A high-speed unified hardware architecture for 128 and 256-bit security levels of AES and the SHA-3 candidate Grøstl

One of the five final SHA-3 candidates, Grøstl, has been inspired by the Advanced Encryption Standard. This unique feature can be exploited in a large variety of practical applications. In order to have a better picture of the Grøstl–AES computational efficiency (high-level scheduling, internal pipe...

Full description

Saved in:
Bibliographic Details
Published in:Microprocessors and microsystems Vol. 37; no. 6-7; pp. 572 - 582
Main Authors: Rogawski, Marcin, Gaj, Kris, Homsirikamol, Ekawat
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2013
Subjects:
ISSN:0141-9331, 1872-9436
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract One of the five final SHA-3 candidates, Grøstl, has been inspired by the Advanced Encryption Standard. This unique feature can be exploited in a large variety of practical applications. In order to have a better picture of the Grøstl–AES computational efficiency (high-level scheduling, internal pipelining, resource sharing, etc.), we designed a high-speed coprocessor for the Grøstl-based HMAC and AES in the counter mode. This coprocessor offers high-speed computations of both authentication and encryption/decryption with relatively small penalty in terms of area and speed when compared to the authentication (original Grøstl circuitry) functionality only. From our perspective, the main advantage of Grøstl over other finalists is the fact that its hardware architecture naturally accommodates AES at the cost of a small area overhead.
AbstractList One of the five final SHA-3 candidates, Grøstl, has been inspired by the Advanced Encryption Standard. This unique feature can be exploited in a large variety of practical applications. In order to have a better picture of the Grøstl–AES computational efficiency (high-level scheduling, internal pipelining, resource sharing, etc.), we designed a high-speed coprocessor for the Grøstl-based HMAC and AES in the counter mode. This coprocessor offers high-speed computations of both authentication and encryption/decryption with relatively small penalty in terms of area and speed when compared to the authentication (original Grøstl circuitry) functionality only. From our perspective, the main advantage of Grøstl over other finalists is the fact that its hardware architecture naturally accommodates AES at the cost of a small area overhead.
Author Gaj, Kris
Rogawski, Marcin
Homsirikamol, Ekawat
Author_xml – sequence: 1
  givenname: Marcin
  surname: Rogawski
  fullname: Rogawski, Marcin
  email: mrogawsk@masonlive.gmu.edu, mrogawski@gmail.com
– sequence: 2
  givenname: Kris
  surname: Gaj
  fullname: Gaj, Kris
– sequence: 3
  givenname: Ekawat
  surname: Homsirikamol
  fullname: Homsirikamol, Ekawat
BookMark eNqFkMFKAzEURYMoWKt_4CI_MGNeMklbF0Ip2gqCC3UdMsmLkzLOlCSt-Gfu_TFH68qFri4X7rmLc0IOu75DQs6BlcBAXazLl2A3sS85A1EyWTImD8gIphNezCqhDsmIQQXFTAg4JicprdmwYIqPyHZOm_DcFGmD6Oi2Cz4M2ZjoXk1EaqJtQkabt0PxfaTAp9R0jnKpijpkmtBuY8hvtMUdton2ns6vH74nuUH6sJoXgtqhBmcy0mX8eE-5PSVH3rQJz35yTJ5urh8Xq-Lufnm7mN8VVjCVCzOxqIwDZH46EdJZYdFK72pgMy5qVRvhpeA1OK6krNCDrCtwEwOgPLdMjMnl_tfGPqWIXtuQTQ59l6MJrQamvwTqtd4L1F8CNZN60DPA1S94E8OLiW__YVd7bNCBu4BRJxuws-hCHERq14e_Dz4B_RGPYA
CitedBy_id crossref_primary_10_1002_cpe_5287
crossref_primary_10_1109_TCSI_2020_2997916
crossref_primary_10_1016_j_compeleceng_2018_11_022
crossref_primary_10_1109_TVLSI_2016_2606554
Cites_doi 10.1109/DSD.2012.8
10.1007/s13389-011-0009-8
10.1016/j.vlsi.2005.12.007
10.1109/FPL.2010.84
10.1109/FPT.2011.6132680
10.1109/ReConFig.2011.33
10.1109/ReConFig.2010.21
10.1007/978-3-642-15031-9_18
10.1109/ReConFig.2010.84
10.1109/ICASIC.2007.4415767
10.1007/978-3-642-23951-9_32
10.1109/NTMS.2012.6208693
10.1145/988952.989053
10.6028/NIST.IR.7896
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.micpro.2013.05.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-9436
EndPage 582
ExternalDocumentID 10_1016_j_micpro_2013_05_005
S0141933113000847
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29M
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABBOA
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
T9H
TN5
UHS
WUQ
XOL
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-a7ce6ad1e0f8735dc3cec5fdb10923b6ba3f532b1d26554ef15b41d7a116f2c03
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000326614600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-9331
IngestDate Tue Nov 18 22:33:17 EST 2025
Sat Nov 29 05:51:27 EST 2025
Fri Feb 23 02:26:33 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 6-7
Keywords IPSec
SHA-3 competition
Hardware architectures
Resource sharing
Scheduling
Pipelining
Grøstl
AES
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-a7ce6ad1e0f8735dc3cec5fdb10923b6ba3f532b1d26554ef15b41d7a116f2c03
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_micpro_2013_05_005
crossref_primary_10_1016_j_micpro_2013_05_005
elsevier_sciencedirect_doi_10_1016_j_micpro_2013_05_005
PublicationCentury 2000
PublicationDate 2013-08-01
PublicationDateYYYYMMDD 2013-08-01
PublicationDate_xml – month: 08
  year: 2013
  text: 2013-08-01
  day: 01
PublicationDecade 2010
PublicationTitle Microprocessors and microsystems
PublicationYear 2013
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References SHA3, Cryptographic Hash Algorithm Competition, 2007. <http://csrc.nist.gov/groups/ST/hash/sha3/index.html>.
S.-j. Chang, R. Perlner, W.E. Burr, M.S. Turan, J.M. Kelsey, S. Paul, L.E. Bassham, Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition. Tech. rep., National Institute of Standards and Technology (NIST), 2012.
K. Kobayashi, J. Ikegami, S. Matsuo, K. Sakiyama, K. Ohta, Evaluation of Hardware Performance for the SHA-3 Candidates Using SASEBO-GII, 2010.
S. Matsuo, M. Knežević, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama, K. Ota, How can we conduct “fair and consistent” hardware evaluation for SHA-3 candidate? Tech. rep., in: 2nd SHA-3 Candidate Conference, 2010.
NIST, Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST), FIPS Publication 197, 2001.
B. Schneier, Twofish Based Products, 2000.
R. Shahid, M.U. Sharif, M. Rogawski, K. Gaj, Use of embedded FPGA resources in implementations of 14 round 2 SHA-3 candidates, in: Proc. FPT’11, 2011, pp. 1–9.
N. At, J.-L. Beuchat, E. Okamoto, I. San, T. Yamazaki, A Low-Area Unified Hardware Architecture for the AES and the Cryptographic Hash Function Grøstl, September 2012a.
Secure Hash Standard (SHS). National Institute of Standards and Technology (NIST), October 2008.
A. Salman, M. Rogawski, J.-P. Kaps, Efficient hardware accelerator for IPSEC based on partial reconfiguration on Xilinx FPGAs, in: ReConFig’11, 2011, pp. 242–248.
B. Jungk, S. Reith, On FPGA-based implementations of the SHA-3 candidate Grøstl, in: ReConFig’10, 2010, pp. 316–321.
P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schäffer, T. Søren, Tweaks on Grøstl, 2011.
M. Rogawski, K. Gaj, A high-speed unified hardware architecture for AES and the SHA-3 candidate Grøstl, in: 15th EUROMICRO Conference on Digital System Design – DSD’12, 2012.
A. Schorr, M. Lukowiak, Skein tree hashing on FPGA, in: Proc. ReConFig’10, 2010, pp.292–297.
K. Järvinen, Sharing resources between AES and the SHA-3 second round candidates Fugue and Grøstl, in: 2nd SHA-3 Candidate Conf., 2010.
K. Järvinen, M. Tommiska, J. Skytta, A compact MD5 and SHA-1 co-implementation utilizing algorithms similarities, in: Proc. ERSA’05, 2005, pp. 48–54.
Data Encryption Standard (DES), National Institute of Standards and Technology (NIST), FIPS Publication 46-3, October 1999.
RFC-4301, 2005.
M. Rogawski, K. Gaj, Grøstl Tweaks and their Effect on FPGA Results, 2011.
NIST, The Keyed-Hash Message Authentication Code HMAC. National Institute of Standards and Technology (NIST), FIPS Publication 198-1, July 2008.
RFC-2104, 1997.
Algotronix, 2008.
C.Wenzel-Benner, J. Gräf, XBX: eXternal Benchmarking eXtension for the SUPERCOP crypto benchmarking framework, in: S. Mangard, F.-X. Standaert (Eds.), Cryptographic Hardware and Embedded Systems, CHES 2010, vol. 6225 of LNCS, Springer, Berlin/Heidelberg, 2010, pp. 294–305.
.
G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, The Keccak SHA-3 Submission, Submission to NIST (Round 3), 2011.
TrueCrypt Foundation, Truecrypt, 2012.
N. At, J.-L. Beuchat, I. San, Compact implementation of threefish and skein on FPGA, in: Proc. NTMS, 2012b
M.U. Sharif, R. Shahid, M. Rogawski, K. Gaj, Use of embedded FPGA resources in implementations of five round three SHA-3 candidates, in: ECRYPT II Hash Workshop, 2011.
P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schäffer, T. Søren, Grøstl a SHA-3 Candidate. Submission to NIST (Round 3), 2011.
RFC-5246, 2008.
GMU-CERG, GMU SHA-3 Source Codes, 2012.
B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill, W.P. Marnane, FPGA implementations of the round two SHA-3 candidates, in: 2nd SHA-3 Candidate Conference, 2010.
Ng. Chiu-Wah, N. T.-S, K.-W. Yip, A unified architecture of MD5 and RIPEMD-160 hash algorithms, in: Proc. ISCAS’04, vol. 2, 2004.
L. Dadda, M. Macchetti, J. Owen, The design of a high speed ASIC unit for the hash function SHA-256 (384, 512), in: Proc. DATE’04, vol. 3, 2004.
Helion, 2011.
D.J. Bernstein, T. Lange, System for Unified Performance Evaluation Related to ONLINE, 2006.
X. Guo, S. Huang, L. Nazhandali, P. Schaumont, On the Impact of Target Technology in SHA-3 Hardware Benchmark Rankings, 2010.
SHA3-ZOO, SHA-3 Hardware Implementations, 2009. <http://ehash.iaik.tugraz.at/wiki/SHA-3⧹_Hardware⧹_Implementations>.
M. Dworkin, NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation, 2001.
L. Rivest, R. Mar, Block Encryption Algorithm with Data-Dependent Rotations. US Patent 5724428, 1998.
RFC-4308, 2005.
K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, M.U. Sharif, Comprehensive evaluation of high-speed and medium-speed implementations of five SHA-3 finalists using Xilinx and Altera FPGAs, Cryptology ePrint Archive, Report 2012/368, 2012.
RFC-4309, 2005.
RFC-6101, 2011.
Ganesh, Frederick, Sudarshan, Somani (b0090) 2007; 40
P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schäffer, T. Søren, Grøstl – a SHA-3 Candidate. Submission to NIST, 2008.
RFC-4251, 2006.
GMU-CERG, ATHENa Project Website, 2010.
NIST, 2000. AES Archive.
RFC-6151, 2011.
Weeny Software, Truecrypt, 2012.
Beuchat, Okamoto, Yamazaki (b0050) 2011; 1
M. Macchetti, L. Dadda, Quasi-pipelined hash circuits, in: Proc. ARITH’17, 2005, pp. 222–229.
M.-Y. Wang, Su, H.-C.-T. Chih-Pin, C.-W. Wu, An HMAC processor with integrated SHA-1 and MD5 algorithms, in: Proc. ASP-DAC’04, 2004, pp. 456–458.
D. Cao, J. Han, X.-Y. Zeng, A reconfigurable and ultra low-cost VLSI implementation of SHA-1 and MD5 functions, in: Proc. ASICON’07, 2007, pp. 862–865.
S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, A. Szekely, High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510, 2009.
Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST), FIPS Publication 197, November 2001.
E. Homsirikamol, M. Rogawski, K. Gaj, Throughput vs. area trade-offs architectures of five round 3 SHA-3 candidates implemented using Xilinx and Altera FPGAs, in: Proc. CHES’11, 2011, pp. 491–506.
E. Homsirikamol, M. Rogawski, K. Gaj, Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs. Cryptology ePrint Archive, Report 2010/445, 2010.
K. Gaj, E. Homsirikamol, M. Rogawski, Fair and comprehensive methodology for comparing hardware performance of fourteen round two SHA-3 candidates using FPGA, in: Proc. CHES’10, 2010, pp. 491–506.
10.1016/j.micpro.2013.05.005_b0170
10.1016/j.micpro.2013.05.005_b0290
10.1016/j.micpro.2013.05.005_b0255
10.1016/j.micpro.2013.05.005_b0210
10.1016/j.micpro.2013.05.005_b0055
10.1016/j.micpro.2013.05.005_b0010
10.1016/j.micpro.2013.05.005_b0175
10.1016/j.micpro.2013.05.005_b0130
10.1016/j.micpro.2013.05.005_b0295
10.1016/j.micpro.2013.05.005_b0250
10.1016/j.micpro.2013.05.005_b0095
10.1016/j.micpro.2013.05.005_b0215
10.1016/j.micpro.2013.05.005_b0015
10.1016/j.micpro.2013.05.005_b0135
10.1016/j.micpro.2013.05.005_b0060
Ganesh (10.1016/j.micpro.2013.05.005_b0090) 2007; 40
10.1016/j.micpro.2013.05.005_b0180
Beuchat (10.1016/j.micpro.2013.05.005_b0050) 2011; 1
10.1016/j.micpro.2013.05.005_b0145
10.1016/j.micpro.2013.05.005_b0100
10.1016/j.micpro.2013.05.005_b0265
10.1016/j.micpro.2013.05.005_b0220
10.1016/j.micpro.2013.05.005_b0065
10.1016/j.micpro.2013.05.005_b0020
10.1016/j.micpro.2013.05.005_b0185
10.1016/j.micpro.2013.05.005_b0140
10.1016/j.micpro.2013.05.005_b0260
10.1016/j.micpro.2013.05.005_b0105
10.1016/j.micpro.2013.05.005_b0225
10.1016/j.micpro.2013.05.005_b0025
10.1016/j.micpro.2013.05.005_b0070
10.1016/j.micpro.2013.05.005_b0190
10.1016/j.micpro.2013.05.005_b0035
10.1016/j.micpro.2013.05.005_b0155
10.1016/j.micpro.2013.05.005_b0110
10.1016/j.micpro.2013.05.005_b0275
10.1016/j.micpro.2013.05.005_b0230
10.1016/j.micpro.2013.05.005_b0075
10.1016/j.micpro.2013.05.005_b0030
10.1016/j.micpro.2013.05.005_b0195
10.1016/j.micpro.2013.05.005_b0150
10.1016/j.micpro.2013.05.005_b0270
10.1016/j.micpro.2013.05.005_b0115
10.1016/j.micpro.2013.05.005_b0235
10.1016/j.micpro.2013.05.005_b0280
10.1016/j.micpro.2013.05.005_b0080
10.1016/j.micpro.2013.05.005_b0200
10.1016/j.micpro.2013.05.005_b0045
10.1016/j.micpro.2013.05.005_b0165
10.1016/j.micpro.2013.05.005_b0120
10.1016/j.micpro.2013.05.005_b0285
10.1016/j.micpro.2013.05.005_b0240
10.1016/j.micpro.2013.05.005_b0085
10.1016/j.micpro.2013.05.005_b0040
10.1016/j.micpro.2013.05.005_b0160
10.1016/j.micpro.2013.05.005_b0205
10.1016/j.micpro.2013.05.005_b0005
10.1016/j.micpro.2013.05.005_b0125
10.1016/j.micpro.2013.05.005_b0245
References_xml – reference: RFC-4251, 2006. <
– reference: K. Järvinen, M. Tommiska, J. Skytta, A compact MD5 and SHA-1 co-implementation utilizing algorithms similarities, in: Proc. ERSA’05, 2005, pp. 48–54.
– reference: S. Matsuo, M. Knežević, P. Schaumont, I. Verbauwhede, A. Satoh, K. Sakiyama, K. Ota, How can we conduct “fair and consistent” hardware evaluation for SHA-3 candidate? Tech. rep., in: 2nd SHA-3 Candidate Conference, 2010.
– reference: D.J. Bernstein, T. Lange, System for Unified Performance Evaluation Related to ONLINE, 2006. <
– reference: Data Encryption Standard (DES), National Institute of Standards and Technology (NIST), FIPS Publication 46-3, October 1999. <
– reference: RFC-6101, 2011. <
– reference: K. Gaj, E. Homsirikamol, M. Rogawski, R. Shahid, M.U. Sharif, Comprehensive evaluation of high-speed and medium-speed implementations of five SHA-3 finalists using Xilinx and Altera FPGAs, Cryptology ePrint Archive, Report 2012/368, 2012. <
– reference: A. Salman, M. Rogawski, J.-P. Kaps, Efficient hardware accelerator for IPSEC based on partial reconfiguration on Xilinx FPGAs, in: ReConFig’11, 2011, pp. 242–248.
– reference: D. Cao, J. Han, X.-Y. Zeng, A reconfigurable and ultra low-cost VLSI implementation of SHA-1 and MD5 functions, in: Proc. ASICON’07, 2007, pp. 862–865.
– reference: SHA3, Cryptographic Hash Algorithm Competition, 2007. <http://csrc.nist.gov/groups/ST/hash/sha3/index.html>.
– reference: E. Homsirikamol, M. Rogawski, K. Gaj, Comparing Hardware Performance of Fourteen Round Two SHA-3 Candidates Using FPGAs. Cryptology ePrint Archive, Report 2010/445, 2010.
– reference: M. Dworkin, NIST Special Publication 800-38A: Recommendation for Block Cipher Modes of Operation, 2001. <
– reference: M. Rogawski, K. Gaj, A high-speed unified hardware architecture for AES and the SHA-3 candidate Grøstl, in: 15th EUROMICRO Conference on Digital System Design – DSD’12, 2012.
– reference: SHA3-ZOO, SHA-3 Hardware Implementations, 2009. <http://ehash.iaik.tugraz.at/wiki/SHA-3⧹_Hardware⧹_Implementations>.
– volume: 1
  start-page: 101
  year: 2011
  end-page: 121
  ident: b0050
  article-title: A low-area unified hardware architecture for the AES and the cryptographic hash function ECHO
  publication-title: Journal of Cryptographic Engineering
– reference: S.-j. Chang, R. Perlner, W.E. Burr, M.S. Turan, J.M. Kelsey, S. Paul, L.E. Bassham, Third-Round Report of the SHA-3 Cryptographic Hash Algorithm Competition. Tech. rep., National Institute of Standards and Technology (NIST), 2012.
– reference: M.-Y. Wang, Su, H.-C.-T. Chih-Pin, C.-W. Wu, An HMAC processor with integrated SHA-1 and MD5 algorithms, in: Proc. ASP-DAC’04, 2004, pp. 456–458.
– reference: B. Baldwin, N. Hanley, M. Hamilton, L. Lu, A. Byrne, M. O’Neill, W.P. Marnane, FPGA implementations of the round two SHA-3 candidates, in: 2nd SHA-3 Candidate Conference, 2010.
– reference: P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schäffer, T. Søren, Tweaks on Grøstl, 2011.
– reference: A. Schorr, M. Lukowiak, Skein tree hashing on FPGA, in: Proc. ReConFig’10, 2010, pp.292–297.
– reference: M. Macchetti, L. Dadda, Quasi-pipelined hash circuits, in: Proc. ARITH’17, 2005, pp. 222–229.
– reference: Weeny Software, Truecrypt, 2012. <
– reference: R. Shahid, M.U. Sharif, M. Rogawski, K. Gaj, Use of embedded FPGA resources in implementations of 14 round 2 SHA-3 candidates, in: Proc. FPT’11, 2011, pp. 1–9.
– reference: GMU-CERG, ATHENa Project Website, 2010. <
– reference: GMU-CERG, GMU SHA-3 Source Codes, 2012. <
– reference: Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST), FIPS Publication 197, November 2001. <
– reference: M. Rogawski, K. Gaj, Grøstl Tweaks and their Effect on FPGA Results, 2011. <
– reference: Helion, 2011. <
– reference: M.U. Sharif, R. Shahid, M. Rogawski, K. Gaj, Use of embedded FPGA resources in implementations of five round three SHA-3 candidates, in: ECRYPT II Hash Workshop, 2011.
– reference: Algotronix, 2008. <
– reference: RFC-5246, 2008. <
– reference: S. Tillich, M. Feldhofer, M. Kirschbaum, T. Plos, J.-M. Schmidt, A. Szekely, High-Speed Hardware Implementations of BLAKE, Blue Midnight Wish, CubeHash, ECHO, Fugue, Grøstl, Hamsi, JH, Keccak, Luffa, Shabal, SHAvite-3, SIMD, and Skein. Cryptology ePrint Archive, Report 2009/510, 2009. <
– reference: NIST, The Keyed-Hash Message Authentication Code HMAC. National Institute of Standards and Technology (NIST), FIPS Publication 198-1, July 2008.
– reference: B. Schneier, Twofish Based Products, 2000. <
– reference: TrueCrypt Foundation, Truecrypt, 2012. <
– reference: L. Dadda, M. Macchetti, J. Owen, The design of a high speed ASIC unit for the hash function SHA-256 (384, 512), in: Proc. DATE’04, vol. 3, 2004.
– reference: P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schäffer, T. Søren, Grøstl a SHA-3 Candidate. Submission to NIST (Round 3), 2011.
– reference: Secure Hash Standard (SHS). National Institute of Standards and Technology (NIST), October 2008. <
– reference: K. Kobayashi, J. Ikegami, S. Matsuo, K. Sakiyama, K. Ohta, Evaluation of Hardware Performance for the SHA-3 Candidates Using SASEBO-GII, 2010. <
– volume: 40
  start-page: 11
  year: 2007
  end-page: 19
  ident: b0090
  article-title: Hashchip: a shared-resource multi-hash function processor architecture on FPGA
  publication-title: Integration, the VLSI Journal
– reference: X. Guo, S. Huang, L. Nazhandali, P. Schaumont, On the Impact of Target Technology in SHA-3 Hardware Benchmark Rankings, 2010. <
– reference: RFC-4301, 2005. <
– reference: B. Jungk, S. Reith, On FPGA-based implementations of the SHA-3 candidate Grøstl, in: ReConFig’10, 2010, pp. 316–321.
– reference: C.Wenzel-Benner, J. Gräf, XBX: eXternal Benchmarking eXtension for the SUPERCOP crypto benchmarking framework, in: S. Mangard, F.-X. Standaert (Eds.), Cryptographic Hardware and Embedded Systems, CHES 2010, vol. 6225 of LNCS, Springer, Berlin/Heidelberg, 2010, pp. 294–305.
– reference: NIST, Advanced Encryption Standard (AES). National Institute of Standards and Technology (NIST), FIPS Publication 197, 2001. <
– reference: Ng. Chiu-Wah, N. T.-S, K.-W. Yip, A unified architecture of MD5 and RIPEMD-160 hash algorithms, in: Proc. ISCAS’04, vol. 2, 2004.
– reference: RFC-6151, 2011.
– reference: P. Gauravaram, L. Knudsen, K. Matusiewicz, F. Mendel, C. Rechberger, M. Schäffer, T. Søren, Grøstl – a SHA-3 Candidate. Submission to NIST, 2008.
– reference: G. Bertoni, J. Daemen, M. Peeters, G. Van Assche, The Keccak SHA-3 Submission, Submission to NIST (Round 3), 2011. <
– reference: RFC-4309, 2005. <
– reference: L. Rivest, R. Mar, Block Encryption Algorithm with Data-Dependent Rotations. US Patent 5724428, 1998.
– reference: >.
– reference: RFC-4308, 2005. <
– reference: K. Gaj, E. Homsirikamol, M. Rogawski, Fair and comprehensive methodology for comparing hardware performance of fourteen round two SHA-3 candidates using FPGA, in: Proc. CHES’10, 2010, pp. 491–506.
– reference: RFC-2104, 1997. <
– reference: E. Homsirikamol, M. Rogawski, K. Gaj, Throughput vs. area trade-offs architectures of five round 3 SHA-3 candidates implemented using Xilinx and Altera FPGAs, in: Proc. CHES’11, 2011, pp. 491–506.
– reference: N. At, J.-L. Beuchat, E. Okamoto, I. San, T. Yamazaki, A Low-Area Unified Hardware Architecture for the AES and the Cryptographic Hash Function Grøstl, September 2012a. <
– reference: NIST, 2000. AES Archive. <
– reference: K. Järvinen, Sharing resources between AES and the SHA-3 second round candidates Fugue and Grøstl, in: 2nd SHA-3 Candidate Conf., 2010.
– reference: N. At, J.-L. Beuchat, I. San, Compact implementation of threefish and skein on FPGA, in: Proc. NTMS, 2012b
– ident: 10.1016/j.micpro.2013.05.005_b0225
– ident: 10.1016/j.micpro.2013.05.005_b0160
– ident: 10.1016/j.micpro.2013.05.005_b0145
– ident: 10.1016/j.micpro.2013.05.005_b0235
  doi: 10.1109/DSD.2012.8
– ident: 10.1016/j.micpro.2013.05.005_b0125
– ident: 10.1016/j.micpro.2013.05.005_b0215
– ident: 10.1016/j.micpro.2013.05.005_b0230
– ident: 10.1016/j.micpro.2013.05.005_b0045
– ident: 10.1016/j.micpro.2013.05.005_b0165
– ident: 10.1016/j.micpro.2013.05.005_b0190
– volume: 1
  start-page: 101
  issue: 2
  year: 2011
  ident: 10.1016/j.micpro.2013.05.005_b0050
  article-title: A low-area unified hardware architecture for the AES and the cryptographic hash function ECHO
  publication-title: Journal of Cryptographic Engineering
  doi: 10.1007/s13389-011-0009-8
– ident: 10.1016/j.micpro.2013.05.005_b0295
– volume: 40
  start-page: 11
  year: 2007
  ident: 10.1016/j.micpro.2013.05.005_b0090
  article-title: Hashchip: a shared-resource multi-hash function processor architecture on FPGA
  publication-title: Integration, the VLSI Journal
  doi: 10.1016/j.vlsi.2005.12.007
– ident: 10.1016/j.micpro.2013.05.005_b0010
– ident: 10.1016/j.micpro.2013.05.005_b0270
– ident: 10.1016/j.micpro.2013.05.005_b0140
– ident: 10.1016/j.micpro.2013.05.005_b0205
– ident: 10.1016/j.micpro.2013.05.005_b0035
  doi: 10.1109/FPL.2010.84
– ident: 10.1016/j.micpro.2013.05.005_b0260
– ident: 10.1016/j.micpro.2013.05.005_b0285
– ident: 10.1016/j.micpro.2013.05.005_b0130
– ident: 10.1016/j.micpro.2013.05.005_b0265
  doi: 10.1109/FPT.2011.6132680
– ident: 10.1016/j.micpro.2013.05.005_b0025
– ident: 10.1016/j.micpro.2013.05.005_b0240
  doi: 10.1109/ReConFig.2011.33
– ident: 10.1016/j.micpro.2013.05.005_b0155
– ident: 10.1016/j.micpro.2013.05.005_b0150
  doi: 10.1109/ReConFig.2010.21
– ident: 10.1016/j.micpro.2013.05.005_b0005
– ident: 10.1016/j.micpro.2013.05.005_b0080
  doi: 10.1007/978-3-642-15031-9_18
– ident: 10.1016/j.micpro.2013.05.005_b0275
– ident: 10.1016/j.micpro.2013.05.005_b0120
– ident: 10.1016/j.micpro.2013.05.005_b0290
– ident: 10.1016/j.micpro.2013.05.005_b0110
– ident: 10.1016/j.micpro.2013.05.005_b0015
– ident: 10.1016/j.micpro.2013.05.005_b0185
– ident: 10.1016/j.micpro.2013.05.005_b0200
– ident: 10.1016/j.micpro.2013.05.005_b0020
– ident: 10.1016/j.micpro.2013.05.005_b0175
– ident: 10.1016/j.micpro.2013.05.005_b0095
– ident: 10.1016/j.micpro.2013.05.005_b0100
– ident: 10.1016/j.micpro.2013.05.005_b0255
– ident: 10.1016/j.micpro.2013.05.005_b0280
– ident: 10.1016/j.micpro.2013.05.005_b0085
– ident: 10.1016/j.micpro.2013.05.005_b0250
  doi: 10.1109/ReConFig.2010.84
– ident: 10.1016/j.micpro.2013.05.005_b0055
  doi: 10.1109/ICASIC.2007.4415767
– ident: 10.1016/j.micpro.2013.05.005_b0245
– ident: 10.1016/j.micpro.2013.05.005_b0115
– ident: 10.1016/j.micpro.2013.05.005_b0135
  doi: 10.1007/978-3-642-23951-9_32
– ident: 10.1016/j.micpro.2013.05.005_b0075
– ident: 10.1016/j.micpro.2013.05.005_b0180
– ident: 10.1016/j.micpro.2013.05.005_b0220
– ident: 10.1016/j.micpro.2013.05.005_b0030
  doi: 10.1109/NTMS.2012.6208693
– ident: 10.1016/j.micpro.2013.05.005_b0210
– ident: 10.1016/j.micpro.2013.05.005_b0070
  doi: 10.1145/988952.989053
– ident: 10.1016/j.micpro.2013.05.005_b0105
– ident: 10.1016/j.micpro.2013.05.005_b0170
– ident: 10.1016/j.micpro.2013.05.005_b0040
– ident: 10.1016/j.micpro.2013.05.005_b0065
– ident: 10.1016/j.micpro.2013.05.005_b0060
  doi: 10.6028/NIST.IR.7896
– ident: 10.1016/j.micpro.2013.05.005_b0195
SSID ssj0005062
Score 1.9621346
Snippet One of the five final SHA-3 candidates, Grøstl, has been inspired by the Advanced Encryption Standard. This unique feature can be exploited in a large variety...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 572
SubjectTerms AES
Grøstl
Hardware architectures
IPSec
Pipelining
Resource sharing
Scheduling
SHA-3 competition
Title A high-speed unified hardware architecture for 128 and 256-bit security levels of AES and the SHA-3 candidate Grøstl
URI https://dx.doi.org/10.1016/j.micpro.2013.05.005
Volume 37
WOSCitedRecordID wos000326614600006&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-9436
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0005062
  issn: 0141-9331
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECWMpIdeuhdNN_DQm8BCi6nlqBau06IJCiQtfBMoUizs2LJhyXE-KZ-Qe3-sw01WmyJtDr0IhiDSoueZMxw-zkPojQCzVuCpSMxVtkqWPmFcckKZn7JSMpFotsW3z8nxcTqZZF8Gg0t3FuZ8ntR1enGRrf6rqeEeGFsdnb2FubtO4QZ8BqPDFcwO138yfO6pEsSkWYFf8jb1VKogU52t2iqS1y8bB4piCJ5DbyBAUAKr5NZrrKCdN1d0Ik30yEcnHdHy5DAnkaKKianKFXhjvdX-Lm3aeT_OPVI8v5U5hKDkfFTzhbrX9Cqk632e72xrpbOPlKxRh9Uxm7lJqIPectFM19MztjCyYKMztmVtP2-hNCRSl7dwqcyAZO68lp2LTQEYi7mYJL2plRqJH-ulqZEsuuYATC5i9haGBINU1L1IV2b16c7huU3-3_xgx050xLdZYXopVC-FTwtdLHc_TGgGLmA__ziafNrRiXwtXtuNyh3T1FzC62_z5zCoF9qcPkD37JoE5wZLD9Ggqh-h-07vA9vp_zHa5HgHLWyhhR20cB9aGKCFAVoYDI8ttLCDFjbQwkuJAVr6EYAW1tDCHbTweP3jCmD1BH39MDp9f0isbAfhsP5sCUt4FTMRVL5Mk4gKHvGKUynKwIfVRBmXLJI0CstAhDEEs5UMaDkMRMKCIJYh96OnaK9e1tUzhJkvGLhUFvhlNQw5xNYVk0MRQ9jJM1EOD1DkfsWC25r2SlplXtxkwwNEulYrU9PlL88nzkCFjUtNvFkA6m5s-fyW3_QC3d39VV6ivXa9qV6hO_y8nTbr1xZyPwFZXLIT
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+high-speed+unified+hardware+architecture+for+128+and+256-bit+security+levels+of+AES+and+the+SHA-3+candidate+Gr%C3%B8stl&rft.jtitle=Microprocessors+and+microsystems&rft.au=Rogawski%2C+Marcin&rft.au=Gaj%2C+Kris&rft.au=Homsirikamol%2C+Ekawat&rft.date=2013-08-01&rft.issn=0141-9331&rft.volume=37&rft.issue=6-7&rft.spage=572&rft.epage=582&rft_id=info:doi/10.1016%2Fj.micpro.2013.05.005&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_micpro_2013_05_005
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-9331&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-9331&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-9331&client=summon