Optimal planning of microgrids for resilient distribution networks
•Recently, extreme weather events have been growing both in number and intensity.•Planning of future microgrids can mitigate the catastrophic impacts of these events.•This study aims to optimize the location and generation capacity of microgrids.•Three methods are proposed to tackle this extremely n...
Uloženo v:
| Vydáno v: | International journal of electrical power & energy systems Ročník 128; s. 106682 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.06.2021
|
| Témata: | |
| ISSN: | 0142-0615, 1879-3517 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Recently, extreme weather events have been growing both in number and intensity.•Planning of future microgrids can mitigate the catastrophic impacts of these events.•This study aims to optimize the location and generation capacity of microgrids.•Three methods are proposed to tackle this extremely non-linear problem.•The accuracy, computation time, and suitability of each method is investigated.
As severe weather events disrupt the power system more frequently and more harshly, the concern is growing around the ability of future grids to recover from such natural disasters. Recently, a major research focus has been on microgrids (MGs) as a potential source of resiliency. While most of the works done so far center on how to benefit from existing MGs through operation schemes, this study focuses on the planning of MGs to strengthen the network against severe faults. In this regard, three solution approaches are proposed aiming to determine the optimal nodes for the connection of MGs as well as the capacity of the dispatchable generation units deployed within MGs. These algorithms satisfy the power balance of MGs and the main grid as well as the operational and topological constraints. A computationally-efficient heuristic method is developed in two stationary (S-HM) and time-dependent (T-HM) versions. The concept of the heuristic approach, which was first introduced by the authors and is matured in this study, is based on a multi-stage search algorithm that efficiently reduces the undesirable restoration strategies and utilizes the original power flow equations. The other approach is a multi-objective mixed-integer linear programming (MO-MILP) that strives to find the globally-optimal solution in a time-dependent scheme. The validity of the outputs of these methods is assessed using an exhaustive search algorithm (ESA), capable of finding the globally-optimal solution. The MG model constitutes renewable and dispatchable generation units, energy storage systems, and local loads. The uncertainty of intermittent energy resources is tackled through robust optimization formulation based on the worst-case scenario. The performance of the proposed methods are evaluated by the IEEE 37- and IEEE 123-bus test systems under several severe fault scenarios. |
|---|---|
| AbstractList | •Recently, extreme weather events have been growing both in number and intensity.•Planning of future microgrids can mitigate the catastrophic impacts of these events.•This study aims to optimize the location and generation capacity of microgrids.•Three methods are proposed to tackle this extremely non-linear problem.•The accuracy, computation time, and suitability of each method is investigated.
As severe weather events disrupt the power system more frequently and more harshly, the concern is growing around the ability of future grids to recover from such natural disasters. Recently, a major research focus has been on microgrids (MGs) as a potential source of resiliency. While most of the works done so far center on how to benefit from existing MGs through operation schemes, this study focuses on the planning of MGs to strengthen the network against severe faults. In this regard, three solution approaches are proposed aiming to determine the optimal nodes for the connection of MGs as well as the capacity of the dispatchable generation units deployed within MGs. These algorithms satisfy the power balance of MGs and the main grid as well as the operational and topological constraints. A computationally-efficient heuristic method is developed in two stationary (S-HM) and time-dependent (T-HM) versions. The concept of the heuristic approach, which was first introduced by the authors and is matured in this study, is based on a multi-stage search algorithm that efficiently reduces the undesirable restoration strategies and utilizes the original power flow equations. The other approach is a multi-objective mixed-integer linear programming (MO-MILP) that strives to find the globally-optimal solution in a time-dependent scheme. The validity of the outputs of these methods is assessed using an exhaustive search algorithm (ESA), capable of finding the globally-optimal solution. The MG model constitutes renewable and dispatchable generation units, energy storage systems, and local loads. The uncertainty of intermittent energy resources is tackled through robust optimization formulation based on the worst-case scenario. The performance of the proposed methods are evaluated by the IEEE 37- and IEEE 123-bus test systems under several severe fault scenarios. |
| ArticleNumber | 106682 |
| Author | Ghassemi, Mona Borghei, Moein |
| Author_xml | – sequence: 1 givenname: Moein surname: Borghei fullname: Borghei, Moein email: moeinrb@vt.edu – sequence: 2 givenname: Mona surname: Ghassemi fullname: Ghassemi, Mona email: monag@vt.edu |
| BookMark | eNqFkM1KxDAUhYOM4MzoG7joC3RM0k7auhB08A8GZqPrkLm9GW7tpCWJim9vS1250NWFC9_hnG_BZq5zyNil4CvBhbpqVtRgj2EluRxfSpXyhM1FWVRpthbFjM25yGXKlVifsUUIDee8qHI5Z3e7PtLRtEnfGufIHZLOJkcC3x081SGxnU88BmoJXUxqCtHT_j1S5xKH8bPzb-GcnVrTBrz4uUv2-nD_snlKt7vH583tNoWMq5gaEKquJBpj90YhGCglChBrCzUaUcmCizKrKitAgQVpwEolqhwwy7Iyl9mSXU-5Q7kQPFoNFM1YJXpDrRZcjzZ0oycberShJxsDnP-Cez_s9l__YTcThsOwD0KvAwwmAGvyCFHXHf0d8A26yX_P |
| CitedBy_id | crossref_primary_10_1007_s00202_024_02716_x crossref_primary_10_3390_en16135175 crossref_primary_10_1016_j_compeleceng_2024_109718 crossref_primary_10_1016_j_energy_2024_131105 crossref_primary_10_1007_s10668_024_04754_8 crossref_primary_10_1016_j_epsr_2023_109460 crossref_primary_10_1177_0309524X251354985 crossref_primary_10_3390_buildings14040865 crossref_primary_10_1016_j_ijepes_2023_109519 crossref_primary_10_1016_j_scs_2023_104787 crossref_primary_10_3390_su13126708 crossref_primary_10_1016_j_apenergy_2021_118507 crossref_primary_10_1016_j_ress_2025_111642 crossref_primary_10_1016_j_ijepes_2021_107212 crossref_primary_10_1016_j_scs_2025_106290 crossref_primary_10_1016_j_segan_2022_100933 crossref_primary_10_1016_j_ijhydene_2023_07_205 crossref_primary_10_1049_esi2_12067 crossref_primary_10_1109_TIA_2024_3410250 crossref_primary_10_3390_su131910728 crossref_primary_10_3390_en18143883 crossref_primary_10_1016_j_egyr_2024_01_032 crossref_primary_10_1016_j_scs_2021_103467 crossref_primary_10_1016_j_ijepes_2021_107640 crossref_primary_10_1080_15567249_2025_2477508 crossref_primary_10_1016_j_energy_2023_128674 crossref_primary_10_1007_s12667_025_00729_4 crossref_primary_10_1016_j_rser_2022_112127 crossref_primary_10_3390_en16155799 crossref_primary_10_1016_j_eswa_2023_121179 crossref_primary_10_1038_s41598_024_75906_z crossref_primary_10_3389_fenrg_2022_902891 crossref_primary_10_3389_fenrg_2023_1264986 crossref_primary_10_3390_en15207669 crossref_primary_10_1016_j_scs_2022_103975 crossref_primary_10_1049_rpg2_12872 crossref_primary_10_1016_j_segan_2025_101709 crossref_primary_10_1016_j_ijhydene_2023_07_277 crossref_primary_10_1016_j_epsr_2024_111043 crossref_primary_10_1016_j_rser_2022_112397 crossref_primary_10_1016_j_epsr_2023_110012 crossref_primary_10_1049_rpg2_12718 crossref_primary_10_1016_j_compeleceng_2024_109841 crossref_primary_10_1016_j_ijepes_2024_110371 crossref_primary_10_3390_math10020214 crossref_primary_10_1007_s40313_022_00934_x crossref_primary_10_1049_rpg2_12241 crossref_primary_10_3390_app132312860 crossref_primary_10_3389_fenrg_2023_1209875 crossref_primary_10_1109_TIA_2022_3145753 crossref_primary_10_1002_er_6676 |
| Cites_doi | 10.1109/TSG.2018.2824820 10.1109/TPWRS.2015.2429656 10.1109/TSG.2017.2747136 10.1109/TSG.2017.2743158 10.1109/TSG.2016.2550625 10.1109/TSG.2018.2889347 10.1109/TPWRS.2011.2161349 10.1109/TPWRS.2018.2885275 10.1109/TSG.2014.2321748 10.1109/TPWRS.2014.2312424 10.1109/TSTE.2019.2907613 10.1109/TSG.2012.2200701 10.1016/j.apenergy.2019.02.055 10.1109/ISGTEurope.2017.8260205 10.1049/iet-gtd.2018.6680 10.1109/ISGT45199.2020.9087693 10.1109/TSG.2016.2558628 10.1109/TSTE.2017.2740433 10.1109/TPWRS.2018.2883612 10.1109/TSG.2017.2775523 10.1109/TPWRS.2018.2820383 10.1109/MPE.2015.2397337 10.1109/TPWRS.2014.2361094 10.1049/iet-gtd.2018.6971 10.1109/TPWRS.2018.2860256 10.1016/j.apenergy.2017.06.059 10.1109/TPWRS.2016.2622858 10.1007/s40565-019-0567-9 10.1109/JSYST.2019.2918410 10.1007/BF01580665 10.1109/TSG.2016.2535228 10.1109/TSG.2015.2429653 10.1109/61.19265 10.1109/TSG.2016.2591531 10.1109/TPWRS.2017.2685640 10.1109/TSG.2017.2737024 10.1109/TSG.2016.2591885 10.1109/TPWRS.2018.2822295 10.1109/61.19266 10.1109/TSG.2019.2930012 10.3390/en12173312 10.1109/TPWRS.2017.2768302 10.1109/TSG.2018.2863049 10.2172/1214985 10.1016/j.cherd.2017.07.030 10.1109/TPWRD.2019.2959229 10.1109/TPWRS.2018.2881954 10.1109/TPWRS.2017.2765600 |
| ContentType | Journal Article |
| Copyright | 2020 Elsevier Ltd |
| Copyright_xml | – notice: 2020 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijepes.2020.106682 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3517 |
| ExternalDocumentID | 10_1016_j_ijepes_2020_106682 S0142061520342277 |
| GroupedDBID | --K --M .~1 0R~ 0SF 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHZHX AI. AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSR SST SSV SSZ T5K VH1 WUQ ZMT ZY4 ~02 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS GROUPED_DOAJ ~HD |
| ID | FETCH-LOGICAL-c306t-ac16d92eaafba6ecac82e1c15fcdea1927018399f1c6cfc2acf26194ce3338423 |
| ISICitedReferencesCount | 63 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000623709300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0142-0615 |
| IngestDate | Tue Nov 18 19:37:02 EST 2025 Sat Nov 29 07:27:52 EST 2025 Fri Feb 23 02:45:55 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Power system outage Mixed-integer linear programming Distribution networks Microgrids Resilience |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-ac16d92eaafba6ecac82e1c15fcdea1927018399f1c6cfc2acf26194ce3338423 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijepes_2020_106682 crossref_primary_10_1016_j_ijepes_2020_106682 elsevier_sciencedirect_doi_10_1016_j_ijepes_2020_106682 |
| PublicationCentury | 2000 |
| PublicationDate | June 2021 2021-06-00 |
| PublicationDateYYYYMMDD | 2021-06-01 |
| PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of electrical power & energy systems |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Bhamidi, Sivasubramani (b0200) 2020; 14 Li, Ma, Liu, Schneider (b0075) 2014; 29 Ma, Su, Wang, Qiu, Guo (b0105) 2018; 33 Lavorato, Franco, Rider, Romero (b0260) 2012; 27 Huang, Wang, Chen, Qi, Guo (b0100) 2017; 32 Xu, Liu, Wang, Mo, Schneider, Tuffner (b0070) 2019; 10 Hussain, Bui, Kim (b0175) 2019; 10 Chen, Wang, Qiu, Zhao (b0065) 2016; 7 Borghei M, Ghassemi M, Liu CC. Optimal capacity and placement of microgrids for resiliency enhancement of distribution networks under extreme weather events. Proc IEEE Innov Smart Grid Tech Conf (ISGT), Washington, DC, USA; 2020. doi: 10.1109/ISGT45199.2020.9087693. Liu, Yu, Qin (b0045) 2019; 13 Wang, Chen, Wang, Baldick (b0025) 2016; 31 Amirioun, Aminifar, Shahidehpour (b0220) 2019; 34 He, Dai, Wu, Liu (b0115) 2018; 33 Yao, Wang, Liu, Zhang, Zhao (b0125) 2020; 11 Khayatian, Barati, Lim (b0205) 2018; 33 Costliest U.S. Tropical Cyclones. NOAA’s National Centers for Environmental Information (NCEI); 2018. URL Singh, Taheri, Kekatos, Schneider, Liu (b0270) 2020 Draxl C, Hodge BM, Clifton A, McCaa J. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit. Tech. Rep. NREL/TP-5000-61740, 1214985; 2015. doi:10.2172/1214985. Amirioun, Aminifar, Lesani (b0160) 2018; 33 Lei, Chen, Zhou, Hou (b0095) 2019; 10 Baran, Wu (b0240) 1989; 4 Mansor, Levi (b0265) 2019; 34 Khomami, Jalilpoor, Kenari, Sepasian (b0030) 2019; 13 Wang, Hou, Qiu, Lei, Liu (b0055) 2017; 32 Gholami, Shekari, Grijalva (b0165) 2019; 10 . Liu, Shahidehpour, Li, Liu, Cao, Bie (b0180) 2017; 8 Abbasi, Barati, Lim (b0050) 2019; 10 U.S. Department of Energy at Pacific Northwest National Laboratory. GridLAB-D, Power Distribution Simulation Software; 2019. URL Liang, Hou, Hill, Hui (b0150) 2018; 9 Giraldo, Castrillon, López, Rider, Castro (b0230) 2019; 10 Khodaei, Bahramirad, Shahidehpour (b0210) 2015; 30 Baran, Wu (b0245) 1989; 4 Xu, Liu, Schneider, Tuffner, Ton (b0080) 2018; 9 Panteli, Trakas, Mancarella, Hatziargyriou (b0195) 2016; 7 Ton, Wang (b0005) 2015; 13 Farzin, Fotuhi-Firuzabad, Moeini-Aghtaie (b0185) 2016; 7 Nazemi, Moeini-Aghtaie, Fotuhi-Firuzabad, Dehghanian (b0130) 2020; 11 Hui, Lee, Wu (b0145) 2012; 3 Yao, Wang, Zhao (b0120) 2019; 10 Singh, Kekatos, Liu (b0190) 2019 Gao, Chen, Xu, Liu (b0155) 2016; 7 IBM CPLEX Optimizer; 2020. URL Rubin PA. Modeling absolute values; 2012. URL orinanobworld.blogspot.com/2012/07/modeling-absolute-values.html. Oboudi, Mohammadi, Rastegar (b0035) 2019; 7 Wang, Chen, Wang, Kim, Begovic (b0090) 2014; 5 Hussain, Bui, Kim (b0170) 2019; 240 Koltsaklis, Giannakakis, Georgiadis (b0215) 2018; 131 McCormick (b0250) 1976; 10 Mehrtash, Kargarian, Conejo (b0060) 2020; 35 Lin, Bie (b0040) 2018; 210 Zhang, Dehghanian, Kezunovic (b0135) 2019; 10 Bernstein A, Dall’Anese E. Linear power-flow models in multiphase distribution networks. 2017 IEEE PES Innov Smart Grid Tech Conf Europe (ISGT-Europe); 2017, p. 1–6. doi:10.1109/ISGTEurope.2017.8260205. Electric Grid Security and Resilience. Establishing a Baseline for Adversarial Threats. US Department of Energy; 2016. Rancilio (b0275) 2019; 12 Critical infrastructure resilience: Final report and recommendations. Nat Infrastructure Advisory Council, Dept Homeland Security, Washington, DC, USA, 2009. Poudel, Dubey (b0085) 2019; 34 Kopsidas, Abogaleela (b0140) 2019; 34 Ma, Chen, Wang (b0110) 2018; 9 Panteli (10.1016/j.ijepes.2020.106682_b0195) 2016; 7 Li (10.1016/j.ijepes.2020.106682_b0075) 2014; 29 Huang (10.1016/j.ijepes.2020.106682_b0100) 2017; 32 Nazemi (10.1016/j.ijepes.2020.106682_b0130) 2020; 11 10.1016/j.ijepes.2020.106682_b0010 Khomami (10.1016/j.ijepes.2020.106682_b0030) 2019; 13 Ma (10.1016/j.ijepes.2020.106682_b0110) 2018; 9 10.1016/j.ijepes.2020.106682_b0255 Xu (10.1016/j.ijepes.2020.106682_b0070) 2019; 10 Liu (10.1016/j.ijepes.2020.106682_b0180) 2017; 8 10.1016/j.ijepes.2020.106682_b0015 10.1016/j.ijepes.2020.106682_b0290 Xu (10.1016/j.ijepes.2020.106682_b0080) 2018; 9 Liu (10.1016/j.ijepes.2020.106682_b0045) 2019; 13 He (10.1016/j.ijepes.2020.106682_b0115) 2018; 33 Gao (10.1016/j.ijepes.2020.106682_b0155) 2016; 7 Hussain (10.1016/j.ijepes.2020.106682_b0175) 2019; 10 Amirioun (10.1016/j.ijepes.2020.106682_b0220) 2019; 34 Khayatian (10.1016/j.ijepes.2020.106682_b0205) 2018; 33 Singh (10.1016/j.ijepes.2020.106682_b0190) 2019 Wang (10.1016/j.ijepes.2020.106682_b0055) 2017; 32 Chen (10.1016/j.ijepes.2020.106682_b0065) 2016; 7 10.1016/j.ijepes.2020.106682_b0285 Poudel (10.1016/j.ijepes.2020.106682_b0085) 2019; 34 Liang (10.1016/j.ijepes.2020.106682_b0150) 2018; 9 Koltsaklis (10.1016/j.ijepes.2020.106682_b0215) 2018; 131 Hui (10.1016/j.ijepes.2020.106682_b0145) 2012; 3 Lei (10.1016/j.ijepes.2020.106682_b0095) 2019; 10 Lavorato (10.1016/j.ijepes.2020.106682_b0260) 2012; 27 10.1016/j.ijepes.2020.106682_b0280 McCormick (10.1016/j.ijepes.2020.106682_b0250) 1976; 10 Oboudi (10.1016/j.ijepes.2020.106682_b0035) 2019; 7 Gholami (10.1016/j.ijepes.2020.106682_b0165) 2019; 10 Farzin (10.1016/j.ijepes.2020.106682_b0185) 2016; 7 Singh (10.1016/j.ijepes.2020.106682_b0270) 2020 10.1016/j.ijepes.2020.106682_b0235 Mehrtash (10.1016/j.ijepes.2020.106682_b0060) 2020; 35 Yao (10.1016/j.ijepes.2020.106682_b0120) 2019; 10 Khodaei (10.1016/j.ijepes.2020.106682_b0210) 2015; 30 Amirioun (10.1016/j.ijepes.2020.106682_b0160) 2018; 33 Bhamidi (10.1016/j.ijepes.2020.106682_b0200) 2020; 14 Rancilio (10.1016/j.ijepes.2020.106682_b0275) 2019; 12 Yao (10.1016/j.ijepes.2020.106682_b0125) 2020; 11 Zhang (10.1016/j.ijepes.2020.106682_b0135) 2019; 10 Baran (10.1016/j.ijepes.2020.106682_b0240) 1989; 4 Ton (10.1016/j.ijepes.2020.106682_b0005) 2015; 13 Wang (10.1016/j.ijepes.2020.106682_b0025) 2016; 31 Hussain (10.1016/j.ijepes.2020.106682_b0170) 2019; 240 Giraldo (10.1016/j.ijepes.2020.106682_b0230) 2019; 10 10.1016/j.ijepes.2020.106682_b0020 Mansor (10.1016/j.ijepes.2020.106682_b0265) 2019; 34 Abbasi (10.1016/j.ijepes.2020.106682_b0050) 2019; 10 Baran (10.1016/j.ijepes.2020.106682_b0245) 1989; 4 Lin (10.1016/j.ijepes.2020.106682_b0040) 2018; 210 10.1016/j.ijepes.2020.106682_b0225 Kopsidas (10.1016/j.ijepes.2020.106682_b0140) 2019; 34 Wang (10.1016/j.ijepes.2020.106682_b0090) 2014; 5 Ma (10.1016/j.ijepes.2020.106682_b0105) 2018; 33 |
| References_xml | – volume: 3 start-page: 1552 year: 2012 end-page: 1561 ident: b0145 article-title: Electric springs—a new smart grid technology publication-title: IEEE Trans Smart Grid – volume: 7 start-page: 741 year: 2019 end-page: 752 ident: b0035 article-title: Resilience-oriented intentional islanding of reconfigurable distribution power systems publication-title: J Modern Power Syst Clean Energy – volume: 9 start-page: 1442 year: 2018 end-page: 1451 ident: b0110 article-title: Resilience enhancement strategy for distribution systems under extreme weather events publication-title: IEEE Trans Smart Grid – volume: 240 start-page: 56 year: 2019 end-page: 72 ident: b0170 article-title: Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience publication-title: App Energy – year: 2020 ident: b0270 article-title: Joint grid topology reconfiguration and design of watt-var curves for DERs publication-title: IEEE Trans Smart Grid – volume: 10 start-page: 4520 year: 2019 end-page: 4530 ident: b0230 article-title: Microgrids energy management using robust convex programming publication-title: IEEE Trans Smart Grid – volume: 4 start-page: 725 year: 1989 end-page: 734 ident: b0240 article-title: Optimal capacitor placement on radial distribution systems publication-title: IEEE Trans Power Del – volume: 34 start-page: 2114 year: 2019 end-page: 2127 ident: b0265 article-title: Operational planning of distribution networks based on utility planning concepts publication-title: IEEE Trans Power Syst – volume: 10 start-page: 147 year: 1976 end-page: 175 ident: b0250 article-title: Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems publication-title: Math. Program. – volume: 7 start-page: 2869 year: 2016 end-page: 2879 ident: b0185 article-title: Enhancing power system resilience through hierarchical outage management in multi-microgrids publication-title: IEEE Trans Smart Grid – volume: 4 start-page: 735 year: 1989 end-page: 743 ident: b0245 article-title: Optimal sizing of capacitors placed on a radial distribution system publication-title: IEEE Trans Power Del – volume: 7 start-page: 2837 year: 2016 end-page: 2848 ident: b0155 article-title: Resilience-oriented critical load restoration using microgrids in distribution systems publication-title: IEEE Trans Smart Grid – reference: Draxl C, Hodge BM, Clifton A, McCaa J. Overview and Meteorological Validation of the Wind Integration National Dataset toolkit. Tech. Rep. NREL/TP-5000-61740, 1214985; 2015. doi:10.2172/1214985. – volume: 32 start-page: 4451 year: 2017 end-page: 4463 ident: b0100 article-title: Integration of preventive and emergency responses for power grid resilience enhancement publication-title: IEEE Trans Power Syst – volume: 210 start-page: 1266 year: 2018 end-page: 1279 ident: b0040 article-title: Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding publication-title: App Energy – volume: 8 start-page: 589 year: 2017 end-page: 597 ident: b0180 article-title: Microgrids for enhancing the power grid resilience in extreme conditions publication-title: IEEE Trans Smart Grid – volume: 11 start-page: 795 year: 2020 end-page: 806 ident: b0130 article-title: Energy storage planning for enhanced resilience of power distribution networks against earthquakes publication-title: IEEE Trans Sustain Energy – volume: 10 start-page: 3331 year: 2019 end-page: 3341 ident: b0120 article-title: Transportable energy storage for more resilient distribution systems with multiple microgrids publication-title: IEEE Trans Smart Grid – reference: Electric Grid Security and Resilience. Establishing a Baseline for Adversarial Threats. US Department of Energy; 2016. – volume: 34 start-page: 52 year: 2019 end-page: 63 ident: b0085 article-title: Critical load restoration using distributed energy resources for resilient power distribution system publication-title: IEEE Trans Power Syst – volume: 10 start-page: 435 year: 2019 end-page: 447 ident: b0070 article-title: DGs for service restoration to critical loads in a secondary network publication-title: IEEE Trans Smart Grid – volume: 33 start-page: 4842 year: 2018 end-page: 4853 ident: b0105 article-title: Resilience enhancement of distribution grids against extreme weather events publication-title: IEEE Trans Power Syst – volume: 32 start-page: 2847 year: 2017 end-page: 2857 ident: b0055 article-title: Resilience enhancement with sequentially proactive operation strategies publication-title: IEEE Trans Power Syst – volume: 33 start-page: 4275 year: 2018 end-page: 4284 ident: b0160 article-title: Resilience-oriented proactive management of microgrids against windstorms publication-title: IEEE Trans Power Syst – volume: 10 start-page: 470 year: 2019 end-page: 480 ident: b0165 article-title: Proactive management of microgrids for resiliency enhancement: An adaptive robust approach publication-title: IEEE Trans Sustain Energy – reference: U.S. Department of Energy at Pacific Northwest National Laboratory. GridLAB-D, Power Distribution Simulation Software; 2019. URL – reference: Critical infrastructure resilience: Final report and recommendations. Nat Infrastructure Advisory Council, Dept Homeland Security, Washington, DC, USA, 2009. – volume: 11 start-page: 1030 year: 2020 end-page: 1043 ident: b0125 article-title: Rolling optimization of mobile energy storage fleets for resilient service restoration publication-title: IEEE Trans Smart Grid – reference: Rubin PA. Modeling absolute values; 2012. URL orinanobworld.blogspot.com/2012/07/modeling-absolute-values.html. – volume: 13 start-page: 26 year: 2015 end-page: 34 ident: b0005 article-title: A more resilient grid: The U.S. Department of Energy joins with stakeholders in an R&D plan publication-title: IEEE Power Energy Mag – volume: 13 start-page: 3302 year: 2019 end-page: 3310 ident: b0030 article-title: Bi-level network reconfiguration model to improve the resilience of distribution systems against extreme weather events publication-title: IET Gen, Transm Distrib – volume: 33 start-page: 3634 year: 2018 end-page: 3643 ident: b0205 article-title: Integrated microgrid expansion planning in electricity market with uncertainty publication-title: IEEE Trans Power Syst – volume: 34 start-page: 2160 year: 2019 end-page: 2168 ident: b0220 article-title: Resilience-promoting proactive scheduling against hurricanes in multiple energy carrier microgrids publication-title: IEEE Trans Power Syst – volume: 10 start-page: 5650 year: 2019 end-page: 5662 ident: b0095 article-title: Routing and scheduling of mobile power sources for distribution system resilience enhancement publication-title: IEEE Trans Smart Grid – volume: 10 start-page: 1660 year: 2019 end-page: 1670 ident: b0050 article-title: A parallel sectionalized restoration scheme for resilient smart grid systems publication-title: IEEE Trans Smart Grid – volume: 27 start-page: 172 year: 2012 end-page: 180 ident: b0260 article-title: Imposing radiality constraints in distribution system optimization problems publication-title: IEEE Trans Power Syst – volume: 30 start-page: 2417 year: 2015 end-page: 2425 ident: b0210 article-title: Microgrid planning under uncertainty publication-title: IEEE Trans Power Syst – volume: 9 start-page: 2235 year: 2018 end-page: 2247 ident: b0150 article-title: Enhancing resilience of microgrids with electric springs publication-title: IEEE Trans Smart Grid – reference: Bernstein A, Dall’Anese E. Linear power-flow models in multiphase distribution networks. 2017 IEEE PES Innov Smart Grid Tech Conf Europe (ISGT-Europe); 2017, p. 1–6. doi:10.1109/ISGTEurope.2017.8260205. – year: 2019 ident: b0190 article-title: Optimal Distribution System Restoration with Microgrids and Distributed Generators publication-title: Proc IEEE Power and Energy Soc General Meeting (PES GM), Atlanta, GA, USA – reference: Borghei M, Ghassemi M, Liu CC. Optimal capacity and placement of microgrids for resiliency enhancement of distribution networks under extreme weather events. Proc IEEE Innov Smart Grid Tech Conf (ISGT), Washington, DC, USA; 2020. doi: 10.1109/ISGT45199.2020.9087693. – volume: 29 start-page: 3021 year: 2014 end-page: 3029 ident: b0075 article-title: Distribution system restoration with microgrids using spanning tree search publication-title: IEEE Trans Power Syst – reference: IBM CPLEX Optimizer; 2020. URL – volume: 7 start-page: 2913 year: 2016 end-page: 2922 ident: b0195 article-title: Boosting the power grid resilience to extreme weather events using defensive islanding publication-title: IEEE Trans Smart Grid – volume: 31 start-page: 1604 year: 2016 end-page: 1613 ident: b0025 article-title: Research on resilience of power systems under natural disasters—a review publication-title: IEEE Trans Power Syst – volume: 131 start-page: 318 year: 2018 end-page: 332 ident: b0215 article-title: Optimal energy planning and scheduling of microgrids publication-title: Chemical Eng Research Design – volume: 34 start-page: 2216 year: 2019 end-page: 2227 ident: b0140 article-title: Utilizing demand response to improve network reliability and ageing resilience publication-title: IEEE Trans Power Syst – volume: 14 start-page: 2624 year: 2020 end-page: 2632 ident: b0200 article-title: Optimal planning and operational strategy of a residential microgrid with demand side management publication-title: IEEE Syst J – volume: 5 start-page: 2173 year: 2014 end-page: 2182 ident: b0090 article-title: Robust optimization based optimal DG placement in microgrids publication-title: IEEE Trans Smart Grid – volume: 10 start-page: 204 year: 2019 end-page: 215 ident: b0175 article-title: Resilience-oriented optimal operation of networked hybrid microgrids publication-title: IEEE Trans Smart Grid – reference: . – volume: 7 start-page: 958 year: 2016 end-page: 966 ident: b0065 article-title: Resilient distribution system by microgrids formation after natural disasters publication-title: IEEE Trans Smart Grid – volume: 9 start-page: 426 year: 2018 end-page: 437 ident: b0080 article-title: Microgrids for service restoration to critical load in a resilient distribution system publication-title: IEEE Trans Smart Grid – reference: Costliest U.S. Tropical Cyclones. NOAA’s National Centers for Environmental Information (NCEI); 2018. URL – volume: 10 start-page: 535 year: 2019 end-page: 545 ident: b0135 article-title: Optimal allocation of PV generation and battery storage for enhanced resilience publication-title: IEEE Trans Smart Grid – volume: 12 start-page: 3312 year: 2019 ident: b0275 article-title: Modeling a large-scale battery energy storage system for power grid application analysis publication-title: Energies – volume: 13 start-page: 1734 year: 2019 end-page: 1745 ident: b0045 article-title: Unified two-stage reconfiguration method for resilience enhancement of distribution systems publication-title: IET Gen, Transm Distr – volume: 35 start-page: 1999 year: 2020 end-page: 2010 ident: b0060 article-title: Graph-based second-order cone programming model for resilient feeder routing using gis data publication-title: IEEE Trans Power Deliv – volume: 33 start-page: 5787 year: 2018 end-page: 5798 ident: b0115 article-title: Robust network hardening strategy for enhancing resilience of integrated electricity and natural gas distribution systems against natural disasters publication-title: IEEE Trans Power Syst – ident: 10.1016/j.ijepes.2020.106682_b0015 – volume: 10 start-page: 3331 issue: 3 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0120 article-title: Transportable energy storage for more resilient distribution systems with multiple microgrids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2824820 – volume: 31 start-page: 1604 issue: 2 year: 2016 ident: 10.1016/j.ijepes.2020.106682_b0025 article-title: Research on resilience of power systems under natural disasters—a review publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2015.2429656 – volume: 10 start-page: 535 issue: 1 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0135 article-title: Optimal allocation of PV generation and battery storage for enhanced resilience publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2747136 – volume: 10 start-page: 435 issue: 1 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0070 article-title: DGs for service restoration to critical loads in a secondary network publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2743158 – volume: 7 start-page: 2837 issue: 6 year: 2016 ident: 10.1016/j.ijepes.2020.106682_b0155 article-title: Resilience-oriented critical load restoration using microgrids in distribution systems publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2550625 – volume: 10 start-page: 5650 issue: 5 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0095 article-title: Routing and scheduling of mobile power sources for distribution system resilience enhancement publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2889347 – year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0190 article-title: Optimal Distribution System Restoration with Microgrids and Distributed Generators – volume: 27 start-page: 172 issue: 1 year: 2012 ident: 10.1016/j.ijepes.2020.106682_b0260 article-title: Imposing radiality constraints in distribution system optimization problems publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2011.2161349 – volume: 34 start-page: 2114 issue: 3 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0265 article-title: Operational planning of distribution networks based on utility planning concepts publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2885275 – volume: 5 start-page: 2173 issue: 5 year: 2014 ident: 10.1016/j.ijepes.2020.106682_b0090 article-title: Robust optimization based optimal DG placement in microgrids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2014.2321748 – volume: 29 start-page: 3021 issue: 6 year: 2014 ident: 10.1016/j.ijepes.2020.106682_b0075 article-title: Distribution system restoration with microgrids using spanning tree search publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2014.2312424 – volume: 11 start-page: 795 issue: 2 year: 2020 ident: 10.1016/j.ijepes.2020.106682_b0130 article-title: Energy storage planning for enhanced resilience of power distribution networks against earthquakes publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2019.2907613 – volume: 3 start-page: 1552 year: 2012 ident: 10.1016/j.ijepes.2020.106682_b0145 article-title: Electric springs—a new smart grid technology publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2012.2200701 – volume: 240 start-page: 56 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0170 article-title: Microgrids as a resilience resource and strategies used by microgrids for enhancing resilience publication-title: App Energy doi: 10.1016/j.apenergy.2019.02.055 – ident: 10.1016/j.ijepes.2020.106682_b0290 – ident: 10.1016/j.ijepes.2020.106682_b0235 doi: 10.1109/ISGTEurope.2017.8260205 – volume: 13 start-page: 1734 issue: 9 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0045 article-title: Unified two-stage reconfiguration method for resilience enhancement of distribution systems publication-title: IET Gen, Transm Distr doi: 10.1049/iet-gtd.2018.6680 – ident: 10.1016/j.ijepes.2020.106682_b0225 doi: 10.1109/ISGT45199.2020.9087693 – volume: 7 start-page: 2869 issue: 6 year: 2016 ident: 10.1016/j.ijepes.2020.106682_b0185 article-title: Enhancing power system resilience through hierarchical outage management in multi-microgrids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2558628 – volume: 10 start-page: 470 issue: 1 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0165 article-title: Proactive management of microgrids for resiliency enhancement: An adaptive robust approach publication-title: IEEE Trans Sustain Energy doi: 10.1109/TSTE.2017.2740433 – volume: 34 start-page: 2216 issue: 3 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0140 article-title: Utilizing demand response to improve network reliability and ageing resilience publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2883612 – ident: 10.1016/j.ijepes.2020.106682_b0255 – volume: 10 start-page: 1660 issue: 2 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0050 article-title: A parallel sectionalized restoration scheme for resilient smart grid systems publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2775523 – volume: 33 start-page: 5787 issue: 5 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0115 article-title: Robust network hardening strategy for enhancing resilience of integrated electricity and natural gas distribution systems against natural disasters publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2820383 – volume: 13 start-page: 26 issue: 3 year: 2015 ident: 10.1016/j.ijepes.2020.106682_b0005 article-title: A more resilient grid: The U.S. Department of Energy joins with stakeholders in an R&D plan publication-title: IEEE Power Energy Mag doi: 10.1109/MPE.2015.2397337 – volume: 30 start-page: 2417 issue: 5 year: 2015 ident: 10.1016/j.ijepes.2020.106682_b0210 article-title: Microgrid planning under uncertainty publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2014.2361094 – volume: 13 start-page: 3302 issue: 15 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0030 article-title: Bi-level network reconfiguration model to improve the resilience of distribution systems against extreme weather events publication-title: IET Gen, Transm Distrib doi: 10.1049/iet-gtd.2018.6971 – volume: 34 start-page: 52 issue: 1 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0085 article-title: Critical load restoration using distributed energy resources for resilient power distribution system publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2860256 – volume: 8 start-page: 589 issue: 2 year: 2017 ident: 10.1016/j.ijepes.2020.106682_b0180 article-title: Microgrids for enhancing the power grid resilience in extreme conditions publication-title: IEEE Trans Smart Grid – volume: 210 start-page: 1266 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0040 article-title: Tri-level optimal hardening plan for a resilient distribution system considering reconfiguration and DG islanding publication-title: App Energy doi: 10.1016/j.apenergy.2017.06.059 – volume: 32 start-page: 2847 issue: 4 year: 2017 ident: 10.1016/j.ijepes.2020.106682_b0055 article-title: Resilience enhancement with sequentially proactive operation strategies publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2016.2622858 – volume: 7 start-page: 741 issue: 4 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0035 article-title: Resilience-oriented intentional islanding of reconfigurable distribution power systems publication-title: J Modern Power Syst Clean Energy doi: 10.1007/s40565-019-0567-9 – volume: 14 start-page: 2624 issue: 2 year: 2020 ident: 10.1016/j.ijepes.2020.106682_b0200 article-title: Optimal planning and operational strategy of a residential microgrid with demand side management publication-title: IEEE Syst J doi: 10.1109/JSYST.2019.2918410 – volume: 10 start-page: 147 issue: 1 year: 1976 ident: 10.1016/j.ijepes.2020.106682_b0250 article-title: Computability of global solutions to factorable nonconvex programs: Part I — Convex underestimating problems publication-title: Math. Program. doi: 10.1007/BF01580665 – volume: 7 start-page: 2913 issue: 6 year: 2016 ident: 10.1016/j.ijepes.2020.106682_b0195 article-title: Boosting the power grid resilience to extreme weather events using defensive islanding publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2535228 – volume: 7 start-page: 958 issue: 2 year: 2016 ident: 10.1016/j.ijepes.2020.106682_b0065 article-title: Resilient distribution system by microgrids formation after natural disasters publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2015.2429653 – volume: 4 start-page: 725 issue: 1 year: 1989 ident: 10.1016/j.ijepes.2020.106682_b0240 article-title: Optimal capacitor placement on radial distribution systems publication-title: IEEE Trans Power Del doi: 10.1109/61.19265 – volume: 9 start-page: 426 issue: 1 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0080 article-title: Microgrids for service restoration to critical load in a resilient distribution system publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2591531 – volume: 32 start-page: 4451 issue: 6 year: 2017 ident: 10.1016/j.ijepes.2020.106682_b0100 article-title: Integration of preventive and emergency responses for power grid resilience enhancement publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2685640 – year: 2020 ident: 10.1016/j.ijepes.2020.106682_b0270 article-title: Joint grid topology reconfiguration and design of watt-var curves for DERs publication-title: IEEE Trans Smart Grid – volume: 9 start-page: 2235 issue: 3 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0150 article-title: Enhancing resilience of microgrids with electric springs publication-title: IEEE Trans Smart Grid – volume: 10 start-page: 204 issue: 1 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0175 article-title: Resilience-oriented optimal operation of networked hybrid microgrids publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2017.2737024 – volume: 9 start-page: 1442 issue: 2 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0110 article-title: Resilience enhancement strategy for distribution systems under extreme weather events publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2016.2591885 – ident: 10.1016/j.ijepes.2020.106682_b0020 – volume: 33 start-page: 4842 issue: 5 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0105 article-title: Resilience enhancement of distribution grids against extreme weather events publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2822295 – ident: 10.1016/j.ijepes.2020.106682_b0280 – volume: 4 start-page: 735 issue: 1 year: 1989 ident: 10.1016/j.ijepes.2020.106682_b0245 article-title: Optimal sizing of capacitors placed on a radial distribution system publication-title: IEEE Trans Power Del doi: 10.1109/61.19266 – volume: 11 start-page: 1030 issue: 2 year: 2020 ident: 10.1016/j.ijepes.2020.106682_b0125 article-title: Rolling optimization of mobile energy storage fleets for resilient service restoration publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2019.2930012 – volume: 12 start-page: 3312 issue: 17 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0275 article-title: Modeling a large-scale battery energy storage system for power grid application analysis publication-title: Energies doi: 10.3390/en12173312 – volume: 33 start-page: 3634 issue: 4 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0205 article-title: Integrated microgrid expansion planning in electricity market with uncertainty publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2768302 – volume: 10 start-page: 4520 issue: 4 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0230 article-title: Microgrids energy management using robust convex programming publication-title: IEEE Trans Smart Grid doi: 10.1109/TSG.2018.2863049 – ident: 10.1016/j.ijepes.2020.106682_b0285 doi: 10.2172/1214985 – volume: 131 start-page: 318 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0215 article-title: Optimal energy planning and scheduling of microgrids publication-title: Chemical Eng Research Design doi: 10.1016/j.cherd.2017.07.030 – volume: 35 start-page: 1999 issue: 4 year: 2020 ident: 10.1016/j.ijepes.2020.106682_b0060 article-title: Graph-based second-order cone programming model for resilient feeder routing using gis data publication-title: IEEE Trans Power Deliv doi: 10.1109/TPWRD.2019.2959229 – volume: 34 start-page: 2160 issue: 3 year: 2019 ident: 10.1016/j.ijepes.2020.106682_b0220 article-title: Resilience-promoting proactive scheduling against hurricanes in multiple energy carrier microgrids publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2018.2881954 – ident: 10.1016/j.ijepes.2020.106682_b0010 – volume: 33 start-page: 4275 issue: 4 year: 2018 ident: 10.1016/j.ijepes.2020.106682_b0160 article-title: Resilience-oriented proactive management of microgrids against windstorms publication-title: IEEE Trans Power Syst doi: 10.1109/TPWRS.2017.2765600 |
| SSID | ssj0007942 |
| Score | 2.5623965 |
| Snippet | •Recently, extreme weather events have been growing both in number and intensity.•Planning of future microgrids can mitigate the catastrophic impacts of these... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 106682 |
| SubjectTerms | Distribution networks Microgrids Mixed-integer linear programming Power system outage Resilience |
| Title | Optimal planning of microgrids for resilient distribution networks |
| URI | https://dx.doi.org/10.1016/j.ijepes.2020.106682 |
| Volume | 128 |
| WOSCitedRecordID | wos000623709300008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3517 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007942 issn: 0142-0615 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3fT9swELY22MP2MLFfGtuY_LA3FNQ4rR0_sonBkAZ7AKlvkePYkArSqu0m_vzd-Zw0wAQb0l6iyq2T6j73-vl8dx9jn7T0zpgqA-aW62Ro8Hy3Gg6ScqBLYPg29dIHsQl1dJSPx_pH1GxdBDkB1TT51ZWe_VeoYQzAxtLZf4C7uykMwGsAHa4AO1z_CvhjcAKXWF8V5YjCCTqm3Z3N6yp0X9iGLXZ9gYWQeD7TSV5tN5QSvugT1usRw16fCdLPCRDPUGktrCFHlYSLXhv0kIo4Pzt3IW3g-9TV3XLcPwfm7i7jGyTj3UYgRC9TisJibWnMKg-JIpUCZSPoyNqRd82VxtIBdc39UnH4LVdOUYXJTj1xM4eN1QUOSklaRTeaZGOOmsCnCWxpKJR6zNaFGmlw1eu73_bGh92_M_gfQWmt9PXacsqQ83f7WX-mKz0KcrLBnse9A98lzF-wR655yZ71Okq-Yp8j-rxFn089X6HPAX3eoc_76PMW_dfs9OveyZeDJMpkJBb2e8vE2FRWWsBPzpdGOmtsLlxq05G3lTPA4NUAabD2qZXWW2Gsx23z0Losy3Kg02_YWjNt3FvGde5KkcrAi4emrEopdAo3HLmRBd-uN1nWWqOwsYc8SplcFG2y4KQgGxZow4JsuMmSbtaMeqjc83nVGrqIPJD4XQFr486Z7x488z17ulraH9jacv7TbbEn9teyXsw_xkX0G8Gmh4Q |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+planning+of+microgrids+for+resilient+distribution+networks&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Borghei%2C+Moein&rft.au=Ghassemi%2C+Mona&rft.date=2021-06-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.eissn=1879-3517&rft.volume=128&rft_id=info:doi/10.1016%2Fj.ijepes.2020.106682&rft.externalDocID=S0142061520342277 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon |