Optimal planning of microgrids for resilient distribution networks

•Recently, extreme weather events have been growing both in number and intensity.•Planning of future microgrids can mitigate the catastrophic impacts of these events.•This study aims to optimize the location and generation capacity of microgrids.•Three methods are proposed to tackle this extremely n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of electrical power & energy systems Ročník 128; s. 106682
Hlavní autoři: Borghei, Moein, Ghassemi, Mona
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.06.2021
Témata:
ISSN:0142-0615, 1879-3517
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Recently, extreme weather events have been growing both in number and intensity.•Planning of future microgrids can mitigate the catastrophic impacts of these events.•This study aims to optimize the location and generation capacity of microgrids.•Three methods are proposed to tackle this extremely non-linear problem.•The accuracy, computation time, and suitability of each method is investigated. As severe weather events disrupt the power system more frequently and more harshly, the concern is growing around the ability of future grids to recover from such natural disasters. Recently, a major research focus has been on microgrids (MGs) as a potential source of resiliency. While most of the works done so far center on how to benefit from existing MGs through operation schemes, this study focuses on the planning of MGs to strengthen the network against severe faults. In this regard, three solution approaches are proposed aiming to determine the optimal nodes for the connection of MGs as well as the capacity of the dispatchable generation units deployed within MGs. These algorithms satisfy the power balance of MGs and the main grid as well as the operational and topological constraints. A computationally-efficient heuristic method is developed in two stationary (S-HM) and time-dependent (T-HM) versions. The concept of the heuristic approach, which was first introduced by the authors and is matured in this study, is based on a multi-stage search algorithm that efficiently reduces the undesirable restoration strategies and utilizes the original power flow equations. The other approach is a multi-objective mixed-integer linear programming (MO-MILP) that strives to find the globally-optimal solution in a time-dependent scheme. The validity of the outputs of these methods is assessed using an exhaustive search algorithm (ESA), capable of finding the globally-optimal solution. The MG model constitutes renewable and dispatchable generation units, energy storage systems, and local loads. The uncertainty of intermittent energy resources is tackled through robust optimization formulation based on the worst-case scenario. The performance of the proposed methods are evaluated by the IEEE 37- and IEEE 123-bus test systems under several severe fault scenarios.
AbstractList •Recently, extreme weather events have been growing both in number and intensity.•Planning of future microgrids can mitigate the catastrophic impacts of these events.•This study aims to optimize the location and generation capacity of microgrids.•Three methods are proposed to tackle this extremely non-linear problem.•The accuracy, computation time, and suitability of each method is investigated. As severe weather events disrupt the power system more frequently and more harshly, the concern is growing around the ability of future grids to recover from such natural disasters. Recently, a major research focus has been on microgrids (MGs) as a potential source of resiliency. While most of the works done so far center on how to benefit from existing MGs through operation schemes, this study focuses on the planning of MGs to strengthen the network against severe faults. In this regard, three solution approaches are proposed aiming to determine the optimal nodes for the connection of MGs as well as the capacity of the dispatchable generation units deployed within MGs. These algorithms satisfy the power balance of MGs and the main grid as well as the operational and topological constraints. A computationally-efficient heuristic method is developed in two stationary (S-HM) and time-dependent (T-HM) versions. The concept of the heuristic approach, which was first introduced by the authors and is matured in this study, is based on a multi-stage search algorithm that efficiently reduces the undesirable restoration strategies and utilizes the original power flow equations. The other approach is a multi-objective mixed-integer linear programming (MO-MILP) that strives to find the globally-optimal solution in a time-dependent scheme. The validity of the outputs of these methods is assessed using an exhaustive search algorithm (ESA), capable of finding the globally-optimal solution. The MG model constitutes renewable and dispatchable generation units, energy storage systems, and local loads. The uncertainty of intermittent energy resources is tackled through robust optimization formulation based on the worst-case scenario. The performance of the proposed methods are evaluated by the IEEE 37- and IEEE 123-bus test systems under several severe fault scenarios.
ArticleNumber 106682
Author Ghassemi, Mona
Borghei, Moein
Author_xml – sequence: 1
  givenname: Moein
  surname: Borghei
  fullname: Borghei, Moein
  email: moeinrb@vt.edu
– sequence: 2
  givenname: Mona
  surname: Ghassemi
  fullname: Ghassemi, Mona
  email: monag@vt.edu
BookMark eNqFkM1KxDAUhYOM4MzoG7joC3RM0k7auhB08A8GZqPrkLm9GW7tpCWJim9vS1250NWFC9_hnG_BZq5zyNil4CvBhbpqVtRgj2EluRxfSpXyhM1FWVRpthbFjM25yGXKlVifsUUIDee8qHI5Z3e7PtLRtEnfGufIHZLOJkcC3x081SGxnU88BmoJXUxqCtHT_j1S5xKH8bPzb-GcnVrTBrz4uUv2-nD_snlKt7vH583tNoWMq5gaEKquJBpj90YhGCglChBrCzUaUcmCizKrKitAgQVpwEolqhwwy7Iyl9mSXU-5Q7kQPFoNFM1YJXpDrRZcjzZ0oycberShJxsDnP-Cez_s9l__YTcThsOwD0KvAwwmAGvyCFHXHf0d8A26yX_P
CitedBy_id crossref_primary_10_1007_s00202_024_02716_x
crossref_primary_10_3390_en16135175
crossref_primary_10_1016_j_compeleceng_2024_109718
crossref_primary_10_1016_j_energy_2024_131105
crossref_primary_10_1007_s10668_024_04754_8
crossref_primary_10_1016_j_epsr_2023_109460
crossref_primary_10_1177_0309524X251354985
crossref_primary_10_3390_buildings14040865
crossref_primary_10_1016_j_ijepes_2023_109519
crossref_primary_10_1016_j_scs_2023_104787
crossref_primary_10_3390_su13126708
crossref_primary_10_1016_j_apenergy_2021_118507
crossref_primary_10_1016_j_ress_2025_111642
crossref_primary_10_1016_j_ijepes_2021_107212
crossref_primary_10_1016_j_scs_2025_106290
crossref_primary_10_1016_j_segan_2022_100933
crossref_primary_10_1016_j_ijhydene_2023_07_205
crossref_primary_10_1049_esi2_12067
crossref_primary_10_1109_TIA_2024_3410250
crossref_primary_10_3390_su131910728
crossref_primary_10_3390_en18143883
crossref_primary_10_1016_j_egyr_2024_01_032
crossref_primary_10_1016_j_scs_2021_103467
crossref_primary_10_1016_j_ijepes_2021_107640
crossref_primary_10_1080_15567249_2025_2477508
crossref_primary_10_1016_j_energy_2023_128674
crossref_primary_10_1007_s12667_025_00729_4
crossref_primary_10_1016_j_rser_2022_112127
crossref_primary_10_3390_en16155799
crossref_primary_10_1016_j_eswa_2023_121179
crossref_primary_10_1038_s41598_024_75906_z
crossref_primary_10_3389_fenrg_2022_902891
crossref_primary_10_3389_fenrg_2023_1264986
crossref_primary_10_3390_en15207669
crossref_primary_10_1016_j_scs_2022_103975
crossref_primary_10_1049_rpg2_12872
crossref_primary_10_1016_j_segan_2025_101709
crossref_primary_10_1016_j_ijhydene_2023_07_277
crossref_primary_10_1016_j_epsr_2024_111043
crossref_primary_10_1016_j_rser_2022_112397
crossref_primary_10_1016_j_epsr_2023_110012
crossref_primary_10_1049_rpg2_12718
crossref_primary_10_1016_j_compeleceng_2024_109841
crossref_primary_10_1016_j_ijepes_2024_110371
crossref_primary_10_3390_math10020214
crossref_primary_10_1007_s40313_022_00934_x
crossref_primary_10_1049_rpg2_12241
crossref_primary_10_3390_app132312860
crossref_primary_10_3389_fenrg_2023_1209875
crossref_primary_10_1109_TIA_2022_3145753
crossref_primary_10_1002_er_6676
Cites_doi 10.1109/TSG.2018.2824820
10.1109/TPWRS.2015.2429656
10.1109/TSG.2017.2747136
10.1109/TSG.2017.2743158
10.1109/TSG.2016.2550625
10.1109/TSG.2018.2889347
10.1109/TPWRS.2011.2161349
10.1109/TPWRS.2018.2885275
10.1109/TSG.2014.2321748
10.1109/TPWRS.2014.2312424
10.1109/TSTE.2019.2907613
10.1109/TSG.2012.2200701
10.1016/j.apenergy.2019.02.055
10.1109/ISGTEurope.2017.8260205
10.1049/iet-gtd.2018.6680
10.1109/ISGT45199.2020.9087693
10.1109/TSG.2016.2558628
10.1109/TSTE.2017.2740433
10.1109/TPWRS.2018.2883612
10.1109/TSG.2017.2775523
10.1109/TPWRS.2018.2820383
10.1109/MPE.2015.2397337
10.1109/TPWRS.2014.2361094
10.1049/iet-gtd.2018.6971
10.1109/TPWRS.2018.2860256
10.1016/j.apenergy.2017.06.059
10.1109/TPWRS.2016.2622858
10.1007/s40565-019-0567-9
10.1109/JSYST.2019.2918410
10.1007/BF01580665
10.1109/TSG.2016.2535228
10.1109/TSG.2015.2429653
10.1109/61.19265
10.1109/TSG.2016.2591531
10.1109/TPWRS.2017.2685640
10.1109/TSG.2017.2737024
10.1109/TSG.2016.2591885
10.1109/TPWRS.2018.2822295
10.1109/61.19266
10.1109/TSG.2019.2930012
10.3390/en12173312
10.1109/TPWRS.2017.2768302
10.1109/TSG.2018.2863049
10.2172/1214985
10.1016/j.cherd.2017.07.030
10.1109/TPWRD.2019.2959229
10.1109/TPWRS.2018.2881954
10.1109/TPWRS.2017.2765600
ContentType Journal Article
Copyright 2020 Elsevier Ltd
Copyright_xml – notice: 2020 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijepes.2020.106682
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3517
ExternalDocumentID 10_1016_j_ijepes_2020_106682
S0142061520342277
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
~HD
ID FETCH-LOGICAL-c306t-ac16d92eaafba6ecac82e1c15fcdea1927018399f1c6cfc2acf26194ce3338423
ISICitedReferencesCount 63
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623709300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Tue Nov 18 19:37:02 EST 2025
Sat Nov 29 07:27:52 EST 2025
Fri Feb 23 02:45:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Power system outage
Mixed-integer linear programming
Distribution networks
Microgrids
Resilience
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-ac16d92eaafba6ecac82e1c15fcdea1927018399f1c6cfc2acf26194ce3338423
ParticipantIDs crossref_citationtrail_10_1016_j_ijepes_2020_106682
crossref_primary_10_1016_j_ijepes_2020_106682
elsevier_sciencedirect_doi_10_1016_j_ijepes_2020_106682
PublicationCentury 2000
PublicationDate June 2021
2021-06-00
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bhamidi, Sivasubramani (b0200) 2020; 14
Li, Ma, Liu, Schneider (b0075) 2014; 29
Ma, Su, Wang, Qiu, Guo (b0105) 2018; 33
Lavorato, Franco, Rider, Romero (b0260) 2012; 27
Huang, Wang, Chen, Qi, Guo (b0100) 2017; 32
Xu, Liu, Wang, Mo, Schneider, Tuffner (b0070) 2019; 10
Hussain, Bui, Kim (b0175) 2019; 10
Chen, Wang, Qiu, Zhao (b0065) 2016; 7
Borghei M, Ghassemi M, Liu CC. Optimal capacity and placement of microgrids for resiliency enhancement of distribution networks under extreme weather events. Proc IEEE Innov Smart Grid Tech Conf (ISGT), Washington, DC, USA; 2020. doi: 10.1109/ISGT45199.2020.9087693.
Liu, Yu, Qin (b0045) 2019; 13
Wang, Chen, Wang, Baldick (b0025) 2016; 31
Amirioun, Aminifar, Shahidehpour (b0220) 2019; 34
He, Dai, Wu, Liu (b0115) 2018; 33
Yao, Wang, Liu, Zhang, Zhao (b0125) 2020; 11
Khayatian, Barati, Lim (b0205) 2018; 33
Costliest U.S. Tropical Cyclones. NOAA’s National Centers for Environmental Information (NCEI); 2018. URL
Singh, Taheri, Kekatos, Schneider, Liu (b0270) 2020
Draxl C, Hodge BM, Clifton A, McCaa J. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit. Tech. Rep. NREL/TP-5000-61740, 1214985; 2015. doi:10.2172/1214985.
Amirioun, Aminifar, Lesani (b0160) 2018; 33
Lei, Chen, Zhou, Hou (b0095) 2019; 10
Baran, Wu (b0240) 1989; 4
Mansor, Levi (b0265) 2019; 34
Khomami, Jalilpoor, Kenari, Sepasian (b0030) 2019; 13
Wang, Hou, Qiu, Lei, Liu (b0055) 2017; 32
Gholami, Shekari, Grijalva (b0165) 2019; 10
.
Liu, Shahidehpour, Li, Liu, Cao, Bie (b0180) 2017; 8
Abbasi, Barati, Lim (b0050) 2019; 10
U.S. Department of Energy at Pacific Northwest National Laboratory. GridLAB-D, Power Distribution Simulation Software; 2019. URL
Liang, Hou, Hill, Hui (b0150) 2018; 9
Giraldo, Castrillon, López, Rider, Castro (b0230) 2019; 10
Khodaei, Bahramirad, Shahidehpour (b0210) 2015; 30
Baran, Wu (b0245) 1989; 4
Xu, Liu, Schneider, Tuffner, Ton (b0080) 2018; 9
Panteli, Trakas, Mancarella, Hatziargyriou (b0195) 2016; 7
Ton, Wang (b0005) 2015; 13
Farzin, Fotuhi-Firuzabad, Moeini-Aghtaie (b0185) 2016; 7
Nazemi, Moeini-Aghtaie, Fotuhi-Firuzabad, Dehghanian (b0130) 2020; 11
Hui, Lee, Wu (b0145) 2012; 3
Yao, Wang, Zhao (b0120) 2019; 10
Singh, Kekatos, Liu (b0190) 2019
Gao, Chen, Xu, Liu (b0155) 2016; 7
IBM CPLEX Optimizer; 2020. URL
Rubin PA. Modeling absolute values; 2012. URL orinanobworld.blogspot.com/2012/07/modeling-absolute-values.html.
Oboudi, Mohammadi, Rastegar (b0035) 2019; 7
Wang, Chen, Wang, Kim, Begovic (b0090) 2014; 5
Hussain, Bui, Kim (b0170) 2019; 240
Koltsaklis, Giannakakis, Georgiadis (b0215) 2018; 131
McCormick (b0250) 1976; 10
Mehrtash, Kargarian, Conejo (b0060) 2020; 35
Lin, Bie (b0040) 2018; 210
Zhang, Dehghanian, Kezunovic (b0135) 2019; 10
Bernstein A, Dall’Anese E. Linear power-flow models in multiphase distribution networks. 2017 IEEE PES Innov Smart Grid Tech Conf Europe (ISGT-Europe); 2017, p. 1–6. doi:10.1109/ISGTEurope.2017.8260205.
Electric Grid Security and Resilience. Establishing a Baseline for Adversarial Threats. US Department of Energy; 2016.
Rancilio (b0275) 2019; 12
Critical infrastructure resilience: Final report and recommendations. Nat Infrastructure Advisory Council, Dept Homeland Security, Washington, DC, USA, 2009.
Poudel, Dubey (b0085) 2019; 34
Kopsidas, Abogaleela (b0140) 2019; 34
Ma, Chen, Wang (b0110) 2018; 9
Panteli (10.1016/j.ijepes.2020.106682_b0195) 2016; 7
Li (10.1016/j.ijepes.2020.106682_b0075) 2014; 29
Huang (10.1016/j.ijepes.2020.106682_b0100) 2017; 32
Nazemi (10.1016/j.ijepes.2020.106682_b0130) 2020; 11
10.1016/j.ijepes.2020.106682_b0010
Khomami (10.1016/j.ijepes.2020.106682_b0030) 2019; 13
Ma (10.1016/j.ijepes.2020.106682_b0110) 2018; 9
10.1016/j.ijepes.2020.106682_b0255
Xu (10.1016/j.ijepes.2020.106682_b0070) 2019; 10
Liu (10.1016/j.ijepes.2020.106682_b0180) 2017; 8
10.1016/j.ijepes.2020.106682_b0015
10.1016/j.ijepes.2020.106682_b0290
Xu (10.1016/j.ijepes.2020.106682_b0080) 2018; 9
Liu (10.1016/j.ijepes.2020.106682_b0045) 2019; 13
He (10.1016/j.ijepes.2020.106682_b0115) 2018; 33
Gao (10.1016/j.ijepes.2020.106682_b0155) 2016; 7
Hussain (10.1016/j.ijepes.2020.106682_b0175) 2019; 10
Amirioun (10.1016/j.ijepes.2020.106682_b0220) 2019; 34
Khayatian (10.1016/j.ijepes.2020.106682_b0205) 2018; 33
Singh (10.1016/j.ijepes.2020.106682_b0190) 2019
Wang (10.1016/j.ijepes.2020.106682_b0055) 2017; 32
Chen (10.1016/j.ijepes.2020.106682_b0065) 2016; 7
10.1016/j.ijepes.2020.106682_b0285
Poudel (10.1016/j.ijepes.2020.106682_b0085) 2019; 34
Liang (10.1016/j.ijepes.2020.106682_b0150) 2018; 9
Koltsaklis (10.1016/j.ijepes.2020.106682_b0215) 2018; 131
Hui (10.1016/j.ijepes.2020.106682_b0145) 2012; 3
Lei (10.1016/j.ijepes.2020.106682_b0095) 2019; 10
Lavorato (10.1016/j.ijepes.2020.106682_b0260) 2012; 27
10.1016/j.ijepes.2020.106682_b0280
McCormick (10.1016/j.ijepes.2020.106682_b0250) 1976; 10
Oboudi (10.1016/j.ijepes.2020.106682_b0035) 2019; 7
Gholami (10.1016/j.ijepes.2020.106682_b0165) 2019; 10
Farzin (10.1016/j.ijepes.2020.106682_b0185) 2016; 7
Singh (10.1016/j.ijepes.2020.106682_b0270) 2020
10.1016/j.ijepes.2020.106682_b0235
Mehrtash (10.1016/j.ijepes.2020.106682_b0060) 2020; 35
Yao (10.1016/j.ijepes.2020.106682_b0120) 2019; 10
Khodaei (10.1016/j.ijepes.2020.106682_b0210) 2015; 30
Amirioun (10.1016/j.ijepes.2020.106682_b0160) 2018; 33
Bhamidi (10.1016/j.ijepes.2020.106682_b0200) 2020; 14
Rancilio (10.1016/j.ijepes.2020.106682_b0275) 2019; 12
Yao (10.1016/j.ijepes.2020.106682_b0125) 2020; 11
Zhang (10.1016/j.ijepes.2020.106682_b0135) 2019; 10
Baran (10.1016/j.ijepes.2020.106682_b0240) 1989; 4
Ton (10.1016/j.ijepes.2020.106682_b0005) 2015; 13
Wang (10.1016/j.ijepes.2020.106682_b0025) 2016; 31
Hussain (10.1016/j.ijepes.2020.106682_b0170) 2019; 240
Giraldo (10.1016/j.ijepes.2020.106682_b0230) 2019; 10
10.1016/j.ijepes.2020.106682_b0020
Mansor (10.1016/j.ijepes.2020.106682_b0265) 2019; 34
Abbasi (10.1016/j.ijepes.2020.106682_b0050) 2019; 10
Baran (10.1016/j.ijepes.2020.106682_b0245) 1989; 4
Lin (10.1016/j.ijepes.2020.106682_b0040) 2018; 210
10.1016/j.ijepes.2020.106682_b0225
Kopsidas (10.1016/j.ijepes.2020.106682_b0140) 2019; 34
Wang (10.1016/j.ijepes.2020.106682_b0090) 2014; 5
Ma (10.1016/j.ijepes.2020.106682_b0105) 2018; 33
References_xml – volume: 3
  start-page: 1552
  year: 2012
  end-page: 1561
  ident: b0145
  article-title: Electric springs—a new smart grid technology
  publication-title: IEEE Trans Smart Grid
– volume: 7
  start-page: 741
  year: 2019
  end-page: 752
  ident: b0035
  article-title: Resilience-oriented intentional islanding of reconfigurable distribution power systems
  publication-title: J Modern Power Syst Clean Energy
– volume: 9
  start-page: 1442
  year: 2018
  end-page: 1451
  ident: b0110
  article-title: Resilience enhancement strategy for distribution systems under extreme weather events
  publication-title: IEEE Trans Smart Grid
– volume: 240
  start-page: 56
  year: 2019
  end-page: 72
  ident: b0170
  article-title: Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience
  publication-title: App Energy
– year: 2020
  ident: b0270
  article-title: Joint grid topology reconfiguration and design of watt-var curves for DERs
  publication-title: IEEE Trans Smart Grid
– volume: 10
  start-page: 4520
  year: 2019
  end-page: 4530
  ident: b0230
  article-title: Microgrids energy management using robust convex programming
  publication-title: IEEE Trans Smart Grid
– volume: 4
  start-page: 725
  year: 1989
  end-page: 734
  ident: b0240
  article-title: Optimal capacitor placement on radial distribution systems
  publication-title: IEEE Trans Power Del
– volume: 34
  start-page: 2114
  year: 2019
  end-page: 2127
  ident: b0265
  article-title: Operational planning of distribution networks based on utility planning concepts
  publication-title: IEEE Trans Power Syst
– volume: 10
  start-page: 147
  year: 1976
  end-page: 175
  ident: b0250
  article-title: Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems
  publication-title: Math. Program.
– volume: 7
  start-page: 2869
  year: 2016
  end-page: 2879
  ident: b0185
  article-title: Enhancing power system resilience through hierarchical outage management in multi-microgrids
  publication-title: IEEE Trans Smart Grid
– volume: 4
  start-page: 735
  year: 1989
  end-page: 743
  ident: b0245
  article-title: Optimal sizing of capacitors placed on a radial distribution system
  publication-title: IEEE Trans Power Del
– volume: 7
  start-page: 2837
  year: 2016
  end-page: 2848
  ident: b0155
  article-title: Resilience-oriented critical load restoration using microgrids in distribution systems
  publication-title: IEEE Trans Smart Grid
– reference: Draxl C, Hodge BM, Clifton A, McCaa J. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit. Tech. Rep. NREL/TP-5000-61740, 1214985; 2015. doi:10.2172/1214985.
– volume: 32
  start-page: 4451
  year: 2017
  end-page: 4463
  ident: b0100
  article-title: Integration of preventive and emergency responses for power grid resilience enhancement
  publication-title: IEEE Trans Power Syst
– volume: 210
  start-page: 1266
  year: 2018
  end-page: 1279
  ident: b0040
  article-title: Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding
  publication-title: App Energy
– volume: 8
  start-page: 589
  year: 2017
  end-page: 597
  ident: b0180
  article-title: Microgrids for enhancing the power grid resilience in extreme conditions
  publication-title: IEEE Trans Smart Grid
– volume: 11
  start-page: 795
  year: 2020
  end-page: 806
  ident: b0130
  article-title: Energy storage planning for enhanced resilience of power distribution networks against earthquakes
  publication-title: IEEE Trans Sustain Energy
– volume: 10
  start-page: 3331
  year: 2019
  end-page: 3341
  ident: b0120
  article-title: Transportable energy storage for more resilient distribution systems with multiple microgrids
  publication-title: IEEE Trans Smart Grid
– reference: Electric Grid Security and Resilience. Establishing a Baseline for Adversarial Threats. US Department of Energy; 2016.
– volume: 34
  start-page: 52
  year: 2019
  end-page: 63
  ident: b0085
  article-title: Critical load restoration using distributed energy resources for resilient power distribution system
  publication-title: IEEE Trans Power Syst
– volume: 10
  start-page: 435
  year: 2019
  end-page: 447
  ident: b0070
  article-title: DGs for service restoration to critical loads in a secondary network
  publication-title: IEEE Trans Smart Grid
– volume: 33
  start-page: 4842
  year: 2018
  end-page: 4853
  ident: b0105
  article-title: Resilience enhancement of distribution grids against extreme weather events
  publication-title: IEEE Trans Power Syst
– volume: 32
  start-page: 2847
  year: 2017
  end-page: 2857
  ident: b0055
  article-title: Resilience enhancement with sequentially proactive operation strategies
  publication-title: IEEE Trans Power Syst
– volume: 33
  start-page: 4275
  year: 2018
  end-page: 4284
  ident: b0160
  article-title: Resilience-oriented proactive management of microgrids against windstorms
  publication-title: IEEE Trans Power Syst
– volume: 10
  start-page: 470
  year: 2019
  end-page: 480
  ident: b0165
  article-title: Proactive management of microgrids for resiliency enhancement: An adaptive robust approach
  publication-title: IEEE Trans Sustain Energy
– reference: U.S. Department of Energy at Pacific Northwest National Laboratory. GridLAB-D, Power Distribution Simulation Software; 2019. URL
– reference: Critical infrastructure resilience: Final report and recommendations. Nat Infrastructure Advisory Council, Dept Homeland Security, Washington, DC, USA, 2009.
– volume: 11
  start-page: 1030
  year: 2020
  end-page: 1043
  ident: b0125
  article-title: Rolling optimization of mobile energy storage fleets for resilient service restoration
  publication-title: IEEE Trans Smart Grid
– reference: Rubin PA. Modeling absolute values; 2012. URL orinanobworld.blogspot.com/2012/07/modeling-absolute-values.html.
– volume: 13
  start-page: 26
  year: 2015
  end-page: 34
  ident: b0005
  article-title: A more resilient grid: The U.S. Department of Energy joins with stakeholders in an R&D plan
  publication-title: IEEE Power Energy Mag
– volume: 13
  start-page: 3302
  year: 2019
  end-page: 3310
  ident: b0030
  article-title: Bi-level network reconfiguration model to improve the resilience of distribution systems against extreme weather events
  publication-title: IET Gen, Transm Distrib
– volume: 33
  start-page: 3634
  year: 2018
  end-page: 3643
  ident: b0205
  article-title: Integrated microgrid expansion planning in electricity market with uncertainty
  publication-title: IEEE Trans Power Syst
– volume: 34
  start-page: 2160
  year: 2019
  end-page: 2168
  ident: b0220
  article-title: Resilience-promoting proactive scheduling against hurricanes in multiple energy carrier microgrids
  publication-title: IEEE Trans Power Syst
– volume: 10
  start-page: 5650
  year: 2019
  end-page: 5662
  ident: b0095
  article-title: Routing and scheduling of mobile power sources for distribution system resilience enhancement
  publication-title: IEEE Trans Smart Grid
– volume: 10
  start-page: 1660
  year: 2019
  end-page: 1670
  ident: b0050
  article-title: A parallel sectionalized restoration scheme for resilient smart grid systems
  publication-title: IEEE Trans Smart Grid
– volume: 27
  start-page: 172
  year: 2012
  end-page: 180
  ident: b0260
  article-title: Imposing radiality constraints in distribution system optimization problems
  publication-title: IEEE Trans Power Syst
– volume: 30
  start-page: 2417
  year: 2015
  end-page: 2425
  ident: b0210
  article-title: Microgrid planning under uncertainty
  publication-title: IEEE Trans Power Syst
– volume: 9
  start-page: 2235
  year: 2018
  end-page: 2247
  ident: b0150
  article-title: Enhancing resilience of microgrids with electric springs
  publication-title: IEEE Trans Smart Grid
– reference: Bernstein A, Dall’Anese E. Linear power-flow models in multiphase distribution networks. 2017 IEEE PES Innov Smart Grid Tech Conf Europe (ISGT-Europe); 2017, p. 1–6. doi:10.1109/ISGTEurope.2017.8260205.
– year: 2019
  ident: b0190
  article-title: Optimal Distribution System Restoration with Microgrids and Distributed Generators
  publication-title: Proc IEEE Power and Energy Soc General Meeting (PES GM), Atlanta, GA, USA
– reference: Borghei M, Ghassemi M, Liu CC. Optimal capacity and placement of microgrids for resiliency enhancement of distribution networks under extreme weather events. Proc IEEE Innov Smart Grid Tech Conf (ISGT), Washington, DC, USA; 2020. doi: 10.1109/ISGT45199.2020.9087693.
– volume: 29
  start-page: 3021
  year: 2014
  end-page: 3029
  ident: b0075
  article-title: Distribution system restoration with microgrids using spanning tree search
  publication-title: IEEE Trans Power Syst
– reference: IBM CPLEX Optimizer; 2020. URL
– volume: 7
  start-page: 2913
  year: 2016
  end-page: 2922
  ident: b0195
  article-title: Boosting the power grid resilience to extreme weather events using defensive islanding
  publication-title: IEEE Trans Smart Grid
– volume: 31
  start-page: 1604
  year: 2016
  end-page: 1613
  ident: b0025
  article-title: Research on resilience of power systems under natural disasters—a review
  publication-title: IEEE Trans Power Syst
– volume: 131
  start-page: 318
  year: 2018
  end-page: 332
  ident: b0215
  article-title: Optimal energy planning and scheduling of microgrids
  publication-title: Chemical Eng Research Design
– volume: 34
  start-page: 2216
  year: 2019
  end-page: 2227
  ident: b0140
  article-title: Utilizing demand response to improve network reliability and ageing resilience
  publication-title: IEEE Trans Power Syst
– volume: 14
  start-page: 2624
  year: 2020
  end-page: 2632
  ident: b0200
  article-title: Optimal planning and operational strategy of a residential microgrid with demand side management
  publication-title: IEEE Syst J
– volume: 5
  start-page: 2173
  year: 2014
  end-page: 2182
  ident: b0090
  article-title: Robust optimization based optimal DG placement in microgrids
  publication-title: IEEE Trans Smart Grid
– volume: 10
  start-page: 204
  year: 2019
  end-page: 215
  ident: b0175
  article-title: Resilience-oriented optimal operation of networked hybrid microgrids
  publication-title: IEEE Trans Smart Grid
– reference: .
– volume: 7
  start-page: 958
  year: 2016
  end-page: 966
  ident: b0065
  article-title: Resilient distribution system by microgrids formation after natural disasters
  publication-title: IEEE Trans Smart Grid
– volume: 9
  start-page: 426
  year: 2018
  end-page: 437
  ident: b0080
  article-title: Microgrids for service restoration to critical load in a resilient distribution system
  publication-title: IEEE Trans Smart Grid
– reference: Costliest U.S. Tropical Cyclones. NOAA’s National Centers for Environmental Information (NCEI); 2018. URL
– volume: 10
  start-page: 535
  year: 2019
  end-page: 545
  ident: b0135
  article-title: Optimal allocation of PV generation and battery storage for enhanced resilience
  publication-title: IEEE Trans Smart Grid
– volume: 12
  start-page: 3312
  year: 2019
  ident: b0275
  article-title: Modeling a large-scale battery energy storage system for power grid application analysis
  publication-title: Energies
– volume: 13
  start-page: 1734
  year: 2019
  end-page: 1745
  ident: b0045
  article-title: Unified two-stage reconfiguration method for resilience enhancement of distribution systems
  publication-title: IET Gen, Transm Distr
– volume: 35
  start-page: 1999
  year: 2020
  end-page: 2010
  ident: b0060
  article-title: Graph-based second-order cone programming model for resilient feeder routing using gis data
  publication-title: IEEE Trans Power Deliv
– volume: 33
  start-page: 5787
  year: 2018
  end-page: 5798
  ident: b0115
  article-title: Robust network hardening strategy for enhancing resilience of integrated electricity and natural gas distribution systems against natural disasters
  publication-title: IEEE Trans Power Syst
– ident: 10.1016/j.ijepes.2020.106682_b0015
– volume: 10
  start-page: 3331
  issue: 3
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0120
  article-title: Transportable energy storage for more resilient distribution systems with multiple microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2824820
– volume: 31
  start-page: 1604
  issue: 2
  year: 2016
  ident: 10.1016/j.ijepes.2020.106682_b0025
  article-title: Research on resilience of power systems under natural disasters—a review
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2429656
– volume: 10
  start-page: 535
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0135
  article-title: Optimal allocation of PV generation and battery storage for enhanced resilience
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2747136
– volume: 10
  start-page: 435
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0070
  article-title: DGs for service restoration to critical loads in a secondary network
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2743158
– volume: 7
  start-page: 2837
  issue: 6
  year: 2016
  ident: 10.1016/j.ijepes.2020.106682_b0155
  article-title: Resilience-oriented critical load restoration using microgrids in distribution systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2550625
– volume: 10
  start-page: 5650
  issue: 5
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0095
  article-title: Routing and scheduling of mobile power sources for distribution system resilience enhancement
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2889347
– year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0190
  article-title: Optimal Distribution System Restoration with Microgrids and Distributed Generators
– volume: 27
  start-page: 172
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2020.106682_b0260
  article-title: Imposing radiality constraints in distribution system optimization problems
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2011.2161349
– volume: 34
  start-page: 2114
  issue: 3
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0265
  article-title: Operational planning of distribution networks based on utility planning concepts
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2885275
– volume: 5
  start-page: 2173
  issue: 5
  year: 2014
  ident: 10.1016/j.ijepes.2020.106682_b0090
  article-title: Robust optimization based optimal DG placement in microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2321748
– volume: 29
  start-page: 3021
  issue: 6
  year: 2014
  ident: 10.1016/j.ijepes.2020.106682_b0075
  article-title: Distribution system restoration with microgrids using spanning tree search
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2312424
– volume: 11
  start-page: 795
  issue: 2
  year: 2020
  ident: 10.1016/j.ijepes.2020.106682_b0130
  article-title: Energy storage planning for enhanced resilience of power distribution networks against earthquakes
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2019.2907613
– volume: 3
  start-page: 1552
  year: 2012
  ident: 10.1016/j.ijepes.2020.106682_b0145
  article-title: Electric springs—a new smart grid technology
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2012.2200701
– volume: 240
  start-page: 56
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0170
  article-title: Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience
  publication-title: App Energy
  doi: 10.1016/j.apenergy.2019.02.055
– ident: 10.1016/j.ijepes.2020.106682_b0290
– ident: 10.1016/j.ijepes.2020.106682_b0235
  doi: 10.1109/ISGTEurope.2017.8260205
– volume: 13
  start-page: 1734
  issue: 9
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0045
  article-title: Unified two-stage reconfiguration method for resilience enhancement of distribution systems
  publication-title: IET Gen, Transm Distr
  doi: 10.1049/iet-gtd.2018.6680
– ident: 10.1016/j.ijepes.2020.106682_b0225
  doi: 10.1109/ISGT45199.2020.9087693
– volume: 7
  start-page: 2869
  issue: 6
  year: 2016
  ident: 10.1016/j.ijepes.2020.106682_b0185
  article-title: Enhancing power system resilience through hierarchical outage management in multi-microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2558628
– volume: 10
  start-page: 470
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0165
  article-title: Proactive management of microgrids for resiliency enhancement: An adaptive robust approach
  publication-title: IEEE Trans Sustain Energy
  doi: 10.1109/TSTE.2017.2740433
– volume: 34
  start-page: 2216
  issue: 3
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0140
  article-title: Utilizing demand response to improve network reliability and ageing resilience
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2883612
– ident: 10.1016/j.ijepes.2020.106682_b0255
– volume: 10
  start-page: 1660
  issue: 2
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0050
  article-title: A parallel sectionalized restoration scheme for resilient smart grid systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2775523
– volume: 33
  start-page: 5787
  issue: 5
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0115
  article-title: Robust network hardening strategy for enhancing resilience of integrated electricity and natural gas distribution systems against natural disasters
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2820383
– volume: 13
  start-page: 26
  issue: 3
  year: 2015
  ident: 10.1016/j.ijepes.2020.106682_b0005
  article-title: A more resilient grid: The U.S. Department of Energy joins with stakeholders in an R&D plan
  publication-title: IEEE Power Energy Mag
  doi: 10.1109/MPE.2015.2397337
– volume: 30
  start-page: 2417
  issue: 5
  year: 2015
  ident: 10.1016/j.ijepes.2020.106682_b0210
  article-title: Microgrid planning under uncertainty
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2361094
– volume: 13
  start-page: 3302
  issue: 15
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0030
  article-title: Bi-level network reconfiguration model to improve the resilience of distribution systems against extreme weather events
  publication-title: IET Gen, Transm Distrib
  doi: 10.1049/iet-gtd.2018.6971
– volume: 34
  start-page: 52
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0085
  article-title: Critical load restoration using distributed energy resources for resilient power distribution system
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2860256
– volume: 8
  start-page: 589
  issue: 2
  year: 2017
  ident: 10.1016/j.ijepes.2020.106682_b0180
  article-title: Microgrids for enhancing the power grid resilience in extreme conditions
  publication-title: IEEE Trans Smart Grid
– volume: 210
  start-page: 1266
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0040
  article-title: Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding
  publication-title: App Energy
  doi: 10.1016/j.apenergy.2017.06.059
– volume: 32
  start-page: 2847
  issue: 4
  year: 2017
  ident: 10.1016/j.ijepes.2020.106682_b0055
  article-title: Resilience enhancement with sequentially proactive operation strategies
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2016.2622858
– volume: 7
  start-page: 741
  issue: 4
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0035
  article-title: Resilience-oriented intentional islanding of reconfigurable distribution power systems
  publication-title: J Modern Power Syst Clean Energy
  doi: 10.1007/s40565-019-0567-9
– volume: 14
  start-page: 2624
  issue: 2
  year: 2020
  ident: 10.1016/j.ijepes.2020.106682_b0200
  article-title: Optimal planning and operational strategy of a residential microgrid with demand side management
  publication-title: IEEE Syst J
  doi: 10.1109/JSYST.2019.2918410
– volume: 10
  start-page: 147
  issue: 1
  year: 1976
  ident: 10.1016/j.ijepes.2020.106682_b0250
  article-title: Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems
  publication-title: Math. Program.
  doi: 10.1007/BF01580665
– volume: 7
  start-page: 2913
  issue: 6
  year: 2016
  ident: 10.1016/j.ijepes.2020.106682_b0195
  article-title: Boosting the power grid resilience to extreme weather events using defensive islanding
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2535228
– volume: 7
  start-page: 958
  issue: 2
  year: 2016
  ident: 10.1016/j.ijepes.2020.106682_b0065
  article-title: Resilient distribution system by microgrids formation after natural disasters
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2429653
– volume: 4
  start-page: 725
  issue: 1
  year: 1989
  ident: 10.1016/j.ijepes.2020.106682_b0240
  article-title: Optimal capacitor placement on radial distribution systems
  publication-title: IEEE Trans Power Del
  doi: 10.1109/61.19265
– volume: 9
  start-page: 426
  issue: 1
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0080
  article-title: Microgrids for service restoration to critical load in a resilient distribution system
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2591531
– volume: 32
  start-page: 4451
  issue: 6
  year: 2017
  ident: 10.1016/j.ijepes.2020.106682_b0100
  article-title: Integration of preventive and emergency responses for power grid resilience enhancement
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2685640
– year: 2020
  ident: 10.1016/j.ijepes.2020.106682_b0270
  article-title: Joint grid topology reconfiguration and design of watt-var curves for DERs
  publication-title: IEEE Trans Smart Grid
– volume: 9
  start-page: 2235
  issue: 3
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0150
  article-title: Enhancing resilience of microgrids with electric springs
  publication-title: IEEE Trans Smart Grid
– volume: 10
  start-page: 204
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0175
  article-title: Resilience-oriented optimal operation of networked hybrid microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2737024
– volume: 9
  start-page: 1442
  issue: 2
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0110
  article-title: Resilience enhancement strategy for distribution systems under extreme weather events
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2591885
– ident: 10.1016/j.ijepes.2020.106682_b0020
– volume: 33
  start-page: 4842
  issue: 5
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0105
  article-title: Resilience enhancement of distribution grids against extreme weather events
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2822295
– ident: 10.1016/j.ijepes.2020.106682_b0280
– volume: 4
  start-page: 735
  issue: 1
  year: 1989
  ident: 10.1016/j.ijepes.2020.106682_b0245
  article-title: Optimal sizing of capacitors placed on a radial distribution system
  publication-title: IEEE Trans Power Del
  doi: 10.1109/61.19266
– volume: 11
  start-page: 1030
  issue: 2
  year: 2020
  ident: 10.1016/j.ijepes.2020.106682_b0125
  article-title: Rolling optimization of mobile energy storage fleets for resilient service restoration
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2019.2930012
– volume: 12
  start-page: 3312
  issue: 17
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0275
  article-title: Modeling a large-scale battery energy storage system for power grid application analysis
  publication-title: Energies
  doi: 10.3390/en12173312
– volume: 33
  start-page: 3634
  issue: 4
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0205
  article-title: Integrated microgrid expansion planning in electricity market with uncertainty
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2768302
– volume: 10
  start-page: 4520
  issue: 4
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0230
  article-title: Microgrids energy management using robust convex programming
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2863049
– ident: 10.1016/j.ijepes.2020.106682_b0285
  doi: 10.2172/1214985
– volume: 131
  start-page: 318
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0215
  article-title: Optimal energy planning and scheduling of microgrids
  publication-title: Chemical Eng Research Design
  doi: 10.1016/j.cherd.2017.07.030
– volume: 35
  start-page: 1999
  issue: 4
  year: 2020
  ident: 10.1016/j.ijepes.2020.106682_b0060
  article-title: Graph-based second-order cone programming model for resilient feeder routing using gis data
  publication-title: IEEE Trans Power Deliv
  doi: 10.1109/TPWRD.2019.2959229
– volume: 34
  start-page: 2160
  issue: 3
  year: 2019
  ident: 10.1016/j.ijepes.2020.106682_b0220
  article-title: Resilience-promoting proactive scheduling against hurricanes in multiple energy carrier microgrids
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2881954
– ident: 10.1016/j.ijepes.2020.106682_b0010
– volume: 33
  start-page: 4275
  issue: 4
  year: 2018
  ident: 10.1016/j.ijepes.2020.106682_b0160
  article-title: Resilience-oriented proactive management of microgrids against windstorms
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2017.2765600
SSID ssj0007942
Score 2.5623965
Snippet •Recently, extreme weather events have been growing both in number and intensity.•Planning of future microgrids can mitigate the catastrophic impacts of these...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 106682
SubjectTerms Distribution networks
Microgrids
Mixed-integer linear programming
Power system outage
Resilience
Title Optimal planning of microgrids for resilient distribution networks
URI https://dx.doi.org/10.1016/j.ijepes.2020.106682
Volume 128
WOSCitedRecordID wos000623709300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3517
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007942
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELY22MP2MLFfGtuY_LA3FNQ4rR0_sonBkAZ7AKlvkePYkArSqu0m_vzd-Zw0wAQb0l6iyq2T6j73-vl8dx9jn7T0zpgqA-aW62Ro8Hy3Gg6ScqBLYPg29dIHsQl1dJSPx_pH1GxdBDkB1TT51ZWe_VeoYQzAxtLZf4C7uykMwGsAHa4AO1z_CvhjcAKXWF8V5YjCCTqm3Z3N6yp0X9iGLXZ9gYWQeD7TSV5tN5QSvugT1usRw16fCdLPCRDPUGktrCFHlYSLXhv0kIo4Pzt3IW3g-9TV3XLcPwfm7i7jGyTj3UYgRC9TisJibWnMKg-JIpUCZSPoyNqRd82VxtIBdc39UnH4LVdOUYXJTj1xM4eN1QUOSklaRTeaZGOOmsCnCWxpKJR6zNaFGmlw1eu73_bGh92_M_gfQWmt9PXacsqQ83f7WX-mKz0KcrLBnse9A98lzF-wR655yZ71Okq-Yp8j-rxFn089X6HPAX3eoc_76PMW_dfs9OveyZeDJMpkJBb2e8vE2FRWWsBPzpdGOmtsLlxq05G3lTPA4NUAabD2qZXWW2Gsx23z0Losy3Kg02_YWjNt3FvGde5KkcrAi4emrEopdAo3HLmRBd-uN1nWWqOwsYc8SplcFG2y4KQgGxZow4JsuMmSbtaMeqjc83nVGrqIPJD4XQFr486Z7x488z17ulraH9jacv7TbbEn9teyXsw_xkX0G8Gmh4Q
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+planning+of+microgrids+for+resilient+distribution+networks&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Borghei%2C+Moein&rft.au=Ghassemi%2C+Mona&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=128&rft_id=info:doi/10.1016%2Fj.ijepes.2020.106682&rft.externalDocID=S0142061520342277
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon