A knowledge-based deep learning method for ECG signal delineation

The delineation of electrocardiograms (ECG) is a crucial step designed to extract signal characteristics and assist cardiologists in diagnosing certain diseases. It refers to the delineation of both the onset and offset of the P wave, the QRS complex, and the T wave. However, to date previous studie...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Future generation computer systems Ročník 109; s. 56 - 66
Hlavní autori: Wang, Jilong, Li, Renfa, Li, Rui, Fu, Bin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.08.2020
Predmet:
ISSN:0167-739X, 1872-7115
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The delineation of electrocardiograms (ECG) is a crucial step designed to extract signal characteristics and assist cardiologists in diagnosing certain diseases. It refers to the delineation of both the onset and offset of the P wave, the QRS complex, and the T wave. However, to date previous studies have neither investigated the role of medical knowledge nor investigated the interference of signal noise. In this paper, we propose a knowledge-based deep learning method for ECG signal delineation, which adds domain knowledge and individual feature knowledge to improve delineation performance. The proposed method is novel in three distinct ways. First, the method aligns the encoded knowledge with ECG signals with reference to the R wave peak position. Second, the method incorporates domain knowledge to delineate ECG signals under the encoder–decoder framework. Third, the method introduces individual feature knowledge to adjust the delineation results adaptively. An evaluation conducted on the QT database demonstrates that the proposed method can obtain, on average, high performance with sensitivity of 99.62% and positive predictivity of 99.81%. The evaluation also shows that the method can obtain a sensitivity and a positive predictivity above 90% in most noisy cases. •We propose a knowledge-based deep learning method for ECG signal Delineation.•Two types of knowledge are integrated into the delineation process of ECG signals.•The method encodes knowledge into data channel and aligns the knowledge with ECGs.•Experiment results have shown the effectiveness of our approach.
AbstractList The delineation of electrocardiograms (ECG) is a crucial step designed to extract signal characteristics and assist cardiologists in diagnosing certain diseases. It refers to the delineation of both the onset and offset of the P wave, the QRS complex, and the T wave. However, to date previous studies have neither investigated the role of medical knowledge nor investigated the interference of signal noise. In this paper, we propose a knowledge-based deep learning method for ECG signal delineation, which adds domain knowledge and individual feature knowledge to improve delineation performance. The proposed method is novel in three distinct ways. First, the method aligns the encoded knowledge with ECG signals with reference to the R wave peak position. Second, the method incorporates domain knowledge to delineate ECG signals under the encoder–decoder framework. Third, the method introduces individual feature knowledge to adjust the delineation results adaptively. An evaluation conducted on the QT database demonstrates that the proposed method can obtain, on average, high performance with sensitivity of 99.62% and positive predictivity of 99.81%. The evaluation also shows that the method can obtain a sensitivity and a positive predictivity above 90% in most noisy cases. •We propose a knowledge-based deep learning method for ECG signal Delineation.•Two types of knowledge are integrated into the delineation process of ECG signals.•The method encodes knowledge into data channel and aligns the knowledge with ECGs.•Experiment results have shown the effectiveness of our approach.
Author Wang, Jilong
Li, Renfa
Fu, Bin
Li, Rui
Author_xml – sequence: 1
  givenname: Jilong
  surname: Wang
  fullname: Wang, Jilong
  email: wangjilong@hnu.edu.cn
– sequence: 2
  givenname: Renfa
  surname: Li
  fullname: Li, Renfa
  email: lirenfa@hnu.edu.cn
– sequence: 3
  givenname: Rui
  surname: Li
  fullname: Li, Rui
  email: rui@hnu.edu.cn
– sequence: 4
  givenname: Bin
  surname: Fu
  fullname: Fu, Bin
  email: fubin@hnu.edu.cn
BookMark eNqFkEFOwzAQRS1UJNrCDVj4AgljJ3FSFkhVVQoSEhuQ2FkTe1JcUqeyUxC3J6WsWMBqNv99_XkTNvKdJ8YuBaQChLrapM2-3wdKJUhIQaagqhM2FlUpk1KIYsTGQ6xMymz2csYmMW4AQJSZGLP5nL_57qMlu6akxkiWW6IdbwmDd37Nt9S_dpY3XeDLxYpHt_bYDpnWecLedf6cnTbYRrr4uVP2fLt8WtwlD4-r-8X8ITEZqD5BYytlspnCiqrC1jNjjQFZqwIhVzXaQkiFylZ50ZgMpVIW6gwLKZQxhHk2Zfmx14QuxkCN3gW3xfCpBeiDBr3RRw36oEGD1IOGAbv-hRnXfw_vA7r2P_jmCNPw2LujoKNx5A1ZF8j02nbu74IvPj5-ig
CitedBy_id crossref_primary_10_1038_s41598_023_40965_1
crossref_primary_10_1109_TFUZZ_2024_3395488
crossref_primary_10_1109_JBHI_2021_3128169
crossref_primary_10_1109_TCBB_2022_3176905
crossref_primary_10_1016_j_bspc_2025_107523
crossref_primary_10_1016_j_compbiomed_2022_105445
crossref_primary_10_1016_j_bspc_2021_103335
crossref_primary_10_1016_j_bspc_2022_104106
crossref_primary_10_1016_j_compbiomed_2025_110927
crossref_primary_10_1186_s12911_023_02233_0
crossref_primary_10_3390_a18040236
crossref_primary_10_3390_technologies13010034
crossref_primary_10_1007_s00521_024_09639_5
crossref_primary_10_1016_j_ress_2022_109068
crossref_primary_10_1109_JBHI_2025_3574688
crossref_primary_10_1109_ACCESS_2021_3092631
crossref_primary_10_1109_TBME_2024_3363077
crossref_primary_10_1016_j_asoc_2022_109213
crossref_primary_10_1016_j_eswa_2021_114809
Cites_doi 10.1109/TBCAS.2018.2823275
10.1109/JBHI.2018.2794362
10.3109/03091902.2014.882424
10.1016/j.patcog.2016.06.008
10.1109/TBME.2003.821031
10.1016/j.bspc.2011.03.004
10.1109/TBME.2016.2616382
10.1109/JBHI.2017.2671443
10.1109/JBHI.2018.2814609
10.1016/j.ins.2018.01.001
10.1109/TBME.2006.877103
10.1109/10.740882
10.1061/(ASCE)CO.1943-7862.0001020
10.3109/03091909809032534
10.1016/j.future.2018.03.057
10.1016/j.compbiomed.2007.08.003
10.1161/01.CIR.101.23.e215
10.1007/s10723-018-9462-2
10.1109/TITB.2011.2163943
10.1109/10.704877
10.1016/j.compbiomed.2017.05.027
10.1016/j.knosys.2017.03.003
10.1109/TBCAS.2012.2188798
10.1109/TBME.2015.2468589
10.1109/TSC.2016.2589241
10.1016/j.neucom.2018.03.003
10.1016/j.bspc.2017.01.013
10.1016/j.neucom.2019.03.083
10.1016/j.epsr.2016.06.003
10.1016/j.bspc.2015.10.011
10.1016/j.future.2017.01.010
10.1109/10.126604
10.1109/ACCESS.2018.2812809
10.1109/TIP.2017.2670780
10.1016/j.cmpb.2018.01.018
10.1109/10.362922
10.1126/science.1127647
10.1109/10.469381
10.1016/j.compbiomed.2016.09.004
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright_xml – notice: 2020 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2020.02.068
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 66
ExternalDocumentID 10_1016_j_future_2020_02_068
S0167739X1932360X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-acd86c396a8e85db9cdcc02b65a046bad5126a6d845fc3a266d0b3a5216ccea43
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000536950900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:28:02 EST 2025
Tue Nov 18 22:08:51 EST 2025
Fri Feb 23 02:47:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
ECG delineation
Encoder–decoder model
Domain knowledge
Knowledge encoding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-acd86c396a8e85db9cdcc02b65a046bad5126a6d845fc3a266d0b3a5216ccea43
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_future_2020_02_068
crossref_citationtrail_10_1016_j_future_2020_02_068
elsevier_sciencedirect_doi_10_1016_j_future_2020_02_068
PublicationCentury 2000
PublicationDate August 2020
2020-08-00
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: August 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Akhbari, Ghahjaverestan, Shamsollahi, Jutten (b3) 2018; 157
Beraza, Romero (b7) 2017; 34
Tang, Hu, Tang (b46) 2018; 12
Hinton, Salakhutdinov (b18) 2006; 313
Manikandan, Soman (b33) 2012; 7
Vincent, Larochelle, Bengio, Manzagol (b48) 2008
Lore, Akintayo, Sarkar (b30) 2017; 61
Chang (b9) 2017; 127
Gupta, Sahu, Nanecha, Kumar, Roy, Chang (b15) 2019; 17
Hesar, Mohebbi (b17) 2018; 23
Martínez, Almeida, Olmos, Rocha, Laguna (b34) 2004; 51
Rincón, Recas, Khaled, Atienza (b40) 2011; 15
Moody, Muldrow, Mark (b36) 1984; 11
Abrishami, Campbell, Han, Czosek, Zhou (b1) 2018
Akhbari, Shamsollahi, Sayadi, Armoundas, Jutten (b4) 2016; 79
Xu, Mak, Cheung (b52) 2018
Chen, Li, Rong, Bilal, Yang, Li (b10) 2018; 435
Xue, Hu, Tompkins (b53) 1992; 39
Knilans (b24) 2008
Mehta, Lingayat (b35) 2008; 38
Wagner (b50) 2001
Haddad, Najafizadeh (b16) 2015
Li, Zheng, Tai (b28) 1995; 42
Kingma, Welling (b22) 2013
Sannino, De Pietro (b43) 2018; 86
Li, Mei, Li (b27) 2016; 11
Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b13) 2000; 101
Yochum, Renaud, Jacquir (b54) 2016; 25
Amini, Kargarian, Karabasoglu (b5) 2016; 140
Luo, Ding, Liang, Chen (b32) 2018; 294
Joukar, Nahmens (b20) 2015; 142
Laguna, Mark, Goldberg, Moody (b25) 1997
Party (b38) 1985; 6
(b12) 1987
Afonso, Tompkins, Nguyen, Luo (b2) 1999; 46
Sharma, Sharma (b44) 2017; 87
Vincent, Larochelle, Lajoie, Bengio, Manzagol (b49) 2010; 11
Khosrow-Khavar, Tavakolian, Blaber, Menon (b21) 2016; 64
Liu, Luo, Ding (b29) 2019; 23
Ieong, Mak, Lam, Dong, Vai, Mak, Pun, Wan, Martins (b19) 2012; 6
Kiranyaz, Ince, Gabbouj (b23) 2015; 63
Park, Yu, Kim, Park, Paik (b37) 2018; 6
Bote, Recas, Rincón, Atienza, Hermida (b8) 2018; 22
Vijaya, Kumar, Verma (b47) 1998; 22
Poli, Cagnoni, Valli (b39) 1995; 42
Lu, Tsao, Matsuda, Hori (b31) 2013
Wang, Li, Li, Li, Zeng, Xie, Liu (b51) 2019; 349
Chong, Tay (b11) 2017
Li (b26) 2018; 82
Saini, Singh, Khosla (b42) 2014; 38
Andreao, Dorizzi, Boudy (b6) 2006; 53
Guan, Li, Li, Li, Wang, Xie (b14) 2018
Soria-Olivas, Martinez-Sober, Calpe-Maravilla, Guerrero-Martinez, Chorro-Gascó, Espi-Lopez (b45) 1998; 45
Sabokrou, Fayyaz, Fathy, Klette (b41) 2017; 26
Bote (10.1016/j.future.2020.02.068_b8) 2018; 22
Mehta (10.1016/j.future.2020.02.068_b35) 2008; 38
Kiranyaz (10.1016/j.future.2020.02.068_b23) 2015; 63
Vincent (10.1016/j.future.2020.02.068_b49) 2010; 11
Kingma (10.1016/j.future.2020.02.068_b22) 2013
Soria-Olivas (10.1016/j.future.2020.02.068_b45) 1998; 45
Wagner (10.1016/j.future.2020.02.068_b50) 2001
Akhbari (10.1016/j.future.2020.02.068_b4) 2016; 79
Andreao (10.1016/j.future.2020.02.068_b6) 2006; 53
Goldberger (10.1016/j.future.2020.02.068_b13) 2000; 101
Gupta (10.1016/j.future.2020.02.068_b15) 2019; 17
Yochum (10.1016/j.future.2020.02.068_b54) 2016; 25
Guan (10.1016/j.future.2020.02.068_b14) 2018
Park (10.1016/j.future.2020.02.068_b37) 2018; 6
Afonso (10.1016/j.future.2020.02.068_b2) 1999; 46
Party (10.1016/j.future.2020.02.068_b38) 1985; 6
Moody (10.1016/j.future.2020.02.068_b36) 1984; 11
Chen (10.1016/j.future.2020.02.068_b10) 2018; 435
Chong (10.1016/j.future.2020.02.068_b11) 2017
Li (10.1016/j.future.2020.02.068_b27) 2016; 11
Akhbari (10.1016/j.future.2020.02.068_b3) 2018; 157
Saini (10.1016/j.future.2020.02.068_b42) 2014; 38
Tang (10.1016/j.future.2020.02.068_b46) 2018; 12
Khosrow-Khavar (10.1016/j.future.2020.02.068_b21) 2016; 64
Manikandan (10.1016/j.future.2020.02.068_b33) 2012; 7
Vijaya (10.1016/j.future.2020.02.068_b47) 1998; 22
Sharma (10.1016/j.future.2020.02.068_b44) 2017; 87
Wang (10.1016/j.future.2020.02.068_b51) 2019; 349
Hinton (10.1016/j.future.2020.02.068_b18) 2006; 313
Xu (10.1016/j.future.2020.02.068_b52) 2018
Luo (10.1016/j.future.2020.02.068_b32) 2018; 294
Ieong (10.1016/j.future.2020.02.068_b19) 2012; 6
Lore (10.1016/j.future.2020.02.068_b30) 2017; 61
Beraza (10.1016/j.future.2020.02.068_b7) 2017; 34
Poli (10.1016/j.future.2020.02.068_b39) 1995; 42
Laguna (10.1016/j.future.2020.02.068_b25) 1997
Joukar (10.1016/j.future.2020.02.068_b20) 2015; 142
Xue (10.1016/j.future.2020.02.068_b53) 1992; 39
(10.1016/j.future.2020.02.068_b12) 1987
Rincón (10.1016/j.future.2020.02.068_b40) 2011; 15
Vincent (10.1016/j.future.2020.02.068_b48) 2008
Li (10.1016/j.future.2020.02.068_b26) 2018; 82
Sannino (10.1016/j.future.2020.02.068_b43) 2018; 86
Liu (10.1016/j.future.2020.02.068_b29) 2019; 23
Martínez (10.1016/j.future.2020.02.068_b34) 2004; 51
Sabokrou (10.1016/j.future.2020.02.068_b41) 2017; 26
Abrishami (10.1016/j.future.2020.02.068_b1) 2018
Lu (10.1016/j.future.2020.02.068_b31) 2013
Haddad (10.1016/j.future.2020.02.068_b16) 2015
Hesar (10.1016/j.future.2020.02.068_b17) 2018; 23
Chang (10.1016/j.future.2020.02.068_b9) 2017; 127
Li (10.1016/j.future.2020.02.068_b28) 1995; 42
Amini (10.1016/j.future.2020.02.068_b5) 2016; 140
Knilans (10.1016/j.future.2020.02.068_b24) 2008
References_xml – volume: 34
  start-page: 166
  year: 2017
  end-page: 173
  ident: b7
  article-title: Comparative study of algorithms for ECG segmentation
  publication-title: Biomed. Signal Process. Control
– volume: 42
  start-page: 1137
  year: 1995
  end-page: 1141
  ident: b39
  article-title: Genetic design of optimum linear and nonlinear qrs detectors
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 46
  start-page: 192
  year: 1999
  end-page: 202
  ident: b2
  article-title: Ecg beat detection using filter banks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 435
  start-page: 124
  year: 2018
  end-page: 149
  ident: b10
  article-title: A disease diagnosis and treatment recommendation system based on big data mining and cloud computing
  publication-title: Inform. Sci.
– volume: 142
  start-page: 04015051
  year: 2015
  ident: b20
  article-title: Volatility forecast of construction cost index using general autoregressive conditional heteroskedastic method
  publication-title: J. Constr. Eng. Manage.
– volume: 23
  start-page: 112
  year: 2018
  end-page: 122
  ident: b17
  article-title: A multi rate marginalized particle extended kalman filter for p and t wave segmentation in ecg signals
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 15
  start-page: 854
  year: 2011
  end-page: 863
  ident: b40
  article-title: Development and evaluation of multilead wavelet-based ecg delineation algorithms for embedded wireless sensor nodes
  publication-title: IEEE Trans. Inf. Technol. Biomed.
– volume: 63
  start-page: 664
  year: 2015
  end-page: 675
  ident: b23
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 39
  start-page: 317
  year: 1992
  end-page: 329
  ident: b53
  article-title: Neural-network-based adaptive matched filtering for qrs detection
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 25
  start-page: 46
  year: 2016
  end-page: 52
  ident: b54
  article-title: Automatic detection of p, qrs and t patterns in 12 leads ecg signal based on cwt
  publication-title: Biomed. Signal Process. Control
– start-page: 69
  year: 1987
  ident: b12
  article-title: Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms
  publication-title: Assoc. Adv. Med. Instrum.
– volume: 17
  start-page: 325
  year: 2019
  end-page: 340
  ident: b15
  article-title: Enhancing text using emotion detected from eeg signals
  publication-title: J. Grid Comput.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: b49
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 7
  start-page: 118
  year: 2012
  end-page: 128
  ident: b33
  article-title: A novel method for detecting r-peaks in electrocardiogram (ecg) signal
  publication-title: Biomed. Signal Process. Control
– volume: 61
  start-page: 650
  year: 2017
  end-page: 662
  ident: b30
  article-title: Llnet: A deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
– year: 2018
  ident: b52
  article-title: Towards end-to-end ecg classification with raw signal extraction and deep neural networks
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 157
  start-page: 129
  year: 2018
  end-page: 136
  ident: b3
  article-title: Ecg fiducial point extraction using switching kalman filter
  publication-title: Comput. Methods Programs Biomed.
– volume: 349
  start-page: 212
  year: 2019
  end-page: 224
  ident: b51
  article-title: Adversarial de-noising of electrocardiogram
  publication-title: Neurocomputing
– volume: 140
  start-page: 378
  year: 2016
  end-page: 390
  ident: b5
  article-title: Arima-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation
  publication-title: Electr. Power Syst. Res.
– start-page: 436
  year: 2013
  end-page: 440
  ident: b31
  article-title: Speech enhancement based on deep denoising autoencoder
  publication-title: Interspeech
– volume: 11
  start-page: 893
  year: 2016
  end-page: 907
  ident: b27
  article-title: A fund-constrained investment scheme for profit maximization in cloud computing
  publication-title: IEEE Trans. Serv. Comput.
– volume: 38
  start-page: 115
  year: 2014
  end-page: 124
  ident: b42
  article-title: K-nearest neighbour-based algorithm for p- and t-waves detection and delineation
  publication-title: J. Med. Eng. Technol.
– volume: 87
  start-page: 187
  year: 2017
  end-page: 199
  ident: b44
  article-title: Qrs complex detection in ecg signals using locally adaptive weighted total variation denoising
  publication-title: Comput. Biol. Med.
– start-page: 197
  year: 2018
  end-page: 206
  ident: b14
  article-title: Automated dynamic electrocardiogram noise reduction using multilayer lstm network
  publication-title: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: b48
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the 25th International Conference on Machine Learning
– start-page: 189
  year: 2017
  end-page: 196
  ident: b11
  article-title: Abnormal event detection in videos using spatiotemporal autoencoder
  publication-title: International Symposium on Neural Networks
– volume: 127
  start-page: 29
  year: 2017
  end-page: 45
  ident: b9
  article-title: Towards data analysis for weather cloud computing
  publication-title: Knowl.-Based Syst.
– year: 2001
  ident: b50
  article-title: Marriott’s Practical Electrocardiography
– year: 2008
  ident: b24
  article-title: Chou s electrocardiography in clinical practice: Adult and pediatric, 6e
– volume: 11
  start-page: 381
  year: 1984
  end-page: 384
  ident: b36
  article-title: A noise stress test for arrhythmia detectors
  publication-title: Comput. Cardiol.
– start-page: 558
  year: 2015
  end-page: 561
  ident: b16
  article-title: Global eeg segmentation using singular value decomposition
  publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
– volume: 45
  start-page: 1077
  year: 1998
  end-page: 1080
  ident: b45
  article-title: Application of adaptive signal processing for determining the limits of p and t waves in an ecg
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 210
  year: 2018
  end-page: 213
  ident: b1
  article-title: P-qrs-t localization in ecg using deep learning
  publication-title: 2018 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI)
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b18
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 6
  start-page: 586
  year: 2012
  end-page: 595
  ident: b19
  article-title: A 0.83-
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 12
  start-page: 751
  year: 2018
  end-page: 761
  ident: b46
  article-title: A real-time qrs detection system with pr/rt interval and st segment measurements for wearable ecg sensors using parallel delta modulators
  publication-title: IEEE Trans. Biomed. Circuits Syst.
– volume: 53
  start-page: 1541
  year: 2006
  end-page: 1549
  ident: b6
  article-title: ECG Signal analysis through hidden markov models
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 26
  start-page: 1992
  year: 2017
  end-page: 2004
  ident: b41
  article-title: Deep-cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes
  publication-title: IEEE Trans. Image Process.
– volume: 42
  start-page: 21
  year: 1995
  end-page: 28
  ident: b28
  article-title: Detection of ecg characteristic points using wavelet transforms
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 86
  start-page: 446
  year: 2018
  end-page: 455
  ident: b43
  article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection
  publication-title: Future Gener. Comput. Syst.
– volume: 294
  start-page: 29
  year: 2018
  end-page: 38
  ident: b32
  article-title: Semi-supervised prediction of human mirna-disease association based on graph regularization framework in heterogeneous networks
  publication-title: Neurocomputing
– volume: 6
  start-page: 815
  year: 1985
  end-page: 825
  ident: b38
  article-title: Recommendations for measurement standards in quantitative electrocardiography
  publication-title: Eur. Heart J.
– start-page: 673
  year: 1997
  end-page: 676
  ident: b25
  article-title: A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg
  publication-title: Computers in Cardiology 1997
– volume: 101
  start-page: e215
  year: 2000
  end-page: e220
  ident: b13
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
– year: 2013
  ident: b22
  article-title: Auto-encoding variational bayes
– volume: 38
  start-page: 138
  year: 2008
  end-page: 145
  ident: b35
  article-title: Combined entropy based method for detection of qrs complexes in 12-lead electrocardiogram using svm
  publication-title: Comput. Biol. Med.
– volume: 64
  start-page: 1701
  year: 2016
  end-page: 1710
  ident: b21
  article-title: Automatic and robust delineation of the fiducial points of the seismocardiogram signal for noninvasive estimation of cardiac time intervals
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 79
  start-page: 21
  year: 2016
  end-page: 29
  ident: b4
  article-title: Ecg segmentation and fiducial point extraction using multi hidden markov model
  publication-title: Comput. Biol. Med.
– volume: 23
  start-page: 427
  year: 2019
  end-page: 436
  ident: b29
  article-title: Inferring microrna targets based on restricted boltzmann machines
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 82
  start-page: 591
  year: 2018
  end-page: 605
  ident: b26
  article-title: Scheduling parallel tasks with energy and time constraints on multiple manycore processors in a cloud computing environment
  publication-title: Future Gener. Comput. Syst.
– volume: 22
  start-page: 429
  year: 2018
  end-page: 441
  ident: b8
  article-title: A modular low-complexity ecg delineation algorithm for real-time embedded systems
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 51
  start-page: 570
  year: 2004
  end-page: 581
  ident: b34
  article-title: A wavelet-based ecg delineator: evaluation on standard databases
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 22
  start-page: 160
  year: 1998
  end-page: 167
  ident: b47
  article-title: Ann-based qrs-complex analysis of ecg
  publication-title: J. Med. Eng. Technol.
– volume: 6
  start-page: 22084
  year: 2018
  end-page: 22093
  ident: b37
  article-title: Dual autoencoder network for retinex-based low-light image enhancement
  publication-title: IEEE Access
– volume: 12
  start-page: 751
  issue: 4
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b46
  article-title: A real-time qrs detection system with pr/rt interval and st segment measurements for wearable ecg sensors using parallel delta modulators
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2018.2823275
– volume: 23
  start-page: 112
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b17
  article-title: A multi rate marginalized particle extended kalman filter for p and t wave segmentation in ecg signals
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2018.2794362
– start-page: 673
  year: 1997
  ident: 10.1016/j.future.2020.02.068_b25
  article-title: A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg
– volume: 38
  start-page: 115
  issue: 3
  year: 2014
  ident: 10.1016/j.future.2020.02.068_b42
  article-title: K-nearest neighbour-based algorithm for p- and t-waves detection and delineation
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091902.2014.882424
– volume: 61
  start-page: 650
  year: 2017
  ident: 10.1016/j.future.2020.02.068_b30
  article-title: Llnet: A deep autoencoder approach to natural low-light image enhancement
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2016.06.008
– volume: 11
  start-page: 3371
  issue: Dec
  year: 2010
  ident: 10.1016/j.future.2020.02.068_b49
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 51
  start-page: 570
  issue: 4
  year: 2004
  ident: 10.1016/j.future.2020.02.068_b34
  article-title: A wavelet-based ecg delineator: evaluation on standard databases
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2003.821031
– volume: 7
  start-page: 118
  issue: 2
  year: 2012
  ident: 10.1016/j.future.2020.02.068_b33
  article-title: A novel method for detecting r-peaks in electrocardiogram (ecg) signal
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2011.03.004
– volume: 64
  start-page: 1701
  issue: 8
  year: 2016
  ident: 10.1016/j.future.2020.02.068_b21
  article-title: Automatic and robust delineation of the fiducial points of the seismocardiogram signal for noninvasive estimation of cardiac time intervals
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2016.2616382
– volume: 22
  start-page: 429
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b8
  article-title: A modular low-complexity ecg delineation algorithm for real-time embedded systems
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2017.2671443
– volume: 23
  start-page: 427
  issue: 1
  year: 2019
  ident: 10.1016/j.future.2020.02.068_b29
  article-title: Inferring microrna targets based on restricted boltzmann machines
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2018.2814609
– volume: 435
  start-page: 124
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b10
  article-title: A disease diagnosis and treatment recommendation system based on big data mining and cloud computing
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.01.001
– volume: 53
  start-page: 1541
  issue: 8
  year: 2006
  ident: 10.1016/j.future.2020.02.068_b6
  article-title: ECG Signal analysis through hidden markov models
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.877103
– volume: 46
  start-page: 192
  issue: 2
  year: 1999
  ident: 10.1016/j.future.2020.02.068_b2
  article-title: Ecg beat detection using filter banks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.740882
– volume: 142
  start-page: 04015051
  issue: 1
  year: 2015
  ident: 10.1016/j.future.2020.02.068_b20
  article-title: Volatility forecast of construction cost index using general autoregressive conditional heteroskedastic method
  publication-title: J. Constr. Eng. Manage.
  doi: 10.1061/(ASCE)CO.1943-7862.0001020
– volume: 22
  start-page: 160
  issue: 4
  year: 1998
  ident: 10.1016/j.future.2020.02.068_b47
  article-title: Ann-based qrs-complex analysis of ecg
  publication-title: J. Med. Eng. Technol.
  doi: 10.3109/03091909809032534
– start-page: 69
  year: 1987
  ident: 10.1016/j.future.2020.02.068_b12
  article-title: Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms
  publication-title: Assoc. Adv. Med. Instrum.
– volume: 86
  start-page: 446
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b43
  article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.03.057
– volume: 38
  start-page: 138
  issue: 1
  year: 2008
  ident: 10.1016/j.future.2020.02.068_b35
  article-title: Combined entropy based method for detection of qrs complexes in 12-lead electrocardiogram using svm
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2007.08.003
– start-page: 558
  year: 2015
  ident: 10.1016/j.future.2020.02.068_b16
  article-title: Global eeg segmentation using singular value decomposition
– year: 2013
  ident: 10.1016/j.future.2020.02.068_b22
– year: 2008
  ident: 10.1016/j.future.2020.02.068_b24
– volume: 101
  start-page: e215
  issue: 23
  year: 2000
  ident: 10.1016/j.future.2020.02.068_b13
  article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals
  publication-title: Circulation
  doi: 10.1161/01.CIR.101.23.e215
– volume: 6
  start-page: 815
  issue: 10
  year: 1985
  ident: 10.1016/j.future.2020.02.068_b38
  article-title: Recommendations for measurement standards in quantitative electrocardiography
  publication-title: Eur. Heart J.
– volume: 17
  start-page: 325
  issue: 2
  year: 2019
  ident: 10.1016/j.future.2020.02.068_b15
  article-title: Enhancing text using emotion detected from eeg signals
  publication-title: J. Grid Comput.
  doi: 10.1007/s10723-018-9462-2
– volume: 15
  start-page: 854
  issue: 6
  year: 2011
  ident: 10.1016/j.future.2020.02.068_b40
  article-title: Development and evaluation of multilead wavelet-based ecg delineation algorithms for embedded wireless sensor nodes
  publication-title: IEEE Trans. Inf. Technol. Biomed.
  doi: 10.1109/TITB.2011.2163943
– volume: 45
  start-page: 1077
  issue: 8
  year: 1998
  ident: 10.1016/j.future.2020.02.068_b45
  article-title: Application of adaptive signal processing for determining the limits of p and t waves in an ecg
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.704877
– year: 2001
  ident: 10.1016/j.future.2020.02.068_b50
– year: 2018
  ident: 10.1016/j.future.2020.02.068_b52
  article-title: Towards end-to-end ecg classification with raw signal extraction and deep neural networks
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 87
  start-page: 187
  year: 2017
  ident: 10.1016/j.future.2020.02.068_b44
  article-title: Qrs complex detection in ecg signals using locally adaptive weighted total variation denoising
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2017.05.027
– volume: 127
  start-page: 29
  year: 2017
  ident: 10.1016/j.future.2020.02.068_b9
  article-title: Towards data analysis for weather cloud computing
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2017.03.003
– start-page: 197
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b14
  article-title: Automated dynamic electrocardiogram noise reduction using multilayer lstm network
– volume: 6
  start-page: 586
  issue: 6
  year: 2012
  ident: 10.1016/j.future.2020.02.068_b19
  article-title: A 0.83-μW qrs detection processor using quadratic spline wavelet transform for wireless ecg acquisition in 0.35-μm CMOS
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/TBCAS.2012.2188798
– volume: 63
  start-page: 664
  issue: 3
  year: 2015
  ident: 10.1016/j.future.2020.02.068_b23
  article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2468589
– volume: 11
  start-page: 893
  issue: 6
  year: 2016
  ident: 10.1016/j.future.2020.02.068_b27
  article-title: A fund-constrained investment scheme for profit maximization in cloud computing
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2016.2589241
– start-page: 1096
  year: 2008
  ident: 10.1016/j.future.2020.02.068_b48
  article-title: Extracting and composing robust features with denoising autoencoders
– volume: 294
  start-page: 29
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b32
  article-title: Semi-supervised prediction of human mirna-disease association based on graph regularization framework in heterogeneous networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.03.003
– volume: 34
  start-page: 166
  year: 2017
  ident: 10.1016/j.future.2020.02.068_b7
  article-title: Comparative study of algorithms for ECG segmentation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2017.01.013
– volume: 349
  start-page: 212
  year: 2019
  ident: 10.1016/j.future.2020.02.068_b51
  article-title: Adversarial de-noising of electrocardiogram
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.083
– volume: 140
  start-page: 378
  year: 2016
  ident: 10.1016/j.future.2020.02.068_b5
  article-title: Arima-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation
  publication-title: Electr. Power Syst. Res.
  doi: 10.1016/j.epsr.2016.06.003
– volume: 25
  start-page: 46
  year: 2016
  ident: 10.1016/j.future.2020.02.068_b54
  article-title: Automatic detection of p, qrs and t patterns in 12 leads ecg signal based on cwt
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2015.10.011
– start-page: 436
  year: 2013
  ident: 10.1016/j.future.2020.02.068_b31
  article-title: Speech enhancement based on deep denoising autoencoder
– volume: 11
  start-page: 381
  year: 1984
  ident: 10.1016/j.future.2020.02.068_b36
  article-title: A noise stress test for arrhythmia detectors
  publication-title: Comput. Cardiol.
– volume: 82
  start-page: 591
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b26
  article-title: Scheduling parallel tasks with energy and time constraints on multiple manycore processors in a cloud computing environment
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.01.010
– start-page: 210
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b1
  article-title: P-qrs-t localization in ecg using deep learning
– volume: 39
  start-page: 317
  issue: 4
  year: 1992
  ident: 10.1016/j.future.2020.02.068_b53
  article-title: Neural-network-based adaptive matched filtering for qrs detection
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.126604
– volume: 6
  start-page: 22084
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b37
  article-title: Dual autoencoder network for retinex-based low-light image enhancement
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2812809
– start-page: 189
  year: 2017
  ident: 10.1016/j.future.2020.02.068_b11
  article-title: Abnormal event detection in videos using spatiotemporal autoencoder
– volume: 26
  start-page: 1992
  issue: 4
  year: 2017
  ident: 10.1016/j.future.2020.02.068_b41
  article-title: Deep-cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2670780
– volume: 157
  start-page: 129
  year: 2018
  ident: 10.1016/j.future.2020.02.068_b3
  article-title: Ecg fiducial point extraction using switching kalman filter
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2018.01.018
– volume: 42
  start-page: 21
  issue: 1
  year: 1995
  ident: 10.1016/j.future.2020.02.068_b28
  article-title: Detection of ecg characteristic points using wavelet transforms
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.362922
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.future.2020.02.068_b18
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
– volume: 42
  start-page: 1137
  issue: 11
  year: 1995
  ident: 10.1016/j.future.2020.02.068_b39
  article-title: Genetic design of optimum linear and nonlinear qrs detectors
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/10.469381
– volume: 79
  start-page: 21
  year: 2016
  ident: 10.1016/j.future.2020.02.068_b4
  article-title: Ecg segmentation and fiducial point extraction using multi hidden markov model
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2016.09.004
SSID ssj0001731
Score 2.3937826
Snippet The delineation of electrocardiograms (ECG) is a crucial step designed to extract signal characteristics and assist cardiologists in diagnosing certain...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 56
SubjectTerms Deep learning
Domain knowledge
ECG delineation
Encoder–decoder model
Knowledge encoding
Title A knowledge-based deep learning method for ECG signal delineation
URI https://dx.doi.org/10.1016/j.future.2020.02.068
Volume 109
WOSCitedRecordID wos000536950900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7apIde-i5J-mAPvZkNsrQvHUVwHzmEQlPqm1jtrItDUExil_z8zGpHsrFLX9CLEItXWmY-ZkbjmfkYe6fGADKDTDS5c0KCkcKCLYXxSnlt1Qxc05FNmLMzO52Wn6kk6KajEzBta29vy8V_VTWuobJj6-xfqHt4KC7gPSodr6h2vP6R4qvRkCcT0UfBCEJY9PQQ34kzuisvnJx8GMUCjvhHTexLD2s19cyd3ciRyLMcCCqeaCBoBvQQkn-jxPPp_PKKvGGs85knHbYzt7W0mg_QWXUgoxHglIHI1_VvlBbbaY1JmUq0wKboeHLR0STrag2G8-PUvzmY36zcMKBKb7jixMeyY-RTvuHiOE1dOY5H6uauJn6erfHZX-JB4jlipFrobHqf7edGlWjE96tPk-np4LfHhtgr6eB9o2VXDbj7rp8HMhvByfkT9oi-KniV0PCU3QvtM_a4Z-zgZMCfs6riW-DgERy8BwdP4OAIDo7g4AkcfAMcL9jX95Pzk4-CSDSEx6_BpXAerPZFqZ0NVkFTevA-yxutXCZ14wAjPu00WKlmvnAYr0HWFA6jOu19cLJ4yfbaqzYcMJ47afKgoZF414Q8Ti4zoCSoOOFIzw5Z0Uuk9jRhPhKdXNZ9KeFFneRYRznWWV6jHA-ZGHYt0oSV3_ze9MKuKUpM0V-N-PjlzqN_3vmKPVwD_zXbW16vwhv2wP9Yzm-u3xKQ7gBODY5a
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+knowledge-based+deep+learning+method+for+ECG+signal+delineation&rft.jtitle=Future+generation+computer+systems&rft.au=Wang%2C+Jilong&rft.au=Li%2C+Renfa&rft.au=Li%2C+Rui&rft.au=Fu%2C+Bin&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=109&rft.spage=56&rft.epage=66&rft_id=info:doi/10.1016%2Fj.future.2020.02.068&rft.externalDocID=S0167739X1932360X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon