-page: 3431 year: 2015 end-page: 3440 ident: bib0043 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: K. Simonyan, A. Zisserman, Very deep convolutional networks for large-scale image recognition, arXiv: – year: 2003 ident: bib0037 article-title: Analyzing appearance and contour based methods for object categorization publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003 – volume: 1 start-page: 1495 year: 2015 end-page: 1503 ident: bib0015 article-title: Decoupled deep neural network for semi-supervised semantic segmentation publication-title: Adv. Neural Inf. Process. Syst. – start-page: 231 year: 2016 end-page: 240 ident: bib0029 article-title: Learning relaxed deep supervision for better edge detection publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 32 start-page: 1698 year: 2013 end-page: 1706 ident: bib0008 article-title: Computer-aided detection of cancer in automated 3-D breast ultrasound publication-title: IEEE Trans. Med. Imaging – start-page: 136 year: 2016 end-page: 144 ident: bib0021 article-title: Unsupervised domain adaptation with residual transfer networks publication-title: Proceedings of the Advances in Neural Information Processing Systems – volume: 35 start-page: 1285 year: 2016 end-page: 1298 ident: bib0047 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging – start-page: 234 year: 2015 end-page: 241 ident: bib0013 article-title: U-net: convolutional networks for biomedical image segmentation publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 39 start-page: 2481 year: 2017 end-page: 2495 ident: bib0011 article-title: Segnet: a deep convolutional encoder–decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 259 year: 2017 end-page: 266 ident: bib0032 article-title: Boundary regularized convolutional neural network for layer parsing of breast anatomy in automated whole breast ultrasound publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 675 year: 2014 end-page: 678 ident: bib0050 article-title: Caffe: convolutional architecture for fast feature embedding publication-title: Proceedings of the 22nd ACM International Conference on Multimedia – volume: 15 start-page: 1159 year: 2006 end-page: 1169 ident: bib0003 article-title: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis publication-title: Cancer Epidemiol. Prev. Biomark. – start-page: 4068 year: 2015 end-page: 4076 ident: bib0020 article-title: Simultaneous deep transfer across domains and tasks publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015 – volume: 23 start-page: 681 year: 2001 end-page: 685 ident: bib0036 article-title: Active appearance models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 40 start-page: 834 year: 2018 end-page: 848 ident: bib0044 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 507 year: 2015 end-page: 514 ident: bib0025 article-title: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – year: 2003 ident: bib0034 article-title: Object class recognition by unsupervised scale-invariant learning publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition – start-page: 2650 year: 2015 end-page: 2658 ident: bib0016 article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture publication-title: Proceedings of the IEEE International Conference on Computer Vision – reference: , 2014. – start-page: 402 year: 2016 end-page: 418 ident: bib0046 article-title: Fast, exact and multi-scale inference for semantic image segmentation with deep gaussian CRFs publication-title: Proceedings of the European Conference on Computer Vision – start-page: 1529 year: 2015 end-page: 1537 ident: bib0017 article-title: Conditional random fields as recurrent neural networks publication-title: Proceedings of the IEEE International Conference on Computer Vision – start-page: 1167 year: 2016 end-page: 1173 ident: bib0033 article-title: Deep contextual networks for neuronal structure segmentation publication-title: Proceedings of the AAAI – reference: L. Wang, C.-Y. Lee, Z. Tu, S. Lazebnik, Training deeper convolutional networks with deep supervision, arXiv: – volume: 264 start-page: 632 year: 2012 end-page: 636 ident: bib0004 article-title: Breast density legislation and opportunities for patient-centered outcomes research publication-title: Radiology – volume: 21 start-page: 48 year: 2002 end-page: 57 ident: bib0010 article-title: Segmentation of ultrasound B-mode images with intensity inhomogeneity correction publication-title: IEEE Trans. Med. Imaging – start-page: 562 year: 2015 end-page: 570 ident: bib0027 article-title: Deeply-supervised nets publication-title: Proceedings of the Artificial Intelligence and Statistics – volume: 19 start-page: 1627 year: 2015 end-page: 1636 ident: bib0041 article-title: Standard plane localization in fetal ultrasound via domain transferred deep neural networks publication-title: IEEE J. Biomed. Health Inform. – volume: 20 start-page: 734 year: 2010 end-page: 742 ident: bib0005 article-title: Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts publication-title: Eur. Radiol. – volume: 36 start-page: 288 year: 2017 end-page: 300 ident: bib0038 article-title: Accurate cervical cell segmentation from overlapping clumps in pap smear images publication-title: IEEE Trans. Med. Imaging – volume: 17 start-page: 1273 year: 2013 end-page: 1281 ident: bib0009 article-title: Chest wall segmentation in automated 3D breast ultrasound scans publication-title: Med. Image Anal. – volume: 39 start-page: 1735 year: 2013 end-page: 1742 ident: bib0006 article-title: Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses publication-title: Ultrasound Med. Biol. – start-page: 1520 year: 2015 end-page: 1528 ident: bib0012 article-title: Learning deconvolution network for semantic segmentation publication-title: Proceedings of the IEEE International Conference on Computer Vision – year: 2017 ident: bib0018 article-title: Refinenet: multi-path refinement networks for high-resolution semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 2881 year: 2017 end-page: 2890 ident: bib0028 article-title: Pyramid scene parsing network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – volume: 25 start-page: 592 year: 2005 end-page: 598 ident: bib0001 article-title: Three‐dimensional ultrasound for the assessment of breast lesions publication-title: Ultrasound Obstet. Gynecol. – start-page: 1395 year: 2015 end-page: 1403 ident: bib0049 article-title: Holistically-nested edge detection publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 62 start-page: 2421 year: 2015 end-page: 2433 ident: bib0039 article-title: Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning publication-title: IEEE Trans. Biomed. Eng. – reference: A. Paszke, A. Chaurasia, S. Kim, E. Culurciello, Enet: a deep neural network architecture for real-time semantic segmentation, arXiv: – volume: 24 start-page: 109 year: 2011 end-page: 117 ident: bib0045 article-title: Efficient inference in fully connected CRFs with gaussian edge potentials publication-title: Adv. Neural Inform. Process. Syst. – start-page: 2487 year: 2016 end-page: 2496 ident: bib0042 article-title: Dcan: deep contour-aware networks for accurate gland segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 32 start-page: 1191 year: 2013 end-page: 1200 ident: bib0002 article-title: Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images publication-title: IEEE Trans. Med. Imaging – volume: 36 start-page: 802 year: 2017 end-page: 814 ident: bib0024 article-title: Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images publication-title: IEEE Trans. Med. Imaging – year: 2017 ident: 10.1016/j.neucom.2018.09.043_bib0018 article-title: Refinenet: multi-path refinement networks for high-resolution semantic segmentation – year: 2003 ident: 10.1016/j.neucom.2018.09.043_bib0034 article-title: Object class recognition by unsupervised scale-invariant learning – volume: 16 start-page: 642 year: 1997 ident: 10.1016/j.neucom.2018.09.043_bib0051 article-title: A methodology for evaluation of boundary detection algorithms on medical images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.640755 – volume: 22 start-page: 1345 year: 2010 ident: 10.1016/j.neucom.2018.09.043_bib0023 article-title: A survey on transfer learning publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2009.191 – start-page: 2650 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0016 article-title: Predicting depth, surface normals and semantic labels with a common multi-scale convolutional architecture – start-page: 2881 year: 2017 ident: 10.1016/j.neucom.2018.09.043_bib0028 article-title: Pyramid scene parsing network – volume: 264 start-page: 632 year: 2012 ident: 10.1016/j.neucom.2018.09.043_bib0004 article-title: Breast density legislation and opportunities for patient-centered outcomes research publication-title: Radiology doi: 10.1148/radiol.12120184 – volume: 39 start-page: 2481 year: 2017 ident: 10.1016/j.neucom.2018.09.043_bib0011 article-title: Segnet: a deep convolutional encoder–decoder architecture for image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2644615 – ident: 10.1016/j.neucom.2018.09.043_bib0014 – volume: 39 start-page: 1735 year: 2013 ident: 10.1016/j.neucom.2018.09.043_bib0006 article-title: Comparative study of automated breast 3-D ultrasound and handheld B-mode ultrasound for differentiation of benign and malignant breast masses publication-title: Ultrasound Med. Biol. doi: 10.1016/j.ultrasmedbio.2013.04.003 – volume: 25 start-page: 592 year: 2005 ident: 10.1016/j.neucom.2018.09.043_bib0001 article-title: Three‐dimensional ultrasound for the assessment of breast lesions publication-title: Ultrasound Obstet. Gynecol. doi: 10.1002/uog.1909 – volume: 41 start-page: 012901 issue: 1 year: 2014 ident: 10.1016/j.neucom.2018.09.043_bib0007 article-title: Computerized detection of breast cancer on automated breast ultrasound imaging of women with dense breasts publication-title: Med. Phys. doi: 10.1118/1.4837196 – start-page: 1520 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0012 article-title: Learning deconvolution network for semantic segmentation – start-page: 562 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0027 article-title: Deeply-supervised nets – volume: 15 start-page: 1159 year: 2006 ident: 10.1016/j.neucom.2018.09.043_bib0003 article-title: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis publication-title: Cancer Epidemiol. Prev. Biomark. doi: 10.1158/1055-9965.EPI-06-0034 – ident: 10.1016/j.neucom.2018.09.043_bib0022 – volume: 22 start-page: 215 year: 2018 ident: 10.1016/j.neucom.2018.09.043_bib0026 article-title: Automatic fetal head circumference measurement in ultrasound using random forest and fast ellipse fitting publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2017.2703890 – start-page: 507 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0025 article-title: Automatic fetal ultrasound standard plane detection using knowledge transferred recurrent neural networks – start-page: 402 year: 2016 ident: 10.1016/j.neucom.2018.09.043_bib0046 article-title: Fast, exact and multi-scale inference for semantic image segmentation with deep gaussian CRFs – volume: 32 start-page: 1698 year: 2013 ident: 10.1016/j.neucom.2018.09.043_bib0008 article-title: Computer-aided detection of cancer in automated 3-D breast ultrasound publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2263389 – volume: 36 start-page: 288 year: 2017 ident: 10.1016/j.neucom.2018.09.043_bib0038 article-title: Accurate cervical cell segmentation from overlapping clumps in pap smear images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2606380 – volume: 19 start-page: 1627 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0041 article-title: Standard plane localization in fetal ultrasound via domain transferred deep neural networks publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2015.2425041 – volume: 32 start-page: 1191 year: 2013 ident: 10.1016/j.neucom.2018.09.043_bib0002 article-title: Computer-aided tumor detection based on multi-scale blob detection algorithm in automated breast ultrasound images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2012.2230403 – volume: 21 start-page: 1167 year: 2002 ident: 10.1016/j.neucom.2018.09.043_bib0035 article-title: 3-D active appearance models: segmentation of cardiac MR and ultrasound images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2002.804425 – ident: 10.1016/j.neucom.2018.09.043_bib0048 – volume: 36 start-page: 802 year: 2017 ident: 10.1016/j.neucom.2018.09.043_bib0024 article-title: Automatic scoring of multiple semantic attributes with multi-task feature leverage: a study on pulmonary nodules in CT images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2629462 – volume: 24 start-page: 109 year: 2011 ident: 10.1016/j.neucom.2018.09.043_bib0045 article-title: Efficient inference in fully connected CRFs with gaussian edge potentials publication-title: Adv. Neural Inform. Process. Syst. – volume: 23 start-page: 681 year: 2001 ident: 10.1016/j.neucom.2018.09.043_bib0036 article-title: Active appearance models publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.927467 – start-page: 231 year: 2016 ident: 10.1016/j.neucom.2018.09.043_bib0029 article-title: Learning relaxed deep supervision for better edge detection – start-page: 1529 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0017 article-title: Conditional random fields as recurrent neural networks – start-page: 234 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0013 article-title: U-net: convolutional networks for biomedical image segmentation – year: 2003 ident: 10.1016/j.neucom.2018.09.043_bib0037 article-title: Analyzing appearance and contour based methods for object categorization – start-page: 2487 year: 2016 ident: 10.1016/j.neucom.2018.09.043_bib0042 article-title: Dcan: deep contour-aware networks for accurate gland segmentation – start-page: 675 year: 2014 ident: 10.1016/j.neucom.2018.09.043_bib0050 article-title: Caffe: convolutional architecture for fast feature embedding – volume: 79 start-page: 290 year: 2018 ident: 10.1016/j.neucom.2018.09.043_bib0031 article-title: A deeply supervised residual network for HEp-2 cell classification via cross-modal transfer learning publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2018.02.006 – volume: 35 start-page: 1299 year: 2016 ident: 10.1016/j.neucom.2018.09.043_bib0040 article-title: Convolutional neural networks for medical image analysis: full training or fine tuning ? publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2535302 – volume: 62 start-page: 2421 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0039 article-title: Accurate segmentation of cervical cytoplasm and nuclei based on multiscale convolutional network and graph partitioning publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2430895 – start-page: 3431 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0043 article-title: Fully convolutional networks for semantic segmentation – volume: 17 start-page: 1273 year: 2013 ident: 10.1016/j.neucom.2018.09.043_bib0009 article-title: Chest wall segmentation in automated 3D breast ultrasound scans publication-title: Med. Image Anal. doi: 10.1016/j.media.2012.11.005 – volume: 20 start-page: 734 year: 2010 ident: 10.1016/j.neucom.2018.09.043_bib0005 article-title: Breast cancer detection using automated whole breast ultrasound and mammography in radiographically dense breasts publication-title: Eur. Radiol. doi: 10.1007/s00330-009-1588-y – volume: 21 start-page: 48 year: 2002 ident: 10.1016/j.neucom.2018.09.043_bib0010 article-title: Segmentation of ultrasound B-mode images with intensity inhomogeneity correction publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.981233 – start-page: 4068 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0020 article-title: Simultaneous deep transfer across domains and tasks – start-page: 1395 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0049 article-title: Holistically-nested edge detection – volume: 35 start-page: 1285 year: 2016 ident: 10.1016/j.neucom.2018.09.043_bib0047 article-title: Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2528162 – start-page: 259 year: 2017 ident: 10.1016/j.neucom.2018.09.043_bib0032 article-title: Boundary regularized convolutional neural network for layer parsing of breast anatomy in automated whole breast ultrasound – start-page: 1167 year: 2016 ident: 10.1016/j.neucom.2018.09.043_bib0033 article-title: Deep contextual networks for neuronal structure segmentation – start-page: 647 year: 2014 ident: 10.1016/j.neucom.2018.09.043_bib0019 article-title: Decaf: a deep convolutional activation feature for generic visual recognition – start-page: 136 year: 2016 ident: 10.1016/j.neucom.2018.09.043_bib0021 article-title: Unsupervised domain adaptation with residual transfer networks – volume: 40 start-page: 834 year: 2018 ident: 10.1016/j.neucom.2018.09.043_bib0044 article-title: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2017.2699184 – ident: 10.1016/j.neucom.2018.09.043_bib0030 – volume: 1 start-page: 1495 year: 2015 ident: 10.1016/j.neucom.2018.09.043_bib0015 article-title: Decoupled deep neural network for semi-supervised semantic segmentation publication-title: Adv. Neural Inf. Process. Syst. |
| SSID | ssj0017129 |
| Score | 2.4975488 |
| Snippet | The segmentation of breast anatomical layers in the noisy Automated Whole Breast Ultrasound (AWBUS) images is a very challenging task. A boundary regularized... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 178 |
| SubjectTerms | Adaptive domain transfer Breast ultrasound Convolutional neural network Deep supervision Segmentation |
| Title | Segmentation of breast anatomy for automated whole breast ultrasound images with boundary regularized convolutional encoder–decoder network |
| URI | https://dx.doi.org/10.1016/j.neucom.2018.09.043 |
| Volume | 321 |
| WOSCitedRecordID | wos000447385100017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvBHlJR-4rYLy2F3HxwW1KqiqEC1ob5HjOJBqN63S3dJy4g9w4g_xW_pLOmOPs4FFvCQuUdayE2_miz0z-WaGsac5SFmMpA6GaTkOhmUqA2ngfcTcT7FSujQ2iv_drtjbS6dT-brX--ZjYU5noq7TszN5_F9FDW0gbAyd_QtxtxeFBjgHocMRxA7HPxL8vnk_p4AiqwrmSDtHHjmY13NHz1RLOFWoa37E8ri-y3K2aNQJ1lkaVHOFyR-slza3lZea80Fj69Y31SdTWLY6_Q0QMmbDxEwkxJxICmN_D2pHMu9qwDYbiLa1JMhLMZljsoYCkdl6JXZN5b6GVOd-b7XY897tDx0qke35ZtXwvFLEJDA0lLwaUYoMEeK3WlfbWriN81nGowAUUrd8G7dipyK2sfDdJT1xUde0KEeuSBDt75HrurZ1OC_G4bPaLJFHhJOyGXBdFqkfknLv41RwJrAiogU9vcI2YsB82mcbk5db01ftlywRxS7fI03dh29ajuH6vX6uHnVUnoOb7DrZKnziMHaL9Ux9m93wdUA4bQt32Jcu5PhRyR2eOEGOA-R4CzluIee7rCDHHeQ4Qo57yPEO5Ph3kOMEuYvPXwlsnMB2l73d3jp4sRNQmY9Ag726CJQ2OhW5GYIyGhcq0jqPVTzKCy2kSoweh4VCKwM0Wy2i0VhIXSYqNEWsZJirMLnH-vVRbe4zLjRcJ1LwmNNyWBRSyRzs8Qg2qiQHWyLcZIl_upmmHPhYimWWebLjYeZkkqFMslBmIJNNFrSjjl0OmN_0F15wGemxTj_NAGu_HPngn0c-ZNdWr9Ej1l80S_OYXdWni-qkeUKgvAQrZMy8 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Segmentation+of+breast+anatomy+for+automated+whole+breast+ultrasound+images+with+boundary+regularized+convolutional+encoder%E2%80%93decoder+network&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Lei%2C+Baiying&rft.au=Huang%2C+Shan&rft.au=Li%2C+Ran&rft.au=Bian%2C+Cheng&rft.date=2018-12-10&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=321&rft.spage=178&rft.epage=186&rft_id=info:doi/10.1016%2Fj.neucom.2018.09.043&rft.externalDocID=S092523121831107X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |