Seeking the optimal accuracy-rate equilibrium in face recognition

Considerable facial data is often compressed prior to analysis to accommodate limitations in transmission or storage capacities. However, this compression may lead to the loss of crucial identity details, thereby diminishing the effectiveness of facial recognition (FR) systems. In this study, we aim...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Neurocomputing (Amsterdam) Ročník 624; s. 129423
Hlavní autori: Tian, Yu, Ou, Fu-Zhao, Wang, Shiqi, Chen, Baoliang, Kwong, Sam
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.04.2025
Predmet:
ISSN:0925-2312
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Considerable facial data is often compressed prior to analysis to accommodate limitations in transmission or storage capacities. However, this compression may lead to the loss of crucial identity details, thereby diminishing the effectiveness of facial recognition (FR) systems. In this study, we aim to establish an optimal accuracy-rate equilibrium (ARE) to maximize the compression ratio without substantially compromising the performance of the FR system. We first investigate the effect of image compression in deep FR. Based on the definition of ARE in FR, we proposed a method to locate the ARE values of face images with true acceptance rate and false accept rate. Subsequently, we develop an ARE prediction method for the FR system (ARE-FR), which automatically infers ARE images of face images. The goal of the proposed ARE-FR is to maximize redundancy removal without impairment of robust identity information. Considering that high-level semantic features effectively capture crucial identity information, we force the proposed ARE-FR to focus only on the features in identity-related regions when predicting the ARE images. These features are derived from the interactive relationships between deep and shallow features. Experimental results have demonstrated that combining our proposed ARE-FR with the image coding algorithm is capable of saving more bits while maintaining the performance of the FR system.
AbstractList Considerable facial data is often compressed prior to analysis to accommodate limitations in transmission or storage capacities. However, this compression may lead to the loss of crucial identity details, thereby diminishing the effectiveness of facial recognition (FR) systems. In this study, we aim to establish an optimal accuracy-rate equilibrium (ARE) to maximize the compression ratio without substantially compromising the performance of the FR system. We first investigate the effect of image compression in deep FR. Based on the definition of ARE in FR, we proposed a method to locate the ARE values of face images with true acceptance rate and false accept rate. Subsequently, we develop an ARE prediction method for the FR system (ARE-FR), which automatically infers ARE images of face images. The goal of the proposed ARE-FR is to maximize redundancy removal without impairment of robust identity information. Considering that high-level semantic features effectively capture crucial identity information, we force the proposed ARE-FR to focus only on the features in identity-related regions when predicting the ARE images. These features are derived from the interactive relationships between deep and shallow features. Experimental results have demonstrated that combining our proposed ARE-FR with the image coding algorithm is capable of saving more bits while maintaining the performance of the FR system.
ArticleNumber 129423
Author Wang, Shiqi
Chen, Baoliang
Tian, Yu
Ou, Fu-Zhao
Kwong, Sam
Author_xml – sequence: 1
  givenname: Yu
  surname: Tian
  fullname: Tian, Yu
  email: ytian73-c@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, China
– sequence: 2
  givenname: Fu-Zhao
  orcidid: 0000-0003-1245-8345
  surname: Ou
  fullname: Ou, Fu-Zhao
  email: fuzhao.ou@my.cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, China
– sequence: 3
  givenname: Shiqi
  surname: Wang
  fullname: Wang, Shiqi
  email: shiqwang@cityu.edu.hk
  organization: Department of Computer Science, City University of Hong Kong, Hong Kong, China
– sequence: 4
  givenname: Baoliang
  orcidid: 0000-0003-4884-6956
  surname: Chen
  fullname: Chen, Baoliang
  email: blchen@scnu.edu.cn
  organization: Department of Computer Science, South China Normal University, China
– sequence: 5
  givenname: Sam
  orcidid: 0000-0001-7484-7261
  surname: Kwong
  fullname: Kwong, Sam
  email: samkwong@ln.edu.hk
  organization: School of Data Science, Lingnan University, Hong Kong, China
BookMark eNqFkL1OwzAUhT0UibbwBgx-gQT_JWkZkKqKP6kSAzBb9s11cUmd4jhIfXtShYkBpjtcfUfnfDMyCW1AQq44yznj5fUuD9hDu88FE0XOxVIJOSFTthRFJiQX52TWdTvGeDX8pmT1gvjhw5amd6TtIfm9aagB6KOBYxZNQoqfvW-8jb7fUx-oM4A0IrTb4JNvwwU5c6bp8PLnzsnb_d3r-jHbPD88rVebDCQrU2aMBVlby5SVyF3JSuRgqqHFQglTccsElEWlSlfV0oF1SwEoFgulkBcclJyTmzEXYtt1EZ0Gn8ypQYrGN5ozfRKgd3oUoE8C9ChggNUv-BCHqfH4H3Y7YjgM-_IYdQceA2DtBwNJ163_O-AbeEd8Nw
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3597794
Cites_doi 10.1109/ICCV.2019.00813
10.1109/TMM.2013.2268053
10.1109/ICPR.2014.314
10.1109/HIS.2012.6421304
10.1016/j.sigpro.2004.12.002
10.1109/ICASSP49357.2023.10095832
10.1109/TCSVT.2021.3113572
10.1109/34.879790
10.1109/CVPR46437.2021.01035
10.1007/s11263-021-01505-4
10.1109/IAW.2005.1495936
10.1109/CVPR.2016.90
10.1109/CVPR52688.2022.01819
10.1109/76.475889
10.1016/j.image.2011.02.002
10.1109/CVPR.2019.00482
10.1109/CVPR52729.2023.01223
10.1109/CVPR.2017.713
10.1109/CVPR.2018.00552
10.1109/TIP.2017.2685682
10.1109/CVPR46437.2021.01400
10.1109/WACV.2016.7477558
10.1109/TIP.2020.3029428
10.1109/CVPR.2015.7298682
10.1109/ICCV48922.2021.01070
10.1109/CVPRW.2017.250
10.1016/j.neucom.2024.128129
10.1109/TMM.2021.3106503
10.1016/j.neucom.2023.03.059
10.1109/TCSVT.2010.2087432
10.1109/WACV56688.2023.00352
10.1109/ICCVW54120.2021.00267
10.1109/TCSVT.2022.3205182
10.1109/TCSVT.2021.3076224
10.1109/TIP.2022.3174398
10.1109/TCSVT.2005.848313
10.1109/CVPR42600.2020.00594
10.1109/CVPR.2014.220
10.1109/CVPR52729.2023.00960
10.1109/TCSVT.2020.3030895
10.1109/ICCVW.2019.00322
10.1109/TCSVT.2009.2013518
10.1109/TIP.2002.999679
10.1016/j.neucom.2017.08.031
10.1109/FG52635.2021.9666960
10.1109/TCSVT.2021.3057518
10.1109/CVPR52729.2023.00565
10.1109/CVPR52733.2024.00167
10.5772/4832
10.1109/CVPR42600.2020.00569
10.1109/TIP.2014.2327808
10.1109/TPAMI.2006.244
10.1145/3507901
10.1007/978-3-319-46478-7_31
ContentType Journal Article
Copyright 2025 Elsevier B.V.
Copyright_xml – notice: 2025 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2025.129423
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_neucom_2025_129423
S0925231225000955
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
LG9
M41
R2-
SBC
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-aabc3dbb04b3e1f606e1ca7712842a71b02c65746f7d3fcbf92ce28844e151c43
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001413517700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 08:19:24 EST 2025
Tue Nov 18 22:26:21 EST 2025
Sat Mar 01 15:45:19 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Just noticeable distortion
Deep neural network
Face recognition
Image and video coding
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-aabc3dbb04b3e1f606e1ca7712842a71b02c65746f7d3fcbf92ce28844e151c43
ORCID 0000-0001-7484-7261
0000-0003-4884-6956
0000-0003-1245-8345
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2025_129423
crossref_primary_10_1016_j_neucom_2025_129423
elsevier_sciencedirect_doi_10_1016_j_neucom_2025_129423
PublicationCentury 2000
PublicationDate 2025-04-01
2025-04-00
PublicationDateYYYYMMDD 2025-04-01
PublicationDate_xml – month: 04
  year: 2025
  text: 2025-04-01
  day: 01
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, F. Huang, CurricularFace: adaptive curriculum learning loss for deep face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 5901–5910.
D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proc. Int. Conf. Mach. Learn., 2015.
Lin, Ghinea (b16) 2021; 24
H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, W. Liu, CosFace: Large margin cosine loss for deep face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 5265–5274.
Cheng, Zhu, Gong (b71) 2019
M. Knoche, S. Hormann, G. Rigoll, Cross-quality LFW: A database for analyzing cross-resolution image face recognition in unconstrained environments, in: Proc. IEEE Int. Conf. Automatic Face Gesture Recog., 2021, pp. 1–5.
T.I. Dhamecha, P. Sharma, R. Singh, M. Vatsa, On effectiveness of histogram of oriented gradient features for visible to near infrared face matching, in: Proc. Int. Conf. Pattern Recog., 2014, pp. 1788–1793.
Zhang, Wang, Zhang, Ma, Gao (b22) 2021; 129
J.C.L. Chai, T.-S. Ng, C.-Y. Low, J. Park, A.B.J. Teoh, Recognizability Embedding Enhancement for Very Low-Resolution Face Recognition and Quality Estimation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2023, pp. 9957–9967.
Du, Yu, Liu, Dai, Xu (b11) 2024; 600
Krizhevsky, Sutskever, Hinton (b34) 2012; 25
Chou, Li (b52) 1995; 5
ISO, JTC (b51) 2022
Zhang, Lin, Sun, Zhu, Kwong (b17) 2023
M. Kim, F. Liu, A. Jain, X. Liu, DCFace: Synthetic Face Generation with Dual Condition Diffusion Model, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2023, pp. 12715–12725.
Ma, Ngan, Zhang, Li (b58) 2011; 26
T. Schlett, S. Schachner, C. Rathgeb, J. Tapia, C. Busch, Effect of Lossy Compression Algorithms on Face Image Quality and Recognition, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2023, pp. 1–5.
Yang, Lin, Lu, Ong, Yao (b64) 2005; 15
K. Delac, M. Grgic, S. Grgic, Image compression effects in face recognition systems, in: Face Recog., 2007.
ISO, JTC (b48) 1994
Liu, Lin, Paul, Deng, Zhang (b53) 2010; 20
Paszke, Gross, Massa, Lerer, Bradbury, Chanan, Killeen, Lin, Gimelshein, Antiga (b67) 2019; 32
Quinn, Grother, Quinn (b45) 2011
S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proc. Int. Conf. Machine Learn., 2015, pp. 448–456.
Jiang, Liu, Wang, Shao, Lin (b21) 2022; 31
Ahonen, Hadid, Pietikainen (b30) 2006; 28
H. Qiu, B. Yu, D. Gong, Z. Li, W. Liu, D. Tao, Synface: Face recognition with synthetic data, in: Pro. IEEE Int. Conf. Comput. ViS., 2021, pp. 10880–10890.
G. Bae, M. de La Gorce, T. Baltrušaitis, C. Hewitt, D. Chen, J. Valentin, R. Cipolla, J. Shen, DigiFace-1M: 1 million digital face images for face recognition, in: Proc. IEEE Winter Conf. Appl. Comput. Vis., 2023, pp. 3526–3535.
Zhang, Liu, Yang, Fan, Kwong, Kuo (b19) 2022; 32
F. Boutros, M. Fang, M. Klemt, B. Fu, N. Damer, CR-FIQA: face image quality assessment by learning sample relative classifiability, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2023, pp. 5836–5845.
Ronneberger, Fischer, Brox (b60) 2015
Schlett, Rathgeb, Henniger, Galbally, Fierrez, Busch (b1) 2022; 54
Seo, Ki, Kim (b20) 2021; 31
W. Funk, M. Arnold, C. Busch, A. Munde, Evaluation of image compression algorithms for fingerprint and face recognition systems, in: Proc. the Sixth Annual IEEE SMC Infor. Assurance Worksh., 2005, pp. 72–78.
Wu, Shi, Lin, Liu, Qi (b54) 2013; 15
F.-Z. Ou, X. Chen, R. Zhang, Y. Huang, S. Li, J. Li, Y. Li, L. Cao, Y.-G. Wang, SDD-FIQA: unsupervised face image quality assessment with similarity distribution distance, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 7670–7679.
Truong, Duong, Quach, Le, Bui, Luu (b12) 2023; 543
ISO, JTC (b50) 2004
Delac, Grgic, Grgic (b13) 2008
J. Deng, J. Guo, D. Zhang, Y. Deng, X. Lu, S. Shi, Lightweight face recognition challenge, in: Proc. IEEE Int. Conf. Comput. Vis. Worksh., 2019.
Q. Meng, S. Zhao, Z. Huang, F. Zhou, MagFace: A universal representation for face recognition and quality assessment, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 14225–14234.
J. Deng, J. Guo, N. Xue, S. Zafeiriou, ArcFace: Additive angular margin loss for deep face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 4690–4699.
Wei, Ngan (b57) 2009; 19
Shen, Ni, Yang, Zhang, Wang, Kwong (b56) 2021; 30
Z. Zhu, G. Huang, J. Deng, Y. Ye, J. Huang, X. Chen, J. Zhu, T. Yang, J. Lu, D. Du, et al., WebFace260M: A benchmark unveiling the power of million-scale deep face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 10492–10502.
M. Kim, A.K. Jain, X. Liu, AdaFace: Quality adaptive margin for face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 18750–18759.
Wu, Li, Dong, Shi, Lin, Kuo (b55) 2017; 26
G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database for studying face recognition in unconstrained environments, in: Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition, 2008.
Y. Wen, K. Zhang, Z. Li, Y. Qiao, A discriminative feature learning approach for deep face recognition, in: Proc. Eur. Conf. Comput. Vis., 2016, pp. 499–515.
Jin, Zhang, Fu, Zhang, Lin, Lou, Zhao (b23) 2022; 32
ISO, JTC (b49) 2019
Pan, Yu, Lei, Ling, Kwong (b7) 2022; 32
Cong, Qin, Zhang, Jiang, Wang, Zhao, Kwong (b24) 2023; 33
M. Ehrlich, L. Davis, S.-N. Lim, A. Shrivastava, Analyzing and mitigating jpeg compression defects in deep learning, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 2357–2367.
Jakhetiya, Lin, Jaiswal, Gu, Guntuku (b18) 2018; 275
Liu, Wechsler (b32) 2002; 11
Bae, Kim (b59) 2014; 23
K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770–778.
P. Terhörst, J.N. Kolf, N. Damer, F. Kirchbuchner, A. Kuijper, SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 5650–5659.
S. Zhou, F. Wang, Z. Huang, J. Wang, Discriminative feature learning with consistent attention regularization for person re-identification, in: Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 8040–8049.
S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, S. Zafeiriou, AgeDB: the first manually collected, in-the-wild age database, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog. Worksh., Vol. 2, (3) 2017, p. 5.
Zheng, Deng, Hu (b29) 2017
F.-Z. Ou, C. Li, S. Wang, S. Kwong, CLIB-FIQA: Face Image Quality Assessment with Confidence Calibration, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2024, pp. 1694–1704.
Zheng, Deng (b28) 2018; 5
F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A unified embedding for face recognition and clustering, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 815–823.
S. Sengupta, J.-C. Chen, C. Castillo, V.M. Patel, R. Chellappa, D.W. Jacobs, Frontal to profile face verification in the wild, in: Proc. IEEE Winter Conf. Appl. Comput. Vis., 2016, pp. 1–9.
A.K. John, O.O. Williams, Performance evaluation of image compression on PCA-based face recognition systems, in: Proc. Int. Conf. Hybrid Intell. Syst., 2012, pp. 26–33.
Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the gap to human-level performance in face verification, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 1701–1708.
Zhang, Lin, Xue (b63) 2005; 85
Phillips, Moon, Rizvi, Rauss (b47) 2000; 22
W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, SphereFace: Deep hypersphere embedding for face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 212–220.
Quinn (10.1016/j.neucom.2025.129423_b45) 2011
Zhang (10.1016/j.neucom.2025.129423_b63) 2005; 85
10.1016/j.neucom.2025.129423_b39
10.1016/j.neucom.2025.129423_b5
10.1016/j.neucom.2025.129423_b4
10.1016/j.neucom.2025.129423_b31
10.1016/j.neucom.2025.129423_b3
Wu (10.1016/j.neucom.2025.129423_b54) 2013; 15
10.1016/j.neucom.2025.129423_b2
10.1016/j.neucom.2025.129423_b33
10.1016/j.neucom.2025.129423_b9
Krizhevsky (10.1016/j.neucom.2025.129423_b34) 2012; 25
10.1016/j.neucom.2025.129423_b36
10.1016/j.neucom.2025.129423_b8
10.1016/j.neucom.2025.129423_b35
10.1016/j.neucom.2025.129423_b38
Paszke (10.1016/j.neucom.2025.129423_b67) 2019; 32
10.1016/j.neucom.2025.129423_b6
10.1016/j.neucom.2025.129423_b37
Du (10.1016/j.neucom.2025.129423_b11) 2024; 600
Jiang (10.1016/j.neucom.2025.129423_b21) 2022; 31
Cong (10.1016/j.neucom.2025.129423_b24) 2023; 33
Delac (10.1016/j.neucom.2025.129423_b13) 2008
10.1016/j.neucom.2025.129423_b41
Ma (10.1016/j.neucom.2025.129423_b58) 2011; 26
10.1016/j.neucom.2025.129423_b40
Jakhetiya (10.1016/j.neucom.2025.129423_b18) 2018; 275
Zheng (10.1016/j.neucom.2025.129423_b28) 2018; 5
Zhang (10.1016/j.neucom.2025.129423_b22) 2021; 129
Truong (10.1016/j.neucom.2025.129423_b12) 2023; 543
Seo (10.1016/j.neucom.2025.129423_b20) 2021; 31
ISO (10.1016/j.neucom.2025.129423_b48) 1994
ISO (10.1016/j.neucom.2025.129423_b51) 2022
Zhang (10.1016/j.neucom.2025.129423_b19) 2022; 32
Zheng (10.1016/j.neucom.2025.129423_b29) 2017
Cheng (10.1016/j.neucom.2025.129423_b71) 2019
10.1016/j.neucom.2025.129423_b65
10.1016/j.neucom.2025.129423_b66
10.1016/j.neucom.2025.129423_b25
Wei (10.1016/j.neucom.2025.129423_b57) 2009; 19
10.1016/j.neucom.2025.129423_b69
10.1016/j.neucom.2025.129423_b68
10.1016/j.neucom.2025.129423_b27
10.1016/j.neucom.2025.129423_b26
10.1016/j.neucom.2025.129423_b70
ISO (10.1016/j.neucom.2025.129423_b50) 2004
Pan (10.1016/j.neucom.2025.129423_b7) 2022; 32
Schlett (10.1016/j.neucom.2025.129423_b1) 2022; 54
Wu (10.1016/j.neucom.2025.129423_b55) 2017; 26
10.1016/j.neucom.2025.129423_b10
10.1016/j.neucom.2025.129423_b14
10.1016/j.neucom.2025.129423_b15
Chou (10.1016/j.neucom.2025.129423_b52) 1995; 5
Lin (10.1016/j.neucom.2025.129423_b16) 2021; 24
Liu (10.1016/j.neucom.2025.129423_b32) 2002; 11
10.1016/j.neucom.2025.129423_b61
Zhang (10.1016/j.neucom.2025.129423_b17) 2023
10.1016/j.neucom.2025.129423_b62
Shen (10.1016/j.neucom.2025.129423_b56) 2021; 30
Ahonen (10.1016/j.neucom.2025.129423_b30) 2006; 28
Phillips (10.1016/j.neucom.2025.129423_b47) 2000; 22
Bae (10.1016/j.neucom.2025.129423_b59) 2014; 23
ISO (10.1016/j.neucom.2025.129423_b49) 2019
10.1016/j.neucom.2025.129423_b43
10.1016/j.neucom.2025.129423_b42
10.1016/j.neucom.2025.129423_b44
Ronneberger (10.1016/j.neucom.2025.129423_b60) 2015
10.1016/j.neucom.2025.129423_b46
Yang (10.1016/j.neucom.2025.129423_b64) 2005; 15
Liu (10.1016/j.neucom.2025.129423_b53) 2010; 20
Jin (10.1016/j.neucom.2025.129423_b23) 2022; 32
References_xml – year: 2011
  ident: b45
  article-title: Performance of Face Recognition Algorithms on Compressed Images
– reference: F. Boutros, M. Fang, M. Klemt, B. Fu, N. Damer, CR-FIQA: face image quality assessment by learning sample relative classifiability, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2023, pp. 5836–5845.
– volume: 20
  start-page: 1648
  year: 2010
  end-page: 1652
  ident: b53
  article-title: Just noticeable difference for images with decomposition model for separating edge and textured regions
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– year: 1994
  ident: b48
  article-title: ISO/IEC 10918- 1:1994 information technology - digital compression and coding of continuous-tone still images: Requirements and guidelines
– volume: 26
  start-page: 2682
  year: 2017
  end-page: 2693
  ident: b55
  article-title: Enhanced just noticeable difference model for images with pattern complexity
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 162
  year: 2011
  end-page: 174
  ident: b58
  article-title: Adaptive block-size transform based just-noticeable difference model for images/videos
  publication-title: Signal Process., Image Commun.
– reference: J. Deng, J. Guo, N. Xue, S. Zafeiriou, ArcFace: Additive angular margin loss for deep face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2019, pp. 4690–4699.
– reference: Z. Zhu, G. Huang, J. Deng, Y. Ye, J. Huang, X. Chen, J. Zhu, T. Yang, J. Lu, D. Du, et al., WebFace260M: A benchmark unveiling the power of million-scale deep face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 10492–10502.
– volume: 129
  start-page: 2889
  year: 2021
  end-page: 2906
  ident: b22
  article-title: Just recognizable distortion for machine vision oriented image and video coding
  publication-title: Int. J. Comput. Vis.
– reference: W. Funk, M. Arnold, C. Busch, A. Munde, Evaluation of image compression algorithms for fingerprint and face recognition systems, in: Proc. the Sixth Annual IEEE SMC Infor. Assurance Worksh., 2005, pp. 72–78.
– reference: S. Zhou, F. Wang, Z. Huang, J. Wang, Discriminative feature learning with consistent attention regularization for person re-identification, in: Proc. IEEE Int. Conf. Comput. Vis., 2019, pp. 8040–8049.
– volume: 543
  year: 2023
  ident: b12
  article-title: LIAAD: Lightweight attentive angular distillation for large-scale age-invariant face recognition
  publication-title: Neurocomputing
– volume: 5
  start-page: 467
  year: 1995
  end-page: 476
  ident: b52
  article-title: A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: G.B. Huang, M. Mattar, T. Berg, E. Learned-Miller, Labeled faces in the wild: A database for studying face recognition in unconstrained environments, in: Workshop on Faces in’Real-Life’Images: Detection, Alignment, and Recognition, 2008.
– reference: D.P. Kingma, J. Ba, Adam: a method for stochastic optimization, in: Proc. Int. Conf. Mach. Learn., 2015.
– reference: M. Ehrlich, L. Davis, S.-N. Lim, A. Shrivastava, Analyzing and mitigating jpeg compression defects in deep learning, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 2357–2367.
– start-page: 1
  year: 2023
  end-page: 14
  ident: b17
  article-title: Learning to predict object-wise just recognizable distortion for image and video compression
  publication-title: IEEE Trans. Multimed.
– reference: S. Moschoglou, A. Papaioannou, C. Sagonas, J. Deng, I. Kotsia, S. Zafeiriou, AgeDB: the first manually collected, in-the-wild age database, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog. Worksh., Vol. 2, (3) 2017, p. 5.
– reference: H. Qiu, B. Yu, D. Gong, Z. Li, W. Liu, D. Tao, Synface: Face recognition with synthetic data, in: Pro. IEEE Int. Conf. Comput. ViS., 2021, pp. 10880–10890.
– start-page: 605
  year: 2019
  end-page: 621
  ident: b71
  article-title: Low-resolution face recognition
  publication-title: Asian Conference on Computer Vision
– reference: F.-Z. Ou, C. Li, S. Wang, S. Kwong, CLIB-FIQA: Face Image Quality Assessment with Confidence Calibration, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2024, pp. 1694–1704.
– start-page: 236
  year: 2008
  end-page: 250
  ident: b13
  article-title: Image compression in face recognition-a literature survey
  publication-title: Recent. Adv. Face Recognit.
– reference: Y. Wen, K. Zhang, Z. Li, Y. Qiao, A discriminative feature learning approach for deep face recognition, in: Proc. Eur. Conf. Comput. Vis., 2016, pp. 499–515.
– reference: J.C.L. Chai, T.-S. Ng, C.-Y. Low, J. Park, A.B.J. Teoh, Recognizability Embedding Enhancement for Very Low-Resolution Face Recognition and Quality Estimation, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2023, pp. 9957–9967.
– reference: M. Knoche, S. Hormann, G. Rigoll, Cross-quality LFW: A database for analyzing cross-resolution image face recognition in unconstrained environments, in: Proc. IEEE Int. Conf. Automatic Face Gesture Recog., 2021, pp. 1–5.
– volume: 23
  start-page: 3227
  year: 2014
  end-page: 3240
  ident: b59
  article-title: A novel generalized DCT-based JND profile based on an elaborate CM-JND model for variable block-sized transforms in monochrome images
  publication-title: IEEE Trans. Image Process.
– volume: 54
  start-page: 1
  year: 2022
  end-page: 49
  ident: b1
  article-title: Face image quality assessment: A literature survey
  publication-title: ACM Comput. Surv.
– volume: 32
  start-page: 1197
  year: 2022
  end-page: 1212
  ident: b19
  article-title: Deep learning based just noticeable difference and perceptual quality prediction models for compressed video
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: F. Schroff, D. Kalenichenko, J. Philbin, FaceNet: A unified embedding for face recognition and clustering, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2015, pp. 815–823.
– reference: Y. Huang, Y. Wang, Y. Tai, X. Liu, P. Shen, S. Li, J. Li, F. Huang, CurricularFace: adaptive curriculum learning loss for deep face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 5901–5910.
– volume: 32
  start-page: 345
  year: 2022
  end-page: 358
  ident: b7
  article-title: TSAN: Synthesized view quality enhancement via two-stream attention network for 3D-HEVC
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: K. Delac, M. Grgic, S. Grgic, Image compression effects in face recognition systems, in: Face Recog., 2007.
– volume: 15
  start-page: 1705
  year: 2013
  end-page: 1710
  ident: b54
  article-title: Just noticeable difference estimation for images with free-energy principle
  publication-title: IEEE Trans. Multimed.
– volume: 31
  start-page: 3697
  year: 2022
  end-page: 3712
  ident: b21
  article-title: Toward top-down just noticeable difference estimation of natural images
  publication-title: IEEE Trans. Image Process.
– volume: 19
  start-page: 337
  year: 2009
  end-page: 346
  ident: b57
  article-title: Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 28
  start-page: 2037
  year: 2006
  end-page: 2041
  ident: b30
  article-title: Face description with local binary patterns: Application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: F.-Z. Ou, X. Chen, R. Zhang, Y. Huang, S. Li, J. Li, Y. Li, L. Cao, Y.-G. Wang, SDD-FIQA: unsupervised face image quality assessment with similarity distribution distance, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 7670–7679.
– reference: H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li, W. Liu, CosFace: Large margin cosine loss for deep face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2018, pp. 5265–5274.
– reference: T. Schlett, S. Schachner, C. Rathgeb, J. Tapia, C. Busch, Effect of Lossy Compression Algorithms on Face Image Quality and Recognition, in: Proc. IEEE Int. Conf. Acoust. Speech Signal Process, 2023, pp. 1–5.
– volume: 600
  year: 2024
  ident: b11
  article-title: Ethics-aware face recognition aided by synthetic face images
  publication-title: Neurocomputing
– year: 2017
  ident: b29
  article-title: Cross-age LFW: A database for studying cross-age face recognition in unconstrained environments
– volume: 24
  start-page: 3706
  year: 2021
  end-page: 3721
  ident: b16
  article-title: Progress and opportunities in modelling just-noticeable difference (JND) for multimedia
  publication-title: IEEE Trans. Multimed.
– start-page: 234
  year: 2015
  end-page: 241
  ident: b60
  article-title: U-Net: Convolutional networks for biomedical image segmentation
  publication-title: Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, October 5-9, 2015, Proceedings, Part III 18
– year: 2019
  ident: b49
  article-title: ISO/IEC 15444- 1:2019 information technology - JPEG 2000 image coding system - Part 1: Core coding system
– volume: 31
  start-page: 2602
  year: 2021
  end-page: 2616
  ident: b20
  article-title: A novel just-noticeable-difference-based saliency-channel attention residual network for full-reference image quality predictions
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: Y. Taigman, M. Yang, M. Ranzato, L. Wolf, DeepFace: Closing the gap to human-level performance in face verification, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2014, pp. 1701–1708.
– reference: A.K. John, O.O. Williams, Performance evaluation of image compression on PCA-based face recognition systems, in: Proc. Int. Conf. Hybrid Intell. Syst., 2012, pp. 26–33.
– volume: 32
  year: 2019
  ident: b67
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 15
  start-page: 742
  year: 2005
  end-page: 752
  ident: b64
  article-title: Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: P. Terhörst, J.N. Kolf, N. Damer, F. Kirchbuchner, A. Kuijper, SER-FIQ: Unsupervised Estimation of Face Image Quality Based on Stochastic Embedding Robustness, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2020, pp. 5650–5659.
– volume: 5
  year: 2018
  ident: b28
  article-title: Cross-pose LFW: A database for studying cross-pose face recognition in unconstrained environments
  publication-title: Beijing Univ. Posts Telecommun. Tech. Rep
– reference: T.I. Dhamecha, P. Sharma, R. Singh, M. Vatsa, On effectiveness of histogram of oriented gradient features for visible to near infrared face matching, in: Proc. Int. Conf. Pattern Recog., 2014, pp. 1788–1793.
– year: 2022
  ident: b51
  article-title: ISO/IEC 18181- 1:2022 information technology - JPEG XL image coding system - Part 1: Core coding system
– reference: S. Ioffe, C. Szegedy, Batch normalization: Accelerating deep network training by reducing internal covariate shift, in: Proc. Int. Conf. Machine Learn., 2015, pp. 448–456.
– volume: 275
  start-page: 366
  year: 2018
  end-page: 376
  ident: b18
  article-title: Just noticeable difference for natural images using RMS contrast and feed-back mechanism
  publication-title: Neurocomputing
– volume: 32
  start-page: 3452
  year: 2022
  end-page: 3461
  ident: b23
  article-title: Just noticeable difference for deep machine vision
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– volume: 33
  start-page: 534
  year: 2023
  end-page: 548
  ident: b24
  article-title: A weakly supervised learning framework for salient object detection via hybrid labels
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
– reference: W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, L. Song, SphereFace: Deep hypersphere embedding for face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2017, pp. 212–220.
– volume: 85
  start-page: 795
  year: 2005
  end-page: 808
  ident: b63
  article-title: Improved estimation for just-noticeable visual distortion
  publication-title: Signal Process.
– volume: 22
  start-page: 1090
  year: 2000
  end-page: 1104
  ident: b47
  article-title: The FERET evaluation methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2004
  ident: b50
  article-title: ISO/IEC 15948:2004 information technology - computer graphics and image processing - portable network graphics (PNG): Functional specification
– reference: M. Kim, F. Liu, A. Jain, X. Liu, DCFace: Synthetic Face Generation with Dual Condition Diffusion Model, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2023, pp. 12715–12725.
– reference: M. Kim, A.K. Jain, X. Liu, AdaFace: Quality adaptive margin for face recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2022, pp. 18750–18759.
– reference: J. Deng, J. Guo, D. Zhang, Y. Deng, X. Lu, S. Shi, Lightweight face recognition challenge, in: Proc. IEEE Int. Conf. Comput. Vis. Worksh., 2019.
– reference: G. Bae, M. de La Gorce, T. Baltrušaitis, C. Hewitt, D. Chen, J. Valentin, R. Cipolla, J. Shen, DigiFace-1M: 1 million digital face images for face recognition, in: Proc. IEEE Winter Conf. Appl. Comput. Vis., 2023, pp. 3526–3535.
– reference: S. Sengupta, J.-C. Chen, C. Castillo, V.M. Patel, R. Chellappa, D.W. Jacobs, Frontal to profile face verification in the wild, in: Proc. IEEE Winter Conf. Appl. Comput. Vis., 2016, pp. 1–9.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2016, pp. 770–778.
– volume: 11
  start-page: 467
  year: 2002
  end-page: 476
  ident: b32
  article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
  publication-title: IEEE Trans. Image Process.
– volume: 30
  start-page: 26
  year: 2021
  end-page: 38
  ident: b56
  article-title: Just noticeable distortion profile inference: A patch-level structural visibility learning approach
  publication-title: IEEE Trans. Image Process.
– volume: 25
  year: 2012
  ident: b34
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: Q. Meng, S. Zhao, Z. Huang, F. Zhou, MagFace: A universal representation for face recognition and quality assessment, in: Proc. IEEE Conf. Comput. Vis. Pattern Recog., 2021, pp. 14225–14234.
– ident: 10.1016/j.neucom.2025.129423_b62
  doi: 10.1109/ICCV.2019.00813
– volume: 15
  start-page: 1705
  issue: 7
  year: 2013
  ident: 10.1016/j.neucom.2025.129423_b54
  article-title: Just noticeable difference estimation for images with free-energy principle
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2013.2268053
– ident: 10.1016/j.neucom.2025.129423_b31
  doi: 10.1109/ICPR.2014.314
– ident: 10.1016/j.neucom.2025.129423_b46
  doi: 10.1109/HIS.2012.6421304
– start-page: 236
  year: 2008
  ident: 10.1016/j.neucom.2025.129423_b13
  article-title: Image compression in face recognition-a literature survey
  publication-title: Recent. Adv. Face Recognit.
– volume: 85
  start-page: 795
  issue: 4
  year: 2005
  ident: 10.1016/j.neucom.2025.129423_b63
  article-title: Improved estimation for just-noticeable visual distortion
  publication-title: Signal Process.
  doi: 10.1016/j.sigpro.2004.12.002
– ident: 10.1016/j.neucom.2025.129423_b14
  doi: 10.1109/ICASSP49357.2023.10095832
– volume: 32
  start-page: 3452
  issue: 6
  year: 2022
  ident: 10.1016/j.neucom.2025.129423_b23
  article-title: Just noticeable difference for deep machine vision
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3113572
– volume: 22
  start-page: 1090
  issue: 10
  year: 2000
  ident: 10.1016/j.neucom.2025.129423_b47
  article-title: The FERET evaluation methodology for face-recognition algorithms
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.879790
– ident: 10.1016/j.neucom.2025.129423_b65
  doi: 10.1109/CVPR46437.2021.01035
– volume: 129
  start-page: 2889
  issue: 10
  year: 2021
  ident: 10.1016/j.neucom.2025.129423_b22
  article-title: Just recognizable distortion for machine vision oriented image and video coding
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-021-01505-4
– ident: 10.1016/j.neucom.2025.129423_b43
  doi: 10.1109/IAW.2005.1495936
– ident: 10.1016/j.neucom.2025.129423_b68
  doi: 10.1109/CVPR.2016.90
– ident: 10.1016/j.neucom.2025.129423_b25
– ident: 10.1016/j.neucom.2025.129423_b42
  doi: 10.1109/CVPR52688.2022.01819
– volume: 5
  start-page: 467
  issue: 6
  year: 1995
  ident: 10.1016/j.neucom.2025.129423_b52
  article-title: A perceptually tuned subband image coder based on the measure of just-noticeable-distortion profile
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/76.475889
– volume: 26
  start-page: 162
  issue: 3
  year: 2011
  ident: 10.1016/j.neucom.2025.129423_b58
  article-title: Adaptive block-size transform based just-noticeable difference model for images/videos
  publication-title: Signal Process., Image Commun.
  doi: 10.1016/j.image.2011.02.002
– year: 2017
  ident: 10.1016/j.neucom.2025.129423_b29
– ident: 10.1016/j.neucom.2025.129423_b39
  doi: 10.1109/CVPR.2019.00482
– ident: 10.1016/j.neucom.2025.129423_b10
  doi: 10.1109/CVPR52729.2023.01223
– ident: 10.1016/j.neucom.2025.129423_b37
  doi: 10.1109/CVPR.2017.713
– ident: 10.1016/j.neucom.2025.129423_b38
  doi: 10.1109/CVPR.2018.00552
– volume: 26
  start-page: 2682
  issue: 6
  year: 2017
  ident: 10.1016/j.neucom.2025.129423_b55
  article-title: Enhanced just noticeable difference model for images with pattern complexity
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2685682
– ident: 10.1016/j.neucom.2025.129423_b41
  doi: 10.1109/CVPR46437.2021.01400
– ident: 10.1016/j.neucom.2025.129423_b26
  doi: 10.1109/WACV.2016.7477558
– volume: 30
  start-page: 26
  year: 2021
  ident: 10.1016/j.neucom.2025.129423_b56
  article-title: Just noticeable distortion profile inference: A patch-level structural visibility learning approach
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.3029428
– ident: 10.1016/j.neucom.2025.129423_b36
  doi: 10.1109/CVPR.2015.7298682
– start-page: 605
  year: 2019
  ident: 10.1016/j.neucom.2025.129423_b71
  article-title: Low-resolution face recognition
– ident: 10.1016/j.neucom.2025.129423_b8
  doi: 10.1109/ICCV48922.2021.01070
– ident: 10.1016/j.neucom.2025.129423_b27
  doi: 10.1109/CVPRW.2017.250
– volume: 600
  year: 2024
  ident: 10.1016/j.neucom.2025.129423_b11
  article-title: Ethics-aware face recognition aided by synthetic face images
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2024.128129
– volume: 24
  start-page: 3706
  year: 2021
  ident: 10.1016/j.neucom.2025.129423_b16
  article-title: Progress and opportunities in modelling just-noticeable difference (JND) for multimedia
  publication-title: IEEE Trans. Multimed.
  doi: 10.1109/TMM.2021.3106503
– volume: 543
  year: 2023
  ident: 10.1016/j.neucom.2025.129423_b12
  article-title: LIAAD: Lightweight attentive angular distillation for large-scale age-invariant face recognition
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.03.059
– volume: 20
  start-page: 1648
  issue: 11
  year: 2010
  ident: 10.1016/j.neucom.2025.129423_b53
  article-title: Just noticeable difference for images with decomposition model for separating edge and textured regions
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2010.2087432
– ident: 10.1016/j.neucom.2025.129423_b9
  doi: 10.1109/WACV56688.2023.00352
– ident: 10.1016/j.neucom.2025.129423_b15
  doi: 10.1109/ICCVW54120.2021.00267
– volume: 33
  start-page: 534
  issue: 2
  year: 2023
  ident: 10.1016/j.neucom.2025.129423_b24
  article-title: A weakly supervised learning framework for salient object detection via hybrid labels
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2022.3205182
– year: 2011
  ident: 10.1016/j.neucom.2025.129423_b45
– volume: 32
  year: 2019
  ident: 10.1016/j.neucom.2025.129423_b67
  article-title: Pytorch: An imperative style, high-performance deep learning library
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 32
  start-page: 1197
  issue: 3
  year: 2022
  ident: 10.1016/j.neucom.2025.129423_b19
  article-title: Deep learning based just noticeable difference and perceptual quality prediction models for compressed video
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3076224
– start-page: 234
  year: 2015
  ident: 10.1016/j.neucom.2025.129423_b60
  article-title: U-Net: Convolutional networks for biomedical image segmentation
– volume: 31
  start-page: 3697
  year: 2022
  ident: 10.1016/j.neucom.2025.129423_b21
  article-title: Toward top-down just noticeable difference estimation of natural images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3174398
– ident: 10.1016/j.neucom.2025.129423_b4
– volume: 15
  start-page: 742
  issue: 6
  year: 2005
  ident: 10.1016/j.neucom.2025.129423_b64
  article-title: Motion-compensated residue preprocessing in video coding based on just-noticeable-distortion profile
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2005.848313
– ident: 10.1016/j.neucom.2025.129423_b40
  doi: 10.1109/CVPR42600.2020.00594
– ident: 10.1016/j.neucom.2025.129423_b33
  doi: 10.1109/CVPR.2014.220
– ident: 10.1016/j.neucom.2025.129423_b61
– year: 2004
  ident: 10.1016/j.neucom.2025.129423_b50
– ident: 10.1016/j.neucom.2025.129423_b5
  doi: 10.1109/CVPR52729.2023.00960
– volume: 31
  start-page: 2602
  issue: 7
  year: 2021
  ident: 10.1016/j.neucom.2025.129423_b20
  article-title: A novel just-noticeable-difference-based saliency-channel attention residual network for full-reference image quality predictions
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2020.3030895
– ident: 10.1016/j.neucom.2025.129423_b69
  doi: 10.1109/ICCVW.2019.00322
– volume: 5
  issue: 7
  year: 2018
  ident: 10.1016/j.neucom.2025.129423_b28
  article-title: Cross-pose LFW: A database for studying cross-pose face recognition in unconstrained environments
  publication-title: Beijing Univ. Posts Telecommun. Tech. Rep
– ident: 10.1016/j.neucom.2025.129423_b70
– volume: 19
  start-page: 337
  issue: 3
  year: 2009
  ident: 10.1016/j.neucom.2025.129423_b57
  article-title: Spatio-temporal just noticeable distortion profile for grey scale image/video in DCT domain
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2009.2013518
– year: 2019
  ident: 10.1016/j.neucom.2025.129423_b49
– volume: 11
  start-page: 467
  issue: 4
  year: 2002
  ident: 10.1016/j.neucom.2025.129423_b32
  article-title: Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2002.999679
– volume: 275
  start-page: 366
  year: 2018
  ident: 10.1016/j.neucom.2025.129423_b18
  article-title: Just noticeable difference for natural images using RMS contrast and feed-back mechanism
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.031
– ident: 10.1016/j.neucom.2025.129423_b2
  doi: 10.1109/FG52635.2021.9666960
– volume: 32
  start-page: 345
  issue: 1
  year: 2022
  ident: 10.1016/j.neucom.2025.129423_b7
  article-title: TSAN: Synthesized view quality enhancement via two-stream attention network for 3D-HEVC
  publication-title: IEEE Trans. Circuits Syst. Video Technol.
  doi: 10.1109/TCSVT.2021.3057518
– start-page: 1
  year: 2023
  ident: 10.1016/j.neucom.2025.129423_b17
  article-title: Learning to predict object-wise just recognizable distortion for image and video compression
  publication-title: IEEE Trans. Multimed.
– ident: 10.1016/j.neucom.2025.129423_b66
  doi: 10.1109/CVPR52729.2023.00565
– ident: 10.1016/j.neucom.2025.129423_b6
  doi: 10.1109/CVPR52733.2024.00167
– ident: 10.1016/j.neucom.2025.129423_b44
  doi: 10.5772/4832
– year: 2022
  ident: 10.1016/j.neucom.2025.129423_b51
– year: 1994
  ident: 10.1016/j.neucom.2025.129423_b48
– ident: 10.1016/j.neucom.2025.129423_b3
  doi: 10.1109/CVPR42600.2020.00569
– volume: 25
  year: 2012
  ident: 10.1016/j.neucom.2025.129423_b34
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 23
  start-page: 3227
  issue: 8
  year: 2014
  ident: 10.1016/j.neucom.2025.129423_b59
  article-title: A novel generalized DCT-based JND profile based on an elaborate CM-JND model for variable block-sized transforms in monochrome images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2327808
– volume: 28
  start-page: 2037
  issue: 12
  year: 2006
  ident: 10.1016/j.neucom.2025.129423_b30
  article-title: Face description with local binary patterns: Application to face recognition
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2006.244
– volume: 54
  start-page: 1
  issue: 10s
  year: 2022
  ident: 10.1016/j.neucom.2025.129423_b1
  article-title: Face image quality assessment: A literature survey
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3507901
– ident: 10.1016/j.neucom.2025.129423_b35
  doi: 10.1007/978-3-319-46478-7_31
SSID ssj0017129
Score 2.4447773
Snippet Considerable facial data is often compressed prior to analysis to accommodate limitations in transmission or storage capacities. However, this compression may...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129423
SubjectTerms Deep neural network
Face recognition
Image and video coding
Just noticeable distortion
Title Seeking the optimal accuracy-rate equilibrium in face recognition
URI https://dx.doi.org/10.1016/j.neucom.2025.129423
Volume 624
WOSCitedRecordID wos001413517700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLag2wMv3DbExkV-2NvkKXWcOHksaAgQmpDWocJLZDvOmkLT9eJp_HuOYydNGdrlAamKKstxopxPJ5-_nAtCBzpOuciFJkIGgjAV2W6AKSc6kDrOBfzqXJhvX_jJSTIapV99dsmybifAqyq5ukov_qupYQyMbVNn72HudlEYgP9gdDiC2eF4J8Ofav2zyYGagUOY2moASpmFUL-JLQxxqOemrEP9zdTKHYVQtneKDyTyZpo0VZ0MvOHqzg9eUxhMbWmF3OKo1RCGpZNRv5tWszU1Kzbkx1jM1qK916bH5bxcxxU4x_dOzKzict6VIWjUiV7xeiKMAVnccK0xZR3nCNSCueTia37bSQiTo0obG8RjL3C0nr5ZJvuv11cbVNjEq00yt0pmV8ncKg_RFuVRmvTQ1uDT8ehz-6GJ96krx-jvvsmurEMAr9_Nv9lLh5EMn6LHfiuBBw4Cz9ADXT1HT5o2Hdh77R14czpEYEAE9ojAG4jAHUTgssIWEbiDiF109uF4-P4j8Z0ziIIt4IoIIVWYSxkwGep-AZtU3VeCc0tGqOB9GVAVR5zFBc_DQskipUrTJGFMAwNULHyBetWs0i8RpkWQw64iSmEaC0KZqCQE3gijaa4Vp3sobJ5IpnxZedvd5Fd2kz32EGnPunBlVW6Zz5uHnXlq6ChfBgi68cz9e17pFXq0hvdr1FstjH6DttXlqlwu3nr4_AHQGYal
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Seeking+the+optimal+accuracy-rate+equilibrium+in+face+recognition&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Tian%2C+Yu&rft.au=Ou%2C+Fu-Zhao&rft.au=Wang%2C+Shiqi&rft.au=Chen%2C+Baoliang&rft.date=2025-04-01&rft.issn=0925-2312&rft.volume=624&rft.spage=129423&rft_id=info:doi/10.1016%2Fj.neucom.2025.129423&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2025_129423
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon