A knowledge-based deep learning method for ECG signal delineation
The delineation of electrocardiograms (ECG) is a crucial step designed to extract signal characteristics and assist cardiologists in diagnosing certain diseases. It refers to the delineation of both the onset and offset of the P wave, the QRS complex, and the T wave. However, to date previous studie...
Uložené v:
| Vydané v: | Future generation computer systems Ročník 109; s. 56 - 66 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.08.2020
|
| Predmet: | |
| ISSN: | 0167-739X, 1872-7115 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The delineation of electrocardiograms (ECG) is a crucial step designed to extract signal characteristics and assist cardiologists in diagnosing certain diseases. It refers to the delineation of both the onset and offset of the P wave, the QRS complex, and the T wave. However, to date previous studies have neither investigated the role of medical knowledge nor investigated the interference of signal noise. In this paper, we propose a knowledge-based deep learning method for ECG signal delineation, which adds domain knowledge and individual feature knowledge to improve delineation performance. The proposed method is novel in three distinct ways. First, the method aligns the encoded knowledge with ECG signals with reference to the R wave peak position. Second, the method incorporates domain knowledge to delineate ECG signals under the encoder–decoder framework. Third, the method introduces individual feature knowledge to adjust the delineation results adaptively. An evaluation conducted on the QT database demonstrates that the proposed method can obtain, on average, high performance with sensitivity of 99.62% and positive predictivity of 99.81%. The evaluation also shows that the method can obtain a sensitivity and a positive predictivity above 90% in most noisy cases.
•We propose a knowledge-based deep learning method for ECG signal Delineation.•Two types of knowledge are integrated into the delineation process of ECG signals.•The method encodes knowledge into data channel and aligns the knowledge with ECGs.•Experiment results have shown the effectiveness of our approach. |
|---|---|
| AbstractList | The delineation of electrocardiograms (ECG) is a crucial step designed to extract signal characteristics and assist cardiologists in diagnosing certain diseases. It refers to the delineation of both the onset and offset of the P wave, the QRS complex, and the T wave. However, to date previous studies have neither investigated the role of medical knowledge nor investigated the interference of signal noise. In this paper, we propose a knowledge-based deep learning method for ECG signal delineation, which adds domain knowledge and individual feature knowledge to improve delineation performance. The proposed method is novel in three distinct ways. First, the method aligns the encoded knowledge with ECG signals with reference to the R wave peak position. Second, the method incorporates domain knowledge to delineate ECG signals under the encoder–decoder framework. Third, the method introduces individual feature knowledge to adjust the delineation results adaptively. An evaluation conducted on the QT database demonstrates that the proposed method can obtain, on average, high performance with sensitivity of 99.62% and positive predictivity of 99.81%. The evaluation also shows that the method can obtain a sensitivity and a positive predictivity above 90% in most noisy cases.
•We propose a knowledge-based deep learning method for ECG signal Delineation.•Two types of knowledge are integrated into the delineation process of ECG signals.•The method encodes knowledge into data channel and aligns the knowledge with ECGs.•Experiment results have shown the effectiveness of our approach. |
| Author | Wang, Jilong Li, Renfa Fu, Bin Li, Rui |
| Author_xml | – sequence: 1 givenname: Jilong surname: Wang fullname: Wang, Jilong email: wangjilong@hnu.edu.cn – sequence: 2 givenname: Renfa surname: Li fullname: Li, Renfa email: lirenfa@hnu.edu.cn – sequence: 3 givenname: Rui surname: Li fullname: Li, Rui email: rui@hnu.edu.cn – sequence: 4 givenname: Bin surname: Fu fullname: Fu, Bin email: fubin@hnu.edu.cn |
| BookMark | eNqFkEFOwzAQRS1UJNrCDVj4AgljJ3FSFkhVVQoSEhuQ2FkTe1JcUqeyUxC3J6WsWMBqNv99_XkTNvKdJ8YuBaQChLrapM2-3wdKJUhIQaagqhM2FlUpk1KIYsTGQ6xMymz2csYmMW4AQJSZGLP5nL_57qMlu6akxkiWW6IdbwmDd37Nt9S_dpY3XeDLxYpHt_bYDpnWecLedf6cnTbYRrr4uVP2fLt8WtwlD4-r-8X8ITEZqD5BYytlspnCiqrC1jNjjQFZqwIhVzXaQkiFylZ50ZgMpVIW6gwLKZQxhHk2Zfmx14QuxkCN3gW3xfCpBeiDBr3RRw36oEGD1IOGAbv-hRnXfw_vA7r2P_jmCNPw2LujoKNx5A1ZF8j02nbu74IvPj5-ig |
| CitedBy_id | crossref_primary_10_1038_s41598_023_40965_1 crossref_primary_10_1109_TFUZZ_2024_3395488 crossref_primary_10_1109_JBHI_2021_3128169 crossref_primary_10_1109_TCBB_2022_3176905 crossref_primary_10_1016_j_bspc_2025_107523 crossref_primary_10_1016_j_compbiomed_2022_105445 crossref_primary_10_1016_j_bspc_2021_103335 crossref_primary_10_1016_j_bspc_2022_104106 crossref_primary_10_1016_j_compbiomed_2025_110927 crossref_primary_10_1186_s12911_023_02233_0 crossref_primary_10_3390_a18040236 crossref_primary_10_3390_technologies13010034 crossref_primary_10_1007_s00521_024_09639_5 crossref_primary_10_1016_j_ress_2022_109068 crossref_primary_10_1109_JBHI_2025_3574688 crossref_primary_10_1109_ACCESS_2021_3092631 crossref_primary_10_1109_TBME_2024_3363077 crossref_primary_10_1016_j_asoc_2022_109213 crossref_primary_10_1016_j_eswa_2021_114809 |
| Cites_doi | 10.1109/TBCAS.2018.2823275 10.1109/JBHI.2018.2794362 10.3109/03091902.2014.882424 10.1016/j.patcog.2016.06.008 10.1109/TBME.2003.821031 10.1016/j.bspc.2011.03.004 10.1109/TBME.2016.2616382 10.1109/JBHI.2017.2671443 10.1109/JBHI.2018.2814609 10.1016/j.ins.2018.01.001 10.1109/TBME.2006.877103 10.1109/10.740882 10.1061/(ASCE)CO.1943-7862.0001020 10.3109/03091909809032534 10.1016/j.future.2018.03.057 10.1016/j.compbiomed.2007.08.003 10.1161/01.CIR.101.23.e215 10.1007/s10723-018-9462-2 10.1109/TITB.2011.2163943 10.1109/10.704877 10.1016/j.compbiomed.2017.05.027 10.1016/j.knosys.2017.03.003 10.1109/TBCAS.2012.2188798 10.1109/TBME.2015.2468589 10.1109/TSC.2016.2589241 10.1016/j.neucom.2018.03.003 10.1016/j.bspc.2017.01.013 10.1016/j.neucom.2019.03.083 10.1016/j.epsr.2016.06.003 10.1016/j.bspc.2015.10.011 10.1016/j.future.2017.01.010 10.1109/10.126604 10.1109/ACCESS.2018.2812809 10.1109/TIP.2017.2670780 10.1016/j.cmpb.2018.01.018 10.1109/10.362922 10.1126/science.1127647 10.1109/10.469381 10.1016/j.compbiomed.2016.09.004 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier B.V. |
| Copyright_xml | – notice: 2020 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2020.02.068 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 66 |
| ExternalDocumentID | 10_1016_j_future_2020_02_068 S0167739X1932360X |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-acd86c396a8e85db9cdcc02b65a046bad5126a6d845fc3a266d0b3a5216ccea43 |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000536950900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Sat Nov 29 07:28:02 EST 2025 Tue Nov 18 22:08:51 EST 2025 Fri Feb 23 02:47:50 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning ECG delineation Encoder–decoder model Domain knowledge Knowledge encoding |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-acd86c396a8e85db9cdcc02b65a046bad5126a6d845fc3a266d0b3a5216ccea43 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2020_02_068 crossref_citationtrail_10_1016_j_future_2020_02_068 elsevier_sciencedirect_doi_10_1016_j_future_2020_02_068 |
| PublicationCentury | 2000 |
| PublicationDate | August 2020 2020-08-00 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: August 2020 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2020 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Akhbari, Ghahjaverestan, Shamsollahi, Jutten (b3) 2018; 157 Beraza, Romero (b7) 2017; 34 Tang, Hu, Tang (b46) 2018; 12 Hinton, Salakhutdinov (b18) 2006; 313 Manikandan, Soman (b33) 2012; 7 Vincent, Larochelle, Bengio, Manzagol (b48) 2008 Lore, Akintayo, Sarkar (b30) 2017; 61 Chang (b9) 2017; 127 Gupta, Sahu, Nanecha, Kumar, Roy, Chang (b15) 2019; 17 Hesar, Mohebbi (b17) 2018; 23 Martínez, Almeida, Olmos, Rocha, Laguna (b34) 2004; 51 Rincón, Recas, Khaled, Atienza (b40) 2011; 15 Moody, Muldrow, Mark (b36) 1984; 11 Abrishami, Campbell, Han, Czosek, Zhou (b1) 2018 Akhbari, Shamsollahi, Sayadi, Armoundas, Jutten (b4) 2016; 79 Xu, Mak, Cheung (b52) 2018 Chen, Li, Rong, Bilal, Yang, Li (b10) 2018; 435 Xue, Hu, Tompkins (b53) 1992; 39 Knilans (b24) 2008 Mehta, Lingayat (b35) 2008; 38 Wagner (b50) 2001 Haddad, Najafizadeh (b16) 2015 Li, Zheng, Tai (b28) 1995; 42 Kingma, Welling (b22) 2013 Sannino, De Pietro (b43) 2018; 86 Li, Mei, Li (b27) 2016; 11 Goldberger, Amaral, Glass, Hausdorff, Ivanov, Mark, Mietus, Moody, Peng, Stanley (b13) 2000; 101 Yochum, Renaud, Jacquir (b54) 2016; 25 Amini, Kargarian, Karabasoglu (b5) 2016; 140 Luo, Ding, Liang, Chen (b32) 2018; 294 Joukar, Nahmens (b20) 2015; 142 Laguna, Mark, Goldberg, Moody (b25) 1997 Party (b38) 1985; 6 (b12) 1987 Afonso, Tompkins, Nguyen, Luo (b2) 1999; 46 Sharma, Sharma (b44) 2017; 87 Vincent, Larochelle, Lajoie, Bengio, Manzagol (b49) 2010; 11 Khosrow-Khavar, Tavakolian, Blaber, Menon (b21) 2016; 64 Liu, Luo, Ding (b29) 2019; 23 Ieong, Mak, Lam, Dong, Vai, Mak, Pun, Wan, Martins (b19) 2012; 6 Kiranyaz, Ince, Gabbouj (b23) 2015; 63 Park, Yu, Kim, Park, Paik (b37) 2018; 6 Bote, Recas, Rincón, Atienza, Hermida (b8) 2018; 22 Vijaya, Kumar, Verma (b47) 1998; 22 Poli, Cagnoni, Valli (b39) 1995; 42 Lu, Tsao, Matsuda, Hori (b31) 2013 Wang, Li, Li, Li, Zeng, Xie, Liu (b51) 2019; 349 Chong, Tay (b11) 2017 Li (b26) 2018; 82 Saini, Singh, Khosla (b42) 2014; 38 Andreao, Dorizzi, Boudy (b6) 2006; 53 Guan, Li, Li, Li, Wang, Xie (b14) 2018 Soria-Olivas, Martinez-Sober, Calpe-Maravilla, Guerrero-Martinez, Chorro-Gascó, Espi-Lopez (b45) 1998; 45 Sabokrou, Fayyaz, Fathy, Klette (b41) 2017; 26 Bote (10.1016/j.future.2020.02.068_b8) 2018; 22 Mehta (10.1016/j.future.2020.02.068_b35) 2008; 38 Kiranyaz (10.1016/j.future.2020.02.068_b23) 2015; 63 Vincent (10.1016/j.future.2020.02.068_b49) 2010; 11 Kingma (10.1016/j.future.2020.02.068_b22) 2013 Soria-Olivas (10.1016/j.future.2020.02.068_b45) 1998; 45 Wagner (10.1016/j.future.2020.02.068_b50) 2001 Akhbari (10.1016/j.future.2020.02.068_b4) 2016; 79 Andreao (10.1016/j.future.2020.02.068_b6) 2006; 53 Goldberger (10.1016/j.future.2020.02.068_b13) 2000; 101 Gupta (10.1016/j.future.2020.02.068_b15) 2019; 17 Yochum (10.1016/j.future.2020.02.068_b54) 2016; 25 Guan (10.1016/j.future.2020.02.068_b14) 2018 Park (10.1016/j.future.2020.02.068_b37) 2018; 6 Afonso (10.1016/j.future.2020.02.068_b2) 1999; 46 Party (10.1016/j.future.2020.02.068_b38) 1985; 6 Moody (10.1016/j.future.2020.02.068_b36) 1984; 11 Chen (10.1016/j.future.2020.02.068_b10) 2018; 435 Chong (10.1016/j.future.2020.02.068_b11) 2017 Li (10.1016/j.future.2020.02.068_b27) 2016; 11 Akhbari (10.1016/j.future.2020.02.068_b3) 2018; 157 Saini (10.1016/j.future.2020.02.068_b42) 2014; 38 Tang (10.1016/j.future.2020.02.068_b46) 2018; 12 Khosrow-Khavar (10.1016/j.future.2020.02.068_b21) 2016; 64 Manikandan (10.1016/j.future.2020.02.068_b33) 2012; 7 Vijaya (10.1016/j.future.2020.02.068_b47) 1998; 22 Sharma (10.1016/j.future.2020.02.068_b44) 2017; 87 Wang (10.1016/j.future.2020.02.068_b51) 2019; 349 Hinton (10.1016/j.future.2020.02.068_b18) 2006; 313 Xu (10.1016/j.future.2020.02.068_b52) 2018 Luo (10.1016/j.future.2020.02.068_b32) 2018; 294 Ieong (10.1016/j.future.2020.02.068_b19) 2012; 6 Lore (10.1016/j.future.2020.02.068_b30) 2017; 61 Beraza (10.1016/j.future.2020.02.068_b7) 2017; 34 Poli (10.1016/j.future.2020.02.068_b39) 1995; 42 Laguna (10.1016/j.future.2020.02.068_b25) 1997 Joukar (10.1016/j.future.2020.02.068_b20) 2015; 142 Xue (10.1016/j.future.2020.02.068_b53) 1992; 39 (10.1016/j.future.2020.02.068_b12) 1987 Rincón (10.1016/j.future.2020.02.068_b40) 2011; 15 Vincent (10.1016/j.future.2020.02.068_b48) 2008 Li (10.1016/j.future.2020.02.068_b26) 2018; 82 Sannino (10.1016/j.future.2020.02.068_b43) 2018; 86 Liu (10.1016/j.future.2020.02.068_b29) 2019; 23 Martínez (10.1016/j.future.2020.02.068_b34) 2004; 51 Sabokrou (10.1016/j.future.2020.02.068_b41) 2017; 26 Abrishami (10.1016/j.future.2020.02.068_b1) 2018 Lu (10.1016/j.future.2020.02.068_b31) 2013 Haddad (10.1016/j.future.2020.02.068_b16) 2015 Hesar (10.1016/j.future.2020.02.068_b17) 2018; 23 Chang (10.1016/j.future.2020.02.068_b9) 2017; 127 Li (10.1016/j.future.2020.02.068_b28) 1995; 42 Amini (10.1016/j.future.2020.02.068_b5) 2016; 140 Knilans (10.1016/j.future.2020.02.068_b24) 2008 |
| References_xml | – volume: 34 start-page: 166 year: 2017 end-page: 173 ident: b7 article-title: Comparative study of algorithms for ECG segmentation publication-title: Biomed. Signal Process. Control – volume: 42 start-page: 1137 year: 1995 end-page: 1141 ident: b39 article-title: Genetic design of optimum linear and nonlinear qrs detectors publication-title: IEEE Trans. Biomed. Eng. – volume: 46 start-page: 192 year: 1999 end-page: 202 ident: b2 article-title: Ecg beat detection using filter banks publication-title: IEEE Trans. Biomed. Eng. – volume: 435 start-page: 124 year: 2018 end-page: 149 ident: b10 article-title: A disease diagnosis and treatment recommendation system based on big data mining and cloud computing publication-title: Inform. Sci. – volume: 142 start-page: 04015051 year: 2015 ident: b20 article-title: Volatility forecast of construction cost index using general autoregressive conditional heteroskedastic method publication-title: J. Constr. Eng. Manage. – volume: 23 start-page: 112 year: 2018 end-page: 122 ident: b17 article-title: A multi rate marginalized particle extended kalman filter for p and t wave segmentation in ecg signals publication-title: IEEE J. Biomed. Health Inf. – volume: 15 start-page: 854 year: 2011 end-page: 863 ident: b40 article-title: Development and evaluation of multilead wavelet-based ecg delineation algorithms for embedded wireless sensor nodes publication-title: IEEE Trans. Inf. Technol. Biomed. – volume: 63 start-page: 664 year: 2015 end-page: 675 ident: b23 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. – volume: 39 start-page: 317 year: 1992 end-page: 329 ident: b53 article-title: Neural-network-based adaptive matched filtering for qrs detection publication-title: IEEE Trans. Biomed. Eng. – volume: 25 start-page: 46 year: 2016 end-page: 52 ident: b54 article-title: Automatic detection of p, qrs and t patterns in 12 leads ecg signal based on cwt publication-title: Biomed. Signal Process. Control – start-page: 69 year: 1987 ident: b12 article-title: Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms publication-title: Assoc. Adv. Med. Instrum. – volume: 17 start-page: 325 year: 2019 end-page: 340 ident: b15 article-title: Enhancing text using emotion detected from eeg signals publication-title: J. Grid Comput. – volume: 11 start-page: 3371 year: 2010 end-page: 3408 ident: b49 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 7 start-page: 118 year: 2012 end-page: 128 ident: b33 article-title: A novel method for detecting r-peaks in electrocardiogram (ecg) signal publication-title: Biomed. Signal Process. Control – volume: 61 start-page: 650 year: 2017 end-page: 662 ident: b30 article-title: Llnet: A deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. – year: 2018 ident: b52 article-title: Towards end-to-end ecg classification with raw signal extraction and deep neural networks publication-title: IEEE J. Biomed. Health Inf. – volume: 157 start-page: 129 year: 2018 end-page: 136 ident: b3 article-title: Ecg fiducial point extraction using switching kalman filter publication-title: Comput. Methods Programs Biomed. – volume: 349 start-page: 212 year: 2019 end-page: 224 ident: b51 article-title: Adversarial de-noising of electrocardiogram publication-title: Neurocomputing – volume: 140 start-page: 378 year: 2016 end-page: 390 ident: b5 article-title: Arima-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation publication-title: Electr. Power Syst. Res. – start-page: 436 year: 2013 end-page: 440 ident: b31 article-title: Speech enhancement based on deep denoising autoencoder publication-title: Interspeech – volume: 11 start-page: 893 year: 2016 end-page: 907 ident: b27 article-title: A fund-constrained investment scheme for profit maximization in cloud computing publication-title: IEEE Trans. Serv. Comput. – volume: 38 start-page: 115 year: 2014 end-page: 124 ident: b42 article-title: K-nearest neighbour-based algorithm for p- and t-waves detection and delineation publication-title: J. Med. Eng. Technol. – volume: 87 start-page: 187 year: 2017 end-page: 199 ident: b44 article-title: Qrs complex detection in ecg signals using locally adaptive weighted total variation denoising publication-title: Comput. Biol. Med. – start-page: 197 year: 2018 end-page: 206 ident: b14 article-title: Automated dynamic electrocardiogram noise reduction using multilayer lstm network publication-title: Proceedings of the 15th EAI International Conference on Mobile and Ubiquitous Systems: Computing, Networking and Services – start-page: 1096 year: 2008 end-page: 1103 ident: b48 article-title: Extracting and composing robust features with denoising autoencoders publication-title: Proceedings of the 25th International Conference on Machine Learning – start-page: 189 year: 2017 end-page: 196 ident: b11 article-title: Abnormal event detection in videos using spatiotemporal autoencoder publication-title: International Symposium on Neural Networks – volume: 127 start-page: 29 year: 2017 end-page: 45 ident: b9 article-title: Towards data analysis for weather cloud computing publication-title: Knowl.-Based Syst. – year: 2001 ident: b50 article-title: Marriott’s Practical Electrocardiography – year: 2008 ident: b24 article-title: Chou s electrocardiography in clinical practice: Adult and pediatric, 6e – volume: 11 start-page: 381 year: 1984 end-page: 384 ident: b36 article-title: A noise stress test for arrhythmia detectors publication-title: Comput. Cardiol. – start-page: 558 year: 2015 end-page: 561 ident: b16 article-title: Global eeg segmentation using singular value decomposition publication-title: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) – volume: 45 start-page: 1077 year: 1998 end-page: 1080 ident: b45 article-title: Application of adaptive signal processing for determining the limits of p and t waves in an ecg publication-title: IEEE Trans. Biomed. Eng. – start-page: 210 year: 2018 end-page: 213 ident: b1 article-title: P-qrs-t localization in ecg using deep learning publication-title: 2018 IEEE EMBS International Conference on Biomedical and Health Informatics (BHI) – volume: 313 start-page: 504 year: 2006 end-page: 507 ident: b18 article-title: Reducing the dimensionality of data with neural networks publication-title: Science – volume: 6 start-page: 586 year: 2012 end-page: 595 ident: b19 article-title: A 0.83- publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 12 start-page: 751 year: 2018 end-page: 761 ident: b46 article-title: A real-time qrs detection system with pr/rt interval and st segment measurements for wearable ecg sensors using parallel delta modulators publication-title: IEEE Trans. Biomed. Circuits Syst. – volume: 53 start-page: 1541 year: 2006 end-page: 1549 ident: b6 article-title: ECG Signal analysis through hidden markov models publication-title: IEEE Trans. Biomed. Eng. – volume: 26 start-page: 1992 year: 2017 end-page: 2004 ident: b41 article-title: Deep-cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes publication-title: IEEE Trans. Image Process. – volume: 42 start-page: 21 year: 1995 end-page: 28 ident: b28 article-title: Detection of ecg characteristic points using wavelet transforms publication-title: IEEE Trans. Biomed. Eng. – volume: 86 start-page: 446 year: 2018 end-page: 455 ident: b43 article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection publication-title: Future Gener. Comput. Syst. – volume: 294 start-page: 29 year: 2018 end-page: 38 ident: b32 article-title: Semi-supervised prediction of human mirna-disease association based on graph regularization framework in heterogeneous networks publication-title: Neurocomputing – volume: 6 start-page: 815 year: 1985 end-page: 825 ident: b38 article-title: Recommendations for measurement standards in quantitative electrocardiography publication-title: Eur. Heart J. – start-page: 673 year: 1997 end-page: 676 ident: b25 article-title: A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg publication-title: Computers in Cardiology 1997 – volume: 101 start-page: e215 year: 2000 end-page: e220 ident: b13 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation – year: 2013 ident: b22 article-title: Auto-encoding variational bayes – volume: 38 start-page: 138 year: 2008 end-page: 145 ident: b35 article-title: Combined entropy based method for detection of qrs complexes in 12-lead electrocardiogram using svm publication-title: Comput. Biol. Med. – volume: 64 start-page: 1701 year: 2016 end-page: 1710 ident: b21 article-title: Automatic and robust delineation of the fiducial points of the seismocardiogram signal for noninvasive estimation of cardiac time intervals publication-title: IEEE Trans. Biomed. Eng. – volume: 79 start-page: 21 year: 2016 end-page: 29 ident: b4 article-title: Ecg segmentation and fiducial point extraction using multi hidden markov model publication-title: Comput. Biol. Med. – volume: 23 start-page: 427 year: 2019 end-page: 436 ident: b29 article-title: Inferring microrna targets based on restricted boltzmann machines publication-title: IEEE J. Biomed. Health Inf. – volume: 82 start-page: 591 year: 2018 end-page: 605 ident: b26 article-title: Scheduling parallel tasks with energy and time constraints on multiple manycore processors in a cloud computing environment publication-title: Future Gener. Comput. Syst. – volume: 22 start-page: 429 year: 2018 end-page: 441 ident: b8 article-title: A modular low-complexity ecg delineation algorithm for real-time embedded systems publication-title: IEEE J. Biomed. Health Inf. – volume: 51 start-page: 570 year: 2004 end-page: 581 ident: b34 article-title: A wavelet-based ecg delineator: evaluation on standard databases publication-title: IEEE Trans. Biomed. Eng. – volume: 22 start-page: 160 year: 1998 end-page: 167 ident: b47 article-title: Ann-based qrs-complex analysis of ecg publication-title: J. Med. Eng. Technol. – volume: 6 start-page: 22084 year: 2018 end-page: 22093 ident: b37 article-title: Dual autoencoder network for retinex-based low-light image enhancement publication-title: IEEE Access – volume: 12 start-page: 751 issue: 4 year: 2018 ident: 10.1016/j.future.2020.02.068_b46 article-title: A real-time qrs detection system with pr/rt interval and st segment measurements for wearable ecg sensors using parallel delta modulators publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2018.2823275 – volume: 23 start-page: 112 issue: 1 year: 2018 ident: 10.1016/j.future.2020.02.068_b17 article-title: A multi rate marginalized particle extended kalman filter for p and t wave segmentation in ecg signals publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2018.2794362 – start-page: 673 year: 1997 ident: 10.1016/j.future.2020.02.068_b25 article-title: A database for evaluation of algorithms for measurement of qt and other waveform intervals in the ecg – volume: 38 start-page: 115 issue: 3 year: 2014 ident: 10.1016/j.future.2020.02.068_b42 article-title: K-nearest neighbour-based algorithm for p- and t-waves detection and delineation publication-title: J. Med. Eng. Technol. doi: 10.3109/03091902.2014.882424 – volume: 61 start-page: 650 year: 2017 ident: 10.1016/j.future.2020.02.068_b30 article-title: Llnet: A deep autoencoder approach to natural low-light image enhancement publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2016.06.008 – volume: 11 start-page: 3371 issue: Dec year: 2010 ident: 10.1016/j.future.2020.02.068_b49 article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion publication-title: J. Mach. Learn. Res. – volume: 51 start-page: 570 issue: 4 year: 2004 ident: 10.1016/j.future.2020.02.068_b34 article-title: A wavelet-based ecg delineator: evaluation on standard databases publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2003.821031 – volume: 7 start-page: 118 issue: 2 year: 2012 ident: 10.1016/j.future.2020.02.068_b33 article-title: A novel method for detecting r-peaks in electrocardiogram (ecg) signal publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2011.03.004 – volume: 64 start-page: 1701 issue: 8 year: 2016 ident: 10.1016/j.future.2020.02.068_b21 article-title: Automatic and robust delineation of the fiducial points of the seismocardiogram signal for noninvasive estimation of cardiac time intervals publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2016.2616382 – volume: 22 start-page: 429 issue: 2 year: 2018 ident: 10.1016/j.future.2020.02.068_b8 article-title: A modular low-complexity ecg delineation algorithm for real-time embedded systems publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2017.2671443 – volume: 23 start-page: 427 issue: 1 year: 2019 ident: 10.1016/j.future.2020.02.068_b29 article-title: Inferring microrna targets based on restricted boltzmann machines publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2018.2814609 – volume: 435 start-page: 124 year: 2018 ident: 10.1016/j.future.2020.02.068_b10 article-title: A disease diagnosis and treatment recommendation system based on big data mining and cloud computing publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.01.001 – volume: 53 start-page: 1541 issue: 8 year: 2006 ident: 10.1016/j.future.2020.02.068_b6 article-title: ECG Signal analysis through hidden markov models publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2006.877103 – volume: 46 start-page: 192 issue: 2 year: 1999 ident: 10.1016/j.future.2020.02.068_b2 article-title: Ecg beat detection using filter banks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.740882 – volume: 142 start-page: 04015051 issue: 1 year: 2015 ident: 10.1016/j.future.2020.02.068_b20 article-title: Volatility forecast of construction cost index using general autoregressive conditional heteroskedastic method publication-title: J. Constr. Eng. Manage. doi: 10.1061/(ASCE)CO.1943-7862.0001020 – volume: 22 start-page: 160 issue: 4 year: 1998 ident: 10.1016/j.future.2020.02.068_b47 article-title: Ann-based qrs-complex analysis of ecg publication-title: J. Med. Eng. Technol. doi: 10.3109/03091909809032534 – start-page: 69 year: 1987 ident: 10.1016/j.future.2020.02.068_b12 article-title: Recommended practice for testing and reporting performance results of ventricular arrhythmia detection algorithms publication-title: Assoc. Adv. Med. Instrum. – volume: 86 start-page: 446 year: 2018 ident: 10.1016/j.future.2020.02.068_b43 article-title: A deep learning approach for ECG-based heartbeat classification for arrhythmia detection publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.03.057 – volume: 38 start-page: 138 issue: 1 year: 2008 ident: 10.1016/j.future.2020.02.068_b35 article-title: Combined entropy based method for detection of qrs complexes in 12-lead electrocardiogram using svm publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2007.08.003 – start-page: 558 year: 2015 ident: 10.1016/j.future.2020.02.068_b16 article-title: Global eeg segmentation using singular value decomposition – year: 2013 ident: 10.1016/j.future.2020.02.068_b22 – year: 2008 ident: 10.1016/j.future.2020.02.068_b24 – volume: 101 start-page: e215 issue: 23 year: 2000 ident: 10.1016/j.future.2020.02.068_b13 article-title: Physiobank, physiotoolkit, and physionet: components of a new research resource for complex physiologic signals publication-title: Circulation doi: 10.1161/01.CIR.101.23.e215 – volume: 6 start-page: 815 issue: 10 year: 1985 ident: 10.1016/j.future.2020.02.068_b38 article-title: Recommendations for measurement standards in quantitative electrocardiography publication-title: Eur. Heart J. – volume: 17 start-page: 325 issue: 2 year: 2019 ident: 10.1016/j.future.2020.02.068_b15 article-title: Enhancing text using emotion detected from eeg signals publication-title: J. Grid Comput. doi: 10.1007/s10723-018-9462-2 – volume: 15 start-page: 854 issue: 6 year: 2011 ident: 10.1016/j.future.2020.02.068_b40 article-title: Development and evaluation of multilead wavelet-based ecg delineation algorithms for embedded wireless sensor nodes publication-title: IEEE Trans. Inf. Technol. Biomed. doi: 10.1109/TITB.2011.2163943 – volume: 45 start-page: 1077 issue: 8 year: 1998 ident: 10.1016/j.future.2020.02.068_b45 article-title: Application of adaptive signal processing for determining the limits of p and t waves in an ecg publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.704877 – year: 2001 ident: 10.1016/j.future.2020.02.068_b50 – year: 2018 ident: 10.1016/j.future.2020.02.068_b52 article-title: Towards end-to-end ecg classification with raw signal extraction and deep neural networks publication-title: IEEE J. Biomed. Health Inf. – volume: 87 start-page: 187 year: 2017 ident: 10.1016/j.future.2020.02.068_b44 article-title: Qrs complex detection in ecg signals using locally adaptive weighted total variation denoising publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2017.05.027 – volume: 127 start-page: 29 year: 2017 ident: 10.1016/j.future.2020.02.068_b9 article-title: Towards data analysis for weather cloud computing publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2017.03.003 – start-page: 197 year: 2018 ident: 10.1016/j.future.2020.02.068_b14 article-title: Automated dynamic electrocardiogram noise reduction using multilayer lstm network – volume: 6 start-page: 586 issue: 6 year: 2012 ident: 10.1016/j.future.2020.02.068_b19 article-title: A 0.83-μW qrs detection processor using quadratic spline wavelet transform for wireless ecg acquisition in 0.35-μm CMOS publication-title: IEEE Trans. Biomed. Circuits Syst. doi: 10.1109/TBCAS.2012.2188798 – volume: 63 start-page: 664 issue: 3 year: 2015 ident: 10.1016/j.future.2020.02.068_b23 article-title: Real-time patient-specific ECG classification by 1-D convolutional neural networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2468589 – volume: 11 start-page: 893 issue: 6 year: 2016 ident: 10.1016/j.future.2020.02.068_b27 article-title: A fund-constrained investment scheme for profit maximization in cloud computing publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2016.2589241 – start-page: 1096 year: 2008 ident: 10.1016/j.future.2020.02.068_b48 article-title: Extracting and composing robust features with denoising autoencoders – volume: 294 start-page: 29 year: 2018 ident: 10.1016/j.future.2020.02.068_b32 article-title: Semi-supervised prediction of human mirna-disease association based on graph regularization framework in heterogeneous networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.03.003 – volume: 34 start-page: 166 year: 2017 ident: 10.1016/j.future.2020.02.068_b7 article-title: Comparative study of algorithms for ECG segmentation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2017.01.013 – volume: 349 start-page: 212 year: 2019 ident: 10.1016/j.future.2020.02.068_b51 article-title: Adversarial de-noising of electrocardiogram publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.083 – volume: 140 start-page: 378 year: 2016 ident: 10.1016/j.future.2020.02.068_b5 article-title: Arima-based decoupled time series forecasting of electric vehicle charging demand for stochastic power system operation publication-title: Electr. Power Syst. Res. doi: 10.1016/j.epsr.2016.06.003 – volume: 25 start-page: 46 year: 2016 ident: 10.1016/j.future.2020.02.068_b54 article-title: Automatic detection of p, qrs and t patterns in 12 leads ecg signal based on cwt publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2015.10.011 – start-page: 436 year: 2013 ident: 10.1016/j.future.2020.02.068_b31 article-title: Speech enhancement based on deep denoising autoencoder – volume: 11 start-page: 381 year: 1984 ident: 10.1016/j.future.2020.02.068_b36 article-title: A noise stress test for arrhythmia detectors publication-title: Comput. Cardiol. – volume: 82 start-page: 591 year: 2018 ident: 10.1016/j.future.2020.02.068_b26 article-title: Scheduling parallel tasks with energy and time constraints on multiple manycore processors in a cloud computing environment publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.01.010 – start-page: 210 year: 2018 ident: 10.1016/j.future.2020.02.068_b1 article-title: P-qrs-t localization in ecg using deep learning – volume: 39 start-page: 317 issue: 4 year: 1992 ident: 10.1016/j.future.2020.02.068_b53 article-title: Neural-network-based adaptive matched filtering for qrs detection publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.126604 – volume: 6 start-page: 22084 year: 2018 ident: 10.1016/j.future.2020.02.068_b37 article-title: Dual autoencoder network for retinex-based low-light image enhancement publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2812809 – start-page: 189 year: 2017 ident: 10.1016/j.future.2020.02.068_b11 article-title: Abnormal event detection in videos using spatiotemporal autoencoder – volume: 26 start-page: 1992 issue: 4 year: 2017 ident: 10.1016/j.future.2020.02.068_b41 article-title: Deep-cascade: Cascading 3d deep neural networks for fast anomaly detection and localization in crowded scenes publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2017.2670780 – volume: 157 start-page: 129 year: 2018 ident: 10.1016/j.future.2020.02.068_b3 article-title: Ecg fiducial point extraction using switching kalman filter publication-title: Comput. Methods Programs Biomed. doi: 10.1016/j.cmpb.2018.01.018 – volume: 42 start-page: 21 issue: 1 year: 1995 ident: 10.1016/j.future.2020.02.068_b28 article-title: Detection of ecg characteristic points using wavelet transforms publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.362922 – volume: 313 start-page: 504 issue: 5786 year: 2006 ident: 10.1016/j.future.2020.02.068_b18 article-title: Reducing the dimensionality of data with neural networks publication-title: Science doi: 10.1126/science.1127647 – volume: 42 start-page: 1137 issue: 11 year: 1995 ident: 10.1016/j.future.2020.02.068_b39 article-title: Genetic design of optimum linear and nonlinear qrs detectors publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/10.469381 – volume: 79 start-page: 21 year: 2016 ident: 10.1016/j.future.2020.02.068_b4 article-title: Ecg segmentation and fiducial point extraction using multi hidden markov model publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2016.09.004 |
| SSID | ssj0001731 |
| Score | 2.3937826 |
| Snippet | The delineation of electrocardiograms (ECG) is a crucial step designed to extract signal characteristics and assist cardiologists in diagnosing certain... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 56 |
| SubjectTerms | Deep learning Domain knowledge ECG delineation Encoder–decoder model Knowledge encoding |
| Title | A knowledge-based deep learning method for ECG signal delineation |
| URI | https://dx.doi.org/10.1016/j.future.2020.02.068 |
| Volume | 109 |
| WOSCitedRecordID | wos000536950900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF7apIde-i5J-mAPvZkNsrQvHUVwHzmEQlPqm1jtrItDUExil_z8zGpHsrFLX9CLEItXWmY-ZkbjmfkYe6fGADKDTDS5c0KCkcKCLYXxSnlt1Qxc05FNmLMzO52Wn6kk6KajEzBta29vy8V_VTWuobJj6-xfqHt4KC7gPSodr6h2vP6R4qvRkCcT0UfBCEJY9PQQ34kzuisvnJx8GMUCjvhHTexLD2s19cyd3ciRyLMcCCqeaCBoBvQQkn-jxPPp_PKKvGGs85knHbYzt7W0mg_QWXUgoxHglIHI1_VvlBbbaY1JmUq0wKboeHLR0STrag2G8-PUvzmY36zcMKBKb7jixMeyY-RTvuHiOE1dOY5H6uauJn6erfHZX-JB4jlipFrobHqf7edGlWjE96tPk-np4LfHhtgr6eB9o2VXDbj7rp8HMhvByfkT9oi-KniV0PCU3QvtM_a4Z-zgZMCfs6riW-DgERy8BwdP4OAIDo7g4AkcfAMcL9jX95Pzk4-CSDSEx6_BpXAerPZFqZ0NVkFTevA-yxutXCZ14wAjPu00WKlmvnAYr0HWFA6jOu19cLJ4yfbaqzYcMJ47afKgoZF414Q8Ti4zoCSoOOFIzw5Z0Uuk9jRhPhKdXNZ9KeFFneRYRznWWV6jHA-ZGHYt0oSV3_ze9MKuKUpM0V-N-PjlzqN_3vmKPVwD_zXbW16vwhv2wP9Yzm-u3xKQ7gBODY5a |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+knowledge-based+deep+learning+method+for+ECG+signal+delineation&rft.jtitle=Future+generation+computer+systems&rft.au=Wang%2C+Jilong&rft.au=Li%2C+Renfa&rft.au=Li%2C+Rui&rft.au=Fu%2C+Bin&rft.date=2020-08-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=109&rft.spage=56&rft.epage=66&rft_id=info:doi/10.1016%2Fj.future.2020.02.068&rft.externalDocID=S0167739X1932360X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |