A survey of robust adversarial training in pattern recognition: Fundamental, theory, and methodologies

•We present a timely and comprehensive survey on robust adversarial training.•This survey offers the fundamentals of adversarial training, a unified theory that can be used to interpret various methods, and a comprehensive summarization of different methodologies.•This survey also addresses three im...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 131; p. 108889
Main Authors: Qian, Zhuang, Huang, Kaizhu, Wang, Qiu-Feng, Zhang, Xu-Yao
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.11.2022
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •We present a timely and comprehensive survey on robust adversarial training.•This survey offers the fundamentals of adversarial training, a unified theory that can be used to interpret various methods, and a comprehensive summarization of different methodologies.•This survey also addresses three important research focus in adversarial training: interpretability, robust generalization, and robustness evaluation, which can stimulate future inspirations as well as research outlook. Deep neural networks have achieved remarkable success in machine learning, computer vision, and pattern recognition in the last few decades. Recent studies, however, show that neural networks (both shallow and deep) may be easily fooled by certain imperceptibly perturbed input samples called adversarial examples. Such security vulnerability has resulted in a large body of research in recent years because real-world threats could be introduced due to the vast applications of neural networks. To address the robustness issue to adversarial examples particularly in pattern recognition, robust adversarial training has become one mainstream. Various ideas, methods, and applications have boomed in the field. Yet, a deep understanding of adversarial training including characteristics, interpretations, theories, and connections among different models has remained elusive. This paper presents a comprehensive survey trying to offer a systematic and structured investigation on robust adversarial training in pattern recognition. We start with fundamentals including definition, notations, and properties of adversarial examples. We then introduce a general theoretical framework with gradient regularization for defending against adversarial samples - robust adversarial training with visualizations and interpretations on why adversarial training can lead to model robustness. Connections will also be established between adversarial training and other traditional learning theories. After that, we summarize, review, and discuss various methodologies with defense/training algorithms in a structured way. Finally, we present analysis, outlook, and remarks on adversarial training.
AbstractList •We present a timely and comprehensive survey on robust adversarial training.•This survey offers the fundamentals of adversarial training, a unified theory that can be used to interpret various methods, and a comprehensive summarization of different methodologies.•This survey also addresses three important research focus in adversarial training: interpretability, robust generalization, and robustness evaluation, which can stimulate future inspirations as well as research outlook. Deep neural networks have achieved remarkable success in machine learning, computer vision, and pattern recognition in the last few decades. Recent studies, however, show that neural networks (both shallow and deep) may be easily fooled by certain imperceptibly perturbed input samples called adversarial examples. Such security vulnerability has resulted in a large body of research in recent years because real-world threats could be introduced due to the vast applications of neural networks. To address the robustness issue to adversarial examples particularly in pattern recognition, robust adversarial training has become one mainstream. Various ideas, methods, and applications have boomed in the field. Yet, a deep understanding of adversarial training including characteristics, interpretations, theories, and connections among different models has remained elusive. This paper presents a comprehensive survey trying to offer a systematic and structured investigation on robust adversarial training in pattern recognition. We start with fundamentals including definition, notations, and properties of adversarial examples. We then introduce a general theoretical framework with gradient regularization for defending against adversarial samples - robust adversarial training with visualizations and interpretations on why adversarial training can lead to model robustness. Connections will also be established between adversarial training and other traditional learning theories. After that, we summarize, review, and discuss various methodologies with defense/training algorithms in a structured way. Finally, we present analysis, outlook, and remarks on adversarial training.
ArticleNumber 108889
Author Qian, Zhuang
Zhang, Xu-Yao
Wang, Qiu-Feng
Huang, Kaizhu
Author_xml – sequence: 1
  givenname: Zhuang
  surname: Qian
  fullname: Qian, Zhuang
  organization: School of Advanced Technology of Xi’an Jiaotong-Liverpool University, China
– sequence: 2
  givenname: Kaizhu
  orcidid: 0000-0003-4644-3037
  surname: Huang
  fullname: Huang, Kaizhu
  email: kaizhu.huang@dukekunshan.edu.cn
  organization: Data Science Research Center, Duke Kunshan University, China
– sequence: 3
  givenname: Qiu-Feng
  surname: Wang
  fullname: Wang, Qiu-Feng
  email: qiufeng.wang@xjtlu.edu.cn
  organization: School of Advanced Technology of Xi’an Jiaotong-Liverpool University, China
– sequence: 4
  givenname: Xu-Yao
  surname: Zhang
  fullname: Zhang, Xu-Yao
  organization: Institute of Automation, Chinese Academy of Sciences; School of Artificial Intelligence, University of Chinese Academy of Sciences, China
BookMark eNqFkM1qwzAQhEVJoUnaN-hBDxCn-rEtO4dCCE1bCPTSnoVirRIFRwqSEsjb18Y99dCeFnaZmZ1vgkbOO0DokZI5JbR8OsxPKjV-N2eEsW5VVVV9g8a0EjwraM5GaEwIpxlnhN-hSYwHQqjoDmNkljiewwWu2Bsc_PYcE1b6AiGqYFWLU1DWWbfD1uEuJEFwOECX5Wyy3i3w-uy0OoJLqp3htAcfrjOsnMZHSHuvfet3FuI9ujWqjfDwM6foa_3yuXrLNh-v76vlJms4KVOmSiOqBnJgpS6Y4ZxvSc1BUFOIujFFoVVd1IXiFLY6F0QoQcucaLPlUDHG-BQtBt8m-BgDGNnYpPpP-yKtpET2xORBDsRkT0wOxDpx_kt8CvaowvU_2fMgg67YxUKQsbHgGtC2I5Wk9vZvg2-VR4uO
CitedBy_id crossref_primary_10_1016_j_patcog_2023_109661
crossref_primary_10_1016_j_patcog_2024_110875
crossref_primary_10_1016_j_patcog_2024_111007
crossref_primary_10_1109_TPAMI_2023_3303934
crossref_primary_10_1007_s44443_025_00175_3
crossref_primary_10_1016_j_patcog_2024_110915
crossref_primary_10_1109_COMST_2023_3319492
crossref_primary_10_1109_TBDATA_2025_3533919
crossref_primary_10_1016_j_patcog_2025_111867
crossref_primary_10_1016_j_neucom_2024_128701
crossref_primary_10_1049_rsn2_70062
crossref_primary_10_1016_j_neunet_2024_106117
crossref_primary_10_1142_S2196888825500095
crossref_primary_10_3390_app122412947
crossref_primary_10_1016_j_future_2023_01_028
crossref_primary_10_1145_3633517
crossref_primary_10_1016_j_patcog_2022_109229
crossref_primary_10_1145_3649453
crossref_primary_10_1007_s42243_024_01361_9
crossref_primary_10_3390_electronics13091692
crossref_primary_10_1007_s40747_024_01704_9
crossref_primary_10_1007_s12559_023_10179_8
crossref_primary_10_1016_j_eswa_2025_127774
crossref_primary_10_1016_j_cherd_2025_02_031
crossref_primary_10_1016_j_ress_2023_109340
crossref_primary_10_1007_s10462_025_11136_7
crossref_primary_10_1016_j_patcog_2024_110884
crossref_primary_10_1007_s10994_023_06348_3
crossref_primary_10_1016_j_eswa_2025_126632
crossref_primary_10_1016_j_patcog_2024_110968
crossref_primary_10_1007_s10994_023_06367_0
crossref_primary_10_1109_TII_2023_3297663
crossref_primary_10_1109_TPAMI_2023_3330862
crossref_primary_10_1109_ACCESS_2024_3479949
crossref_primary_10_1145_3648351
crossref_primary_10_1109_TKDE_2025_3530916
crossref_primary_10_1016_j_engappai_2024_108641
crossref_primary_10_1109_ACCESS_2024_3467154
crossref_primary_10_1016_j_patcog_2024_110281
crossref_primary_10_1016_j_neunet_2024_106224
crossref_primary_10_1007_s11263_024_02111_w
Cites_doi 10.1109/TASLP.2017.2756440
10.1016/j.patcog.2021.108472
10.1016/j.patcog.2022.108527
10.1109/LCSYS.2021.3050444
10.1007/BF01589116
10.1287/opre.1090.0741
10.1016/j.patcog.2018.07.023
10.1109/9.119632
10.1109/TPAMI.2023.3271451
10.1007/s10107-017-1172-1
10.1109/JPROC.2020.2989782
10.1007/s11263-015-0816-y
10.1109/TEVC.2019.2890858
10.1109/5.726791
10.1016/j.neunet.2021.03.031
10.1109/TNNLS.2018.2886017
10.1109/TPAMI.2018.2858821
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2022.108889
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2022_108889
S0031320322003703
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-a6f78ce4e26d52f333b093e71f579cf55da9595a31ebd4707a71640dfb3e82223
ISICitedReferencesCount 59
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000854976600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:29:49 EST 2025
Tue Nov 18 21:14:54 EST 2025
Fri Feb 23 02:40:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adversarial training
Robust learning
Adversarial examples
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-a6f78ce4e26d52f333b093e71f579cf55da9595a31ebd4707a71640dfb3e82223
ORCID 0000-0003-4644-3037
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2022_108889
crossref_primary_10_1016_j_patcog_2022_108889
elsevier_sciencedirect_doi_10_1016_j_patcog_2022_108889
PublicationCentury 2000
PublicationDate November 2022
2022-11-00
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: November 2022
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Xie, Wang, Zhang, Ren, Yuille (bib0014) 2018
Wang, Zhang (bib0022) 2019
Su, Vargas, Sakurai (bib0059) 2019; 23
Xu, Evans, Qi (bib0010) 2018
He, Zhang, Ren, Sun (bib0001) 2016
Smith (bib0114) 2017
Wong, Kolter (bib0012) 2018
Lyu, Huang, Liang (bib0038) 2015
Shen, Ji, Zhang, Zuo, Wang (bib0032) 2018
Yang, Rashtchian, Zhang, Salakhutdinov, Chaudhuri (bib0075) 2020
Goodfellow, Shlens, Szegedy (bib0006) 2015
Chen, Gu (bib0062) 2020
R. Feinman, R.R. Curtin, S. Shintre, A.B. Gardner, Detecting adversarial samples from artifacts, 2017, arXiv preprint arXiv
Weng, Zhang, Chen, Yi, Su, Gao, Hsieh, Daniel (bib0100) 2018
Shafahi, Najibi, Ghiasi, Xu, Dickerson, Studer, Davis, Taylor, Goldstein (bib0069) 2019
Pang, Xu, Du, Chen, Zhu (bib0078) 2019
Dhillon, Azizzadenesheli, Lipton, Bernstein, Kossaifi, Khanna, Anandkumar (bib0013) 2018
Zhang, Huang, Zhu, Liu (bib0082) 2021; 140
H. Xu, X. Liu, W. Wang, W. Ding, Z. Wu, Z. Liu, A. Jain, J. Tang, Towards the memorization effect of neural networks in adversarial training, 2021, arXiv preprint arXiv
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib0002) 2015; 115
Sinha, Namkoong, Duchi (bib0073) 2018
Qi, Guo, Xu, Jin, Yang (bib0111) 2021
Croce, Hein (bib0101) 2019
Miyato, Maeda, Koyama, Ishii (bib0081) 2018; 41
Rice, Wong, Kolter (bib0085) 2020
Liu, Chen, Liu, Song (bib0037) 2017
Spall (bib0051) 1992; 37
Moosavi-Dezfooli, Fawzi, Frossard (bib0045) 2016
Bui, Le, Tran, Zhao, Phung (bib0074) 2021
LeCun, Bottou, Bengio, Haffner (bib0042) 1998; 86
Micikevicius, Narang, Alben, Diamos, Elsen, Garcia, Ginsburg, Houston, Kuchaiev, Venkatesh (bib0115) 2018
Chen, Min, Zhang, Karbasi (bib0094) 2020
Dong, Liao, Pang, Su, Zhu, Hu, Li (bib0048) 2018
Tramèr, Kurakin, Papernot, Goodfellow, Boneh, McDaniel (bib0049) 2018
Z. Qian, S. Zhang, K. Huang, Q. Wang, R. Zhang, X. Yi, Improving model robustness with latent distribution locally and globally, 2021, arXiv preprint arXiv
Kurakin, Goodfellow, Bengio (bib0047) 2018
Andriushchenko, Croce, Flammarion, Hein (bib0064) 2020
Staib, Jegelka (bib0112) 2017; vol. 1
Esposito, Gastpar, Issa (bib0093) 2020
Wu, Xia, Wang (bib0098) 2020
Smilkov, Thorat, Kim, Viégas, Wattenberg (bib0091) 2018
Biggio, Roli (bib0030) 2018; 84
You, Ye, Li, Xu, Wang (bib0021) 2019
Bhagoji, Cullina, Sitawarin, Mittal (bib0105) 2018
Carlini, Wagner (bib0019) 2017
Brendel, Rauber, Bethge (bib0060) 2018
Zhang, Qian, Huang, Wang, Zhang, Yi (bib0099) 2021
Delage, Ye (bib0108) 2010; 58
Zhang, Xu, Han, Niu, Cui, Sugiyama, Kankanhalli (bib0080) 2020
Kuhn, Esfahani, Nguyen, Shafieezadeh-Abadeh (bib0110) 2019
Tsipras, Santurkar, Engstrom, Turner, Madry (bib0088) 2019
Baluja, Fischer (bib0055) 2018
Zhang, Wang (bib0023) 2019
Kurakin, Goodfellow, Bengio (bib0046) 2017
Croce, Hein (bib0063) 2020
Pang, Du, Dong, Zhu (bib0011) 2018
N. Papernot, P. McDaniel, I. Goodfellow, Transferability in machine learning: from phenomena to black-box attacks using adversarial samples, 2016, arXiv preprint arXiv
Huang, Yang, King, Lyu, Chan (bib0106) 2004; 5
Meng, Chen (bib0015) 2017
Hendrycks, Gimpel (bib0007) 2017
Esfahani, Kuhn (bib0109) 2018; 171
Zagoruyko, Komodakis (bib0086) 2016
R.R. Wiyatno, A. Xu, O. Dia, A. de Berker, Adversarial examples in modern machine learning: a review, 2019, arXiv preprint arXiv
Wang, Xu, Xu, Tao (bib0033) 2018
Xie, Yuille (bib0084) 2019
N. Carlini, G. Katz, C.W. Barrett, D.L. Dill, Ground-truth adversarial examples, 2017, arXiv preprint arXiv
Madry, Makelov, Schmidt, Tsipras, Vladu (bib0040) 2018
Xiao, Li, Zhu, He, Liu, Song (bib0056) 2018
Yuan, He, Zhu, Li (bib0026) 2019; 30
Tramèr, Behrmann, Carlini, Papernot, Jacobsen (bib0035) 2020
Zhang, Yu, Jiao, Xing, El Ghaoui, Jordan (bib0079) 2019
Guo, Rana, Cisse, van der Maaten (bib0018) 2018
Sabour, Cao, Faghri, Fleet (bib0044) 2016
Zhao, Dua, Singh (bib0054) 2018
Park, Lee (bib0070) 2021
R. Zhai, T. Cai, D. He, C. Dan, K. He, J. Hopcroft, L. Wang, Adversarially robust generalization just requires more unlabeled data, 2019, arXiv preprint arXiv
Xiong, Droppo, Huang, Seide, Seltzer, Stolcke, Yu, Zweig (bib0003) 2017; 25
Mygdalis, Pitas (bib0068) 2022
D. Yang, I. Kong, Y. Kim, Adaptive regularization for adversarial training, 2022, arXiv preprint arXiv
Pauli, Koch, Berberich, Kohler, Allgöwer (bib0076) 2022; 6
2014.
Tramèr, Boneh, Kurakin, Goodfellow, Papernot, McDaniel (bib0077) 2018
Bai, Luo, Zhao, Wen, Wang (bib0028) 2021
A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, D. Mukhopadhyay, Adversarial attacks and defences: a survey, 2018, arXiv preprint arXiv
Szegedy, Zaremba, Sutskever, Bruna, Erhan, Goodfellow, Fergus (bib0005) 2014
J. Shu, X. Yuan, D. Meng, Z. Xu, CMW-Net: learning a class-aware sample weighting mapping for robust deep learning, 2022, arXiv preprint arXiv
Samangouei, Kabkab, Chellappa (bib0016) 2018
Jacobsen, Behrmann, Zemel, Bethge (bib0034) 2018
Kos, Fischer, Song (bib0052) 2018
Yang, Zhang, Xu, Katabi (bib0017) 2019; vol. 97
Croce, Hein (bib0061) 2020
Xiao, Zhu, Li, He, Liu, Song (bib0053) 2018
Metzen, Genewein, Fischer, Bischoff (bib0008) 2017
Zhang, Liu, Suen (bib0027) 2020; 108
Jordan, Lewis, Dimakis (bib0102) 2019
H. Kannan, A. Kurakin, I. Goodfellow, Adversarial logit pairing, 2018, arXiv preprint arXiv
K. Grosse, P. Manoharan, N. Papernot, M. Backes, P. McDaniel, On the (statistical) detection of adversarial examples, 2017, arXiv preprint arXiv
Zhang, Zhu (bib0090) 2019
Schmidt, Santurkar, Tsipras, Talwar, Madry (bib0095) 2018
Zhang, Huang, Zhang, Hussain (bib0024) 2019
Andriushchenko, Flammarion (bib0071) 2020
Chen, Zhang, Sharma, Yi, Hsieh (bib0058) 2017
J. Hoffman, D.A. Roberts, S. Yaida, Robust learning with jacobian regularization, 2019, arXiv preprint arXiv
Athalye, Carlini, Wagner (bib0050) 2018
Ilyas, Santurkar, Tsipras, Engstrom, Tran, Madry (bib0089) 2019
Papernot, McDaniel, Goodfellow, Jha, Celik, Swami (bib0057) 2017
Li, Wu, Feng, Fan, Jiang, Li, Xia (bib0067) 2022; 124
Wong, Rice, Kolter (bib0072) 2019
Rafique, Liu, Lin, Yang (bib0107) 2021
Mao, Zhong, Yang, Vondrick, Ray (bib0065) 2019
Song, He, Lin, Wang, Hopcroft (bib0097) 2019
R. Balestriero, J. Pesenti, Y. LeCun, Learning in high dimension always amounts to extrapolation, 2021, arXiv preprint arXiv
Y.M. Assael, B. Shillingford, S. Whiteson, N. de Freitas, LipNet: End-to-end sentence-level lipreading, 2016, arXiv preprint arXiv
Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio (bib0031) 2014
Liu, Nocedal (bib0043) 1989; 45
A. Krizhevsky, V. Nair, G. Hinton, The CIFAR-10 dataset, online
10.1016/j.patcog.2022.108889_bib0020
Wang (10.1016/j.patcog.2022.108889_bib0022) 2019
Metzen (10.1016/j.patcog.2022.108889_bib0008) 2017
Bai (10.1016/j.patcog.2022.108889_bib0028) 2021
10.1016/j.patcog.2022.108889_bib0029
Goodfellow (10.1016/j.patcog.2022.108889_bib0006) 2015
10.1016/j.patcog.2022.108889_bib0025
Smith (10.1016/j.patcog.2022.108889_bib0114) 2017
Hendrycks (10.1016/j.patcog.2022.108889_bib0007) 2017
Athalye (10.1016/j.patcog.2022.108889_bib0050) 2018
Tramèr (10.1016/j.patcog.2022.108889_bib0077) 2018
Moosavi-Dezfooli (10.1016/j.patcog.2022.108889_bib0045) 2016
Liu (10.1016/j.patcog.2022.108889_bib0037) 2017
Bhagoji (10.1016/j.patcog.2022.108889_bib0105) 2018
Mygdalis (10.1016/j.patcog.2022.108889_bib0068) 2022
Yang (10.1016/j.patcog.2022.108889_bib0017) 2019; vol. 97
Wong (10.1016/j.patcog.2022.108889_bib0012) 2018
10.1016/j.patcog.2022.108889_bib0096
Lyu (10.1016/j.patcog.2022.108889_bib0038) 2015
Shafahi (10.1016/j.patcog.2022.108889_bib0069) 2019
Dhillon (10.1016/j.patcog.2022.108889_bib0013) 2018
Pang (10.1016/j.patcog.2022.108889_bib0011) 2018
Yuan (10.1016/j.patcog.2022.108889_bib0026) 2019; 30
Wong (10.1016/j.patcog.2022.108889_bib0072) 2019
Schmidt (10.1016/j.patcog.2022.108889_bib0095) 2018
10.1016/j.patcog.2022.108889_bib0092
Pauli (10.1016/j.patcog.2022.108889_bib0076) 2022; 6
Carlini (10.1016/j.patcog.2022.108889_bib0019) 2017
10.1016/j.patcog.2022.108889_bib0041
Biggio (10.1016/j.patcog.2022.108889_bib0030) 2018; 84
LeCun (10.1016/j.patcog.2022.108889_bib0042) 1998; 86
Song (10.1016/j.patcog.2022.108889_bib0097) 2019
Zhang (10.1016/j.patcog.2022.108889_bib0079) 2019
Szegedy (10.1016/j.patcog.2022.108889_bib0005) 2014
Xie (10.1016/j.patcog.2022.108889_bib0014) 2018
Wang (10.1016/j.patcog.2022.108889_bib0033) 2018
Yang (10.1016/j.patcog.2022.108889_bib0075) 2020
Xie (10.1016/j.patcog.2022.108889_bib0084) 2019
Brendel (10.1016/j.patcog.2022.108889_bib0060) 2018
Chen (10.1016/j.patcog.2022.108889_bib0094) 2020
Xiao (10.1016/j.patcog.2022.108889_bib0053) 2018
Xiong (10.1016/j.patcog.2022.108889_bib0003) 2017; 25
Miyato (10.1016/j.patcog.2022.108889_bib0081) 2018; 41
Bui (10.1016/j.patcog.2022.108889_bib0074) 2021
Tsipras (10.1016/j.patcog.2022.108889_bib0088) 2019
10.1016/j.patcog.2022.108889_bib0039
10.1016/j.patcog.2022.108889_bib0036
Jordan (10.1016/j.patcog.2022.108889_bib0102) 2019
Tramèr (10.1016/j.patcog.2022.108889_bib0049) 2018
Zagoruyko (10.1016/j.patcog.2022.108889_bib0086) 2016
Park (10.1016/j.patcog.2022.108889_bib0070) 2021
Croce (10.1016/j.patcog.2022.108889_bib0101) 2019
10.1016/j.patcog.2022.108889_bib0066
Qi (10.1016/j.patcog.2022.108889_bib0111) 2021
Andriushchenko (10.1016/j.patcog.2022.108889_bib0064) 2020
Croce (10.1016/j.patcog.2022.108889_bib0061) 2020
Dong (10.1016/j.patcog.2022.108889_bib0048) 2018
Rice (10.1016/j.patcog.2022.108889_bib0085) 2020
10.1016/j.patcog.2022.108889_bib0103
Zhang (10.1016/j.patcog.2022.108889_bib0082) 2021; 140
10.1016/j.patcog.2022.108889_bib0104
Sabour (10.1016/j.patcog.2022.108889_bib0044) 2016
Zhang (10.1016/j.patcog.2022.108889_bib0090) 2019
Micikevicius (10.1016/j.patcog.2022.108889_bib0115) 2018
Li (10.1016/j.patcog.2022.108889_bib0067) 2022; 124
Zhang (10.1016/j.patcog.2022.108889_bib0027) 2020; 108
Papernot (10.1016/j.patcog.2022.108889_bib0057) 2017
Tramèr (10.1016/j.patcog.2022.108889_bib0035) 2020
Sinha (10.1016/j.patcog.2022.108889_bib0073) 2018
Delage (10.1016/j.patcog.2022.108889_bib0108) 2010; 58
Esfahani (10.1016/j.patcog.2022.108889_bib0109) 2018; 171
Samangouei (10.1016/j.patcog.2022.108889_bib0016) 2018
Meng (10.1016/j.patcog.2022.108889_bib0015) 2017
Zhao (10.1016/j.patcog.2022.108889_bib0054) 2018
Mao (10.1016/j.patcog.2022.108889_bib0065) 2019
Chen (10.1016/j.patcog.2022.108889_bib0062) 2020
Ilyas (10.1016/j.patcog.2022.108889_bib0089) 2019
Esposito (10.1016/j.patcog.2022.108889_bib0093) 2020
Huang (10.1016/j.patcog.2022.108889_bib0106) 2004; 5
Pang (10.1016/j.patcog.2022.108889_bib0078) 2019
Wu (10.1016/j.patcog.2022.108889_bib0098) 2020
Croce (10.1016/j.patcog.2022.108889_bib0063) 2020
10.1016/j.patcog.2022.108889_bib0087
Jacobsen (10.1016/j.patcog.2022.108889_bib0034) 2018
10.1016/j.patcog.2022.108889_bib0083
10.1016/j.patcog.2022.108889_bib0009
Smilkov (10.1016/j.patcog.2022.108889_bib0091) 2018
10.1016/j.patcog.2022.108889_bib0004
Chen (10.1016/j.patcog.2022.108889_bib0058) 2017
Madry (10.1016/j.patcog.2022.108889_bib0040) 2018
Weng (10.1016/j.patcog.2022.108889_bib0100) 2018
Kurakin (10.1016/j.patcog.2022.108889_bib0047) 2018
He (10.1016/j.patcog.2022.108889_bib0001) 2016
Zhang (10.1016/j.patcog.2022.108889_bib0099) 2021
Russakovsky (10.1016/j.patcog.2022.108889_bib0002) 2015; 115
Zhang (10.1016/j.patcog.2022.108889_bib0023) 2019
Kos (10.1016/j.patcog.2022.108889_bib0052) 2018
Baluja (10.1016/j.patcog.2022.108889_bib0055) 2018
Guo (10.1016/j.patcog.2022.108889_bib0018) 2018
Rafique (10.1016/j.patcog.2022.108889_bib0107) 2021
Goodfellow (10.1016/j.patcog.2022.108889_bib0031) 2014
Shen (10.1016/j.patcog.2022.108889_bib0032) 2018
Liu (10.1016/j.patcog.2022.108889_bib0043) 1989; 45
10.1016/j.patcog.2022.108889_bib0113
Spall (10.1016/j.patcog.2022.108889_bib0051) 1992; 37
Xiao (10.1016/j.patcog.2022.108889_bib0056) 2018
You (10.1016/j.patcog.2022.108889_bib0021) 2019
Zhang (10.1016/j.patcog.2022.108889_bib0024) 2019
Zhang (10.1016/j.patcog.2022.108889_bib0080) 2020
Kurakin (10.1016/j.patcog.2022.108889_bib0046) 2017
Xu (10.1016/j.patcog.2022.108889_bib0010) 2018
Staib (10.1016/j.patcog.2022.108889_bib0112) 2017; vol. 1
Su (10.1016/j.patcog.2022.108889_bib0059) 2019; 23
Kuhn (10.1016/j.patcog.2022.108889_bib0110) 2019
Andriushchenko (10.1016/j.patcog.2022.108889_bib0071) 2020
References_xml – year: 2017
  ident: bib0008
  article-title: On detecting adversarial perturbations
  publication-title: International Conference on Learning Representations (ICLR)
– year: 2016
  ident: bib0086
  article-title: Wide residual networks
  publication-title: British Machine Vision Conference
– start-page: 7472
  year: 2019
  end-page: 7482
  ident: bib0079
  article-title: Theoretically principled trade-off between robustness and accuracy
  publication-title: International Conference on Machine Learning (ICML)
– reference: N. Papernot, P. McDaniel, I. Goodfellow, Transferability in machine learning: from phenomena to black-box attacks using adversarial samples, 2016, arXiv preprint arXiv:
– start-page: 36
  year: 2018
  end-page: 42
  ident: bib0052
  article-title: Adversarial examples for generative models
  publication-title: IEEE Security and Privacy Workshops (SP Workshops)
– year: 2017
  ident: bib0046
  article-title: Adversarial machine learning at scale
  publication-title: International Conference on Learning Representations (ICLR)
– year: 2018
  ident: bib0100
  article-title: Evaluating the robustness of neural networks: an extreme value theory approach
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 135
  year: 2017
  end-page: 147
  ident: bib0015
  article-title: Magnet: a two-pronged defense against adversarial examples
  publication-title: ACM SIGSAC Conference on Computer and Communications Security
– year: 2018
  ident: bib0016
  article-title: Defense-GAN: protecting classifiers against adversarial attacks using generative models
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 2672
  year: 2014
  end-page: 2680
  ident: bib0031
  article-title: Generative adversarial nets
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– year: 2018
  ident: bib0013
  article-title: Stochastic activation pruning for robust adversarial defense
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 484
  year: 2020
  end-page: 501
  ident: bib0064
  article-title: Square attack: a query-efficient black-box adversarial attack via random search
  publication-title: European Conference on Computer Vision (ECCV)
– volume: 25
  start-page: 2410
  year: 2017
  end-page: 2423
  ident: bib0003
  article-title: Toward human parity in conversational speech recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– year: 2021
  ident: bib0074
  article-title: A unified Wasserstein distributional robustness framework for adversarial training
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 10067
  year: 2021
  end-page: 10080
  ident: bib0111
  article-title: An online method for A class of distributionally robust optimization with non-convex objectives
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 125
  year: 2019
  end-page: 136
  ident: bib0089
  article-title: Adversarial examples are not bugs, they are features
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 3353
  year: 2019
  end-page: 3364
  ident: bib0069
  article-title: Adversarial training for free!
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– year: 2017
  ident: bib0007
  article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks
  publication-title: International Conference on Learning Representations (ICLR)
– reference: J. Hoffman, D.A. Roberts, S. Yaida, Robust learning with jacobian regularization, 2019, arXiv preprint arXiv:
– start-page: 909
  year: 2019
  end-page: 913
  ident: bib0021
  article-title: Adversarial noise layer: regularize neural network by adding noise
  publication-title: IEEE International Conference on Image Processing (ICIP)
– volume: 41
  start-page: 1979
  year: 2018
  end-page: 1993
  ident: bib0081
  article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: R. Zhai, T. Cai, D. He, C. Dan, K. He, J. Hopcroft, L. Wang, Adversarially robust generalization just requires more unlabeled data, 2019, arXiv preprint arXiv:
– start-page: 8588
  year: 2020
  end-page: 8601
  ident: bib0075
  article-title: A closer look at accuracy vs. robustness
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 16048
  year: 2020
  end-page: 16059
  ident: bib0071
  article-title: Understanding and improving fast adversarial training
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– reference: R. Feinman, R.R. Curtin, S. Shintre, A.B. Gardner, Detecting adversarial samples from artifacts, 2017, arXiv preprint arXiv:
– volume: 6
  start-page: 121
  year: 2022
  end-page: 126
  ident: bib0076
  article-title: Training robust neural networks using Lipschitz bounds
  publication-title: IEEE Control. Syst. Lett.
– reference: N. Carlini, G. Katz, C.W. Barrett, D.L. Dill, Ground-truth adversarial examples, 2017, arXiv preprint arXiv:
– start-page: 1739
  year: 2020
  end-page: 1747
  ident: bib0062
  article-title: Rays: a ray searching method for hard-label adversarial attack
  publication-title: ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 4970
  year: 2019
  end-page: 4979
  ident: bib0078
  article-title: Improving adversarial robustness via promoting ensemble diversity
  publication-title: International Conference on Machine Learning (ICML)
– volume: 45
  start-page: 503
  year: 1989
  end-page: 528
  ident: bib0043
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
– year: 2018
  ident: bib0010
  article-title: Feature squeezing: detecting adversarial examples in deep neural networks
  publication-title: Annual Network and Distributed System Security Symposium (NDSS)
– start-page: 6629
  year: 2019
  end-page: 6638
  ident: bib0022
  article-title: Bilateral adversarial training: towards fast training of more robust models against adversarial attacks
  publication-title: IEEE/CVF International Conference on Computer Vision (ICCV)
– start-page: 4312
  year: 2021
  end-page: 4321
  ident: bib0028
  article-title: Recent advances in adversarial training for adversarial robustness
  publication-title: International Joint Conference on Artificial Intelligence (IJCAI)
– year: 2018
  ident: bib0049
  article-title: Ensemble adversarial training: attacks and defenses
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 108527
  year: 2022
  ident: bib0068
  article-title: Hyperspherical class prototypes for adversarial robustness
  publication-title: Pattern Recognit
– reference: R. Balestriero, J. Pesenti, Y. LeCun, Learning in high dimension always amounts to extrapolation, 2021, arXiv preprint arXiv:
– start-page: 1829
  year: 2019
  end-page: 1839
  ident: bib0023
  article-title: Defense against adversarial attacks using feature scattering-based adversarial training
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 274
  year: 2018
  end-page: 283
  ident: bib0050
  article-title: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples
  publication-title: International Conference on Machine Learning (ICML)
– reference: H. Xu, X. Liu, W. Wang, W. Ding, Z. Wu, Z. Liu, A. Jain, J. Tang, Towards the memorization effect of neural networks in adversarial training, 2021, arXiv preprint arXiv:
– start-page: 7758
  year: 2021
  end-page: 7767
  ident: bib0070
  article-title: Reliably fast adversarial training via latent adversarial perturbation
  publication-title: IEEE/CVF International Conference on Computer Vision (ICCV)
– start-page: 478
  year: 2019
  end-page: 489
  ident: bib0065
  article-title: Metric learning for adversarial robustness
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 1
  year: 2021
  end-page: 35
  ident: bib0107
  article-title: Weakly-convex–concave min–max optimization: provable algorithms and applications in machine learning
  publication-title: Optim. Methods Softw.
– start-page: 5286
  year: 2018
  end-page: 5295
  ident: bib0012
  article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope
  publication-title: International Conference on Machine Learning (ICML)
– start-page: 1670
  year: 2020
  end-page: 1680
  ident: bib0094
  article-title: More data can expand the generalization gap between adversarially robust and standard models
  publication-title: International Conference on Machine Learning (ICML)
– year: 2015
  ident: bib0006
  article-title: Explaining and harnessing adversarial examples
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 37
  start-page: 332
  year: 1992
  end-page: 341
  ident: bib0051
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Trans. Automat. Control
– start-page: 4584
  year: 2018
  end-page: 4594
  ident: bib0011
  article-title: Towards robust detection of adversarial examples
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 9561
  year: 2020
  end-page: 9571
  ident: bib0035
  article-title: Fundamental tradeoffs between invariance and sensitivity to adversarial perturbations
  publication-title: International Conference on Machine Learning (ICML)
– start-page: 464
  year: 2017
  end-page: 472
  ident: bib0114
  article-title: Cyclical learning rates for training neural networks
  publication-title: 2017 IEEE Winter Conference on Applications of Computer Vision (WACV)
– year: 2016
  ident: bib0044
  article-title: Adversarial manipulation of deep representations
  publication-title: International Conference on Learning Representations (ICLR)
– year: 2018
  ident: bib0091
  article-title: SmoothGrad: removing noise by adding noise
  publication-title: Workshop on Visualization for Deep Learning, ICML
– volume: 108
  start-page: 894
  year: 2020
  end-page: 922
  ident: bib0027
  article-title: Towards robust pattern recognition: a review
  publication-title: Proc. IEEE
– year: 2018
  ident: bib0034
  article-title: Excessive invariance causes adversarial vulnerability
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: bib0042
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– start-page: 99
  year: 2018
  end-page: 112
  ident: bib0047
  article-title: Adversarial examples in the physical world
  publication-title: Artificial Intelligence Safety and Security
– start-page: 7502
  year: 2019
  end-page: 7511
  ident: bib0090
  article-title: Interpreting adversarially trained convolutional neural networks
  publication-title: International Conference on Machine Learning (ICML)
– start-page: 130
  year: 2019
  end-page: 166
  ident: bib0110
  article-title: Wasserstein distributionally robust optimization: theory and applications in machine learning
  publication-title: Operations Research & Management Science in the Age of Analytics
– year: 2019
  ident: bib0101
  article-title: Provable robustness against all adversarial
  publication-title: International Conference on Learning Representations (ICLR)
– reference: R.R. Wiyatno, A. Xu, O. Dia, A. de Berker, Adversarial examples in modern machine learning: a review, 2019, arXiv preprint arXiv:
– volume: 84
  start-page: 317
  year: 2018
  end-page: 331
  ident: bib0030
  article-title: Wild patterns: ten years after the rise of adversarial machine learning
  publication-title: Pattern Recognit.
– start-page: 2196
  year: 2020
  end-page: 2205
  ident: bib0063
  article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack
  publication-title: International Conference on Machine Learning (ICML)
– volume: 58
  start-page: 595
  year: 2010
  end-page: 612
  ident: bib0108
  article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems
  publication-title: Oper. Res.
– year: 2018
  ident: bib0055
  article-title: Learning to attack: adversarial transformation networks
  publication-title: AAAI Conference on Artificial Intelligence
– year: 2019
  ident: bib0084
  article-title: Intriguing properties of adversarial training at scale
  publication-title: International Conference on Learning Representations (ICLR)
– reference: K. Grosse, P. Manoharan, N. Papernot, M. Backes, P. McDaniel, On the (statistical) detection of adversarial examples, 2017, arXiv preprint arXiv:
– volume: 30
  start-page: 2805
  year: 2019
  end-page: 2824
  ident: bib0026
  article-title: Adversarial examples: attacks and defenses for deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 124
  start-page: 108472
  year: 2022
  ident: bib0067
  article-title: Semi-supervised robust training with generalized perturbed neighborhood
  publication-title: Pattern Recognit.
– year: 2019
  ident: bib0097
  article-title: Robust local features for improving the generalization of adversarial training
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 12524
  year: 2021
  end-page: 12534
  ident: bib0099
  article-title: Towards better robust generalization with shift consistency regularization
  publication-title: International Conference on Machine Learning (ICML)
– start-page: 5764
  year: 2018
  end-page: 5773
  ident: bib0032
  article-title: Generative adversarial learning towards fast weakly supervised detection
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: D. Yang, I. Kong, Y. Kim, Adaptive regularization for adversarial training, 2022, arXiv preprint arXiv:
– year: 2018
  ident: bib0073
  article-title: Certifying some distributional robustness with principled adversarial training
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 171
  start-page: 115
  year: 2018
  end-page: 166
  ident: bib0109
  article-title: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations
  publication-title: Math. Program.
– start-page: 3905
  year: 2018
  end-page: 3911
  ident: bib0056
  article-title: Generating adversarial examples with adversarial networks
  publication-title: International Joint Conference on Artificial Intelligence (IJCAI)
– year: 2018
  ident: bib0054
  article-title: Generating natural adversarial examples
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 96
  year: 2020
  end-page: 100
  ident: bib0093
  article-title: Robust generalization via
  publication-title: International Zurich Seminar on Information and Communication (IZS)
– reference: H. Kannan, A. Kurakin, I. Goodfellow, Adversarial logit pairing, 2018, arXiv preprint arXiv:
– reference: A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, D. Mukhopadhyay, Adversarial attacks and defences: a survey, 2018, arXiv preprint arXiv:
– year: 2017
  ident: bib0037
  article-title: Delving into transferable adversarial examples and black-box attacks
  publication-title: International Conference on Learning Representations (ICLR)
– year: 2018
  ident: bib0018
  article-title: Countering adversarial images using input transformations
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 5019
  year: 2018
  end-page: 5031
  ident: bib0095
  article-title: Adversarially robust generalization requires more data
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 39
  year: 2017
  end-page: 57
  ident: bib0019
  article-title: Towards evaluating the robustness of neural networks
  publication-title: IEEE Symposium on Security and Privacy (SP)
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0002
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision (IJCV)
– volume: 23
  start-page: 828
  year: 2019
  end-page: 841
  ident: bib0059
  article-title: One pixel attack for fooling deep neural networks
  publication-title: IEEE Trans. Evol. Comput.
– volume: vol. 97
  start-page: 7025
  year: 2019
  end-page: 7034
  ident: bib0017
  article-title: ME-Net: towards effective adversarial robustness with matrix estimation
  publication-title: Proceedings of the International Conference on Machine Learning (ICML)
– year: 2019
  ident: bib0088
  article-title: Robustness may be at odds with accuracy
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 8093
  year: 2020
  end-page: 8104
  ident: bib0085
  article-title: Overfitting in adversarially robust deep learning
  publication-title: International Conference on Machine Learning (ICML)
– year: 2018
  ident: bib0077
  article-title: Ensemble adversarial training: attacks and defenses
  publication-title: International Conference on Learning Representations (ICLR)
– reference: Y.M. Assael, B. Shillingford, S. Whiteson, N. de Freitas, LipNet: End-to-end sentence-level lipreading, 2016, arXiv preprint arXiv:
– start-page: 301
  year: 2015
  end-page: 309
  ident: bib0038
  article-title: A unified gradient regularization family for adversarial examples
  publication-title: IEEE International Conference on Data Mining (ICDM)
– volume: 5
  start-page: 1253
  year: 2004
  end-page: 1286
  ident: bib0106
  article-title: The minimum error minimax probability machine
  publication-title: J. Mach. Learn. Res.
– reference: A. Krizhevsky, V. Nair, G. Hinton, The CIFAR-10 dataset, online:
– year: 2018
  ident: bib0040
  article-title: Towards deep learning models resistant to adversarial attacks
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 826
  year: 2019
  end-page: 835
  ident: bib0024
  article-title: Generalized adversarial training in Riemannian space
  publication-title: IEEE International Conference on Data Mining (ICDM)
– start-page: 1
  year: 2018
  end-page: 5
  ident: bib0105
  article-title: Enhancing robustness of machine learning systems via data transformations
  publication-title: 52nd Annual Conference on Information Sciences and Systems
– start-page: 2958
  year: 2020
  end-page: 2969
  ident: bib0098
  article-title: Adversarial weight perturbation helps robust generalization
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 4260
  year: 2018
  end-page: 4267
  ident: bib0033
  article-title: Adversarial learning of portable student networks
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2018
  ident: bib0053
  article-title: Spatially transformed adversarial examples
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 9185
  year: 2018
  end-page: 9193
  ident: bib0048
  article-title: Boosting adversarial attacks with momentum
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 15
  year: 2017
  end-page: 26
  ident: bib0058
  article-title: ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models
  publication-title: ACM Workshop on Artificial Intelligence and Security (AISec@CCS)
– start-page: 2574
  year: 2016
  end-page: 2582
  ident: bib0045
  article-title: DeepFool: a simple and accurate method to fool deep neural networks
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– reference: , 2014.
– start-page: 14059
  year: 2019
  end-page: 14069
  ident: bib0102
  article-title: Provable certificates for adversarial examples: fitting a ball in the union of polytopes
  publication-title: Advances in Neural Information Processing Systems (NeurIPS)
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0001
  article-title: Deep residual learning for image recognition
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– year: 2018
  ident: bib0014
  article-title: Mitigating adversarial effects through randomization
  publication-title: International Conference on Learning Representations (ICLR)
– reference: J. Shu, X. Yuan, D. Meng, Z. Xu, CMW-Net: learning a class-aware sample weighting mapping for robust deep learning, 2022, arXiv preprint arXiv:
– year: 2019
  ident: bib0072
  article-title: Fast is better than free: revisiting adversarial training
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 11278
  year: 2020
  end-page: 11287
  ident: bib0080
  article-title: Attacks which do not kill training make adversarial learning stronger
  publication-title: International Conference on Machine Learning (ICML)
– year: 2014
  ident: bib0005
  article-title: Intriguing properties of neural networks
  publication-title: International Conference on Learning Representations (ICLR)
– start-page: 506
  year: 2017
  end-page: 519
  ident: bib0057
  article-title: Practical black-box attacks against machine learning
  publication-title: ACM on Asia Conference on Computer and Communications Security (AsiaCCS)
– start-page: 2206
  year: 2020
  end-page: 2216
  ident: bib0061
  article-title: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
  publication-title: International Conference on Machine Learning (ICML)
– year: 2018
  ident: bib0060
  article-title: Decision-based adversarial attacks: reliable attacks against black-box machine learning models
  publication-title: International Conference on Learning Representations (ICLR)
– year: 2018
  ident: bib0115
  article-title: Mixed precision training
  publication-title: International Conference on Learning Representations (ICLR)
– volume: 140
  start-page: 282
  year: 2021
  end-page: 293
  ident: bib0082
  article-title: Manifold adversarial training for supervised and semi-supervised learning
  publication-title: Neural Netw.
– reference: Z. Qian, S. Zhang, K. Huang, Q. Wang, R. Zhang, X. Yi, Improving model robustness with latent distribution locally and globally, 2021, arXiv preprint arXiv:
– volume: vol. 1
  year: 2017
  ident: bib0112
  article-title: Distributionally robust deep learning as a generalization of adversarial training
  publication-title: NIPS workshop on Machine Learning and Computer Security
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0016
  article-title: Defense-GAN: protecting classifiers against adversarial attacks using generative models
– volume: 25
  start-page: 2410
  issue: 12
  year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0003
  article-title: Toward human parity in conversational speech recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2017.2756440
– volume: 124
  start-page: 108472
  year: 2022
  ident: 10.1016/j.patcog.2022.108889_bib0067
  article-title: Semi-supervised robust training with generalized perturbed neighborhood
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108472
– start-page: 1739
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0062
  article-title: Rays: a ray searching method for hard-label adversarial attack
– ident: 10.1016/j.patcog.2022.108889_bib0036
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0034
  article-title: Excessive invariance causes adversarial vulnerability
– volume: vol. 1
  year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0112
  article-title: Distributionally robust deep learning as a generalization of adversarial training
– year: 2016
  ident: 10.1016/j.patcog.2022.108889_bib0044
  article-title: Adversarial manipulation of deep representations
– year: 2021
  ident: 10.1016/j.patcog.2022.108889_bib0074
  article-title: A unified Wasserstein distributional robustness framework for adversarial training
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0100
  article-title: Evaluating the robustness of neural networks: an extreme value theory approach
– start-page: 9185
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0048
  article-title: Boosting adversarial attacks with momentum
– year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0101
  article-title: Provable robustness against all adversarial lp-perturbations for p≥1
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0091
  article-title: SmoothGrad: removing noise by adding noise
– start-page: 130
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0110
  article-title: Wasserstein distributionally robust optimization: theory and applications in machine learning
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2022.108889_bib0001
  article-title: Deep residual learning for image recognition
– start-page: 108527
  year: 2022
  ident: 10.1016/j.patcog.2022.108889_bib0068
  article-title: Hyperspherical class prototypes for adversarial robustness
  publication-title: Pattern Recognit
  doi: 10.1016/j.patcog.2022.108527
– start-page: 15
  year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0058
  article-title: ZOO: Zeroth order optimization based black-box attacks to deep neural networks without training substitute models
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0013
  article-title: Stochastic activation pruning for robust adversarial defense
– ident: 10.1016/j.patcog.2022.108889_bib0092
– start-page: 7758
  year: 2021
  ident: 10.1016/j.patcog.2022.108889_bib0070
  article-title: Reliably fast adversarial training via latent adversarial perturbation
– start-page: 4260
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0033
  article-title: Adversarial learning of portable student networks
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0018
  article-title: Countering adversarial images using input transformations
– start-page: 12524
  year: 2021
  ident: 10.1016/j.patcog.2022.108889_bib0099
  article-title: Towards better robust generalization with shift consistency regularization
– volume: 6
  start-page: 121
  year: 2022
  ident: 10.1016/j.patcog.2022.108889_bib0076
  article-title: Training robust neural networks using Lipschitz bounds
  publication-title: IEEE Control. Syst. Lett.
  doi: 10.1109/LCSYS.2021.3050444
– start-page: 1670
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0094
  article-title: More data can expand the generalization gap between adversarially robust and standard models
– start-page: 506
  year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0057
  article-title: Practical black-box attacks against machine learning
– start-page: 6629
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0022
  article-title: Bilateral adversarial training: towards fast training of more robust models against adversarial attacks
– volume: 45
  start-page: 503
  issue: 1
  year: 1989
  ident: 10.1016/j.patcog.2022.108889_bib0043
  article-title: On the limited memory BFGS method for large scale optimization
  publication-title: Math. Program.
  doi: 10.1007/BF01589116
– start-page: 9561
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0035
  article-title: Fundamental tradeoffs between invariance and sensitivity to adversarial perturbations
– start-page: 4970
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0078
  article-title: Improving adversarial robustness via promoting ensemble diversity
– ident: 10.1016/j.patcog.2022.108889_bib0020
– ident: 10.1016/j.patcog.2022.108889_bib0104
– start-page: 4312
  year: 2021
  ident: 10.1016/j.patcog.2022.108889_bib0028
  article-title: Recent advances in adversarial training for adversarial robustness
– volume: 58
  start-page: 595
  issue: 3
  year: 2010
  ident: 10.1016/j.patcog.2022.108889_bib0108
  article-title: Distributionally robust optimization under moment uncertainty with application to data-driven problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.1090.0741
– start-page: 7472
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0079
  article-title: Theoretically principled trade-off between robustness and accuracy
– volume: 84
  start-page: 317
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0030
  article-title: Wild patterns: ten years after the rise of adversarial machine learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.07.023
– start-page: 8093
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0085
  article-title: Overfitting in adversarially robust deep learning
– volume: vol. 97
  start-page: 7025
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0017
  article-title: ME-Net: towards effective adversarial robustness with matrix estimation
– start-page: 135
  year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0015
  article-title: Magnet: a two-pronged defense against adversarial examples
– volume: 37
  start-page: 332
  issue: 3
  year: 1992
  ident: 10.1016/j.patcog.2022.108889_bib0051
  article-title: Multivariate stochastic approximation using a simultaneous perturbation gradient approximation
  publication-title: IEEE Trans. Automat. Control
  doi: 10.1109/9.119632
– start-page: 3905
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0056
  article-title: Generating adversarial examples with adversarial networks
– year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0007
  article-title: A baseline for detecting misclassified and out-of-distribution examples in neural networks
– start-page: 14059
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0102
  article-title: Provable certificates for adversarial examples: fitting a ball in the union of polytopes
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0055
  article-title: Learning to attack: adversarial transformation networks
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0014
  article-title: Mitigating adversarial effects through randomization
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0073
  article-title: Certifying some distributional robustness with principled adversarial training
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0010
  article-title: Feature squeezing: detecting adversarial examples in deep neural networks
– ident: 10.1016/j.patcog.2022.108889_bib0039
– start-page: 909
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0021
  article-title: Adversarial noise layer: regularize neural network by adding noise
– start-page: 2958
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0098
  article-title: Adversarial weight perturbation helps robust generalization
– start-page: 11278
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0080
  article-title: Attacks which do not kill training make adversarial learning stronger
– start-page: 464
  year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0114
  article-title: Cyclical learning rates for training neural networks
– start-page: 99
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0047
  article-title: Adversarial examples in the physical world
– start-page: 16048
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0071
  article-title: Understanding and improving fast adversarial training
– start-page: 5286
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0012
  article-title: Provable defenses against adversarial examples via the convex outer adversarial polytope
– ident: 10.1016/j.patcog.2022.108889_bib0025
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0040
  article-title: Towards deep learning models resistant to adversarial attacks
– start-page: 301
  year: 2015
  ident: 10.1016/j.patcog.2022.108889_bib0038
  article-title: A unified gradient regularization family for adversarial examples
– year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0088
  article-title: Robustness may be at odds with accuracy
– start-page: 2672
  year: 2014
  ident: 10.1016/j.patcog.2022.108889_bib0031
  article-title: Generative adversarial nets
– year: 2016
  ident: 10.1016/j.patcog.2022.108889_bib0086
  article-title: Wide residual networks
– start-page: 96
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0093
  article-title: Robust generalization via alpha-mutual information
– start-page: 8588
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0075
  article-title: A closer look at accuracy vs. robustness
– ident: 10.1016/j.patcog.2022.108889_bib0113
  doi: 10.1109/TPAMI.2023.3271451
– ident: 10.1016/j.patcog.2022.108889_bib0087
– year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0084
  article-title: Intriguing properties of adversarial training at scale
– year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0072
  article-title: Fast is better than free: revisiting adversarial training
– volume: 171
  start-page: 115
  issue: 1–2
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0109
  article-title: Data-driven distributionally robust optimization using the Wasserstein metric: performance guarantees and tractable reformulations
  publication-title: Math. Program.
  doi: 10.1007/s10107-017-1172-1
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0054
  article-title: Generating natural adversarial examples
– ident: 10.1016/j.patcog.2022.108889_bib0041
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0115
  article-title: Mixed precision training
– start-page: 36
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0052
  article-title: Adversarial examples for generative models
– volume: 108
  start-page: 894
  issue: 6
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0027
  article-title: Towards robust pattern recognition: a review
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2020.2989782
– start-page: 7502
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0090
  article-title: Interpreting adversarially trained convolutional neural networks
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2022.108889_bib0002
  article-title: ImageNet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vision (IJCV)
  doi: 10.1007/s11263-015-0816-y
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0060
  article-title: Decision-based adversarial attacks: reliable attacks against black-box machine learning models
– start-page: 5019
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0095
  article-title: Adversarially robust generalization requires more data
– start-page: 1829
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0023
  article-title: Defense against adversarial attacks using feature scattering-based adversarial training
– year: 2014
  ident: 10.1016/j.patcog.2022.108889_bib0005
  article-title: Intriguing properties of neural networks
– ident: 10.1016/j.patcog.2022.108889_bib0096
– year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0008
  article-title: On detecting adversarial perturbations
– year: 2015
  ident: 10.1016/j.patcog.2022.108889_bib0006
  article-title: Explaining and harnessing adversarial examples
– volume: 23
  start-page: 828
  issue: 5
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0059
  article-title: One pixel attack for fooling deep neural networks
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2019.2890858
– volume: 5
  start-page: 1253
  year: 2004
  ident: 10.1016/j.patcog.2022.108889_bib0106
  article-title: The minimum error minimax probability machine
  publication-title: J. Mach. Learn. Res.
– year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0046
  article-title: Adversarial machine learning at scale
– start-page: 3353
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0069
  article-title: Adversarial training for free!
– start-page: 2206
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0061
  article-title: Reliable evaluation of adversarial robustness with an ensemble of diverse parameter-free attacks
– start-page: 478
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0065
  article-title: Metric learning for adversarial robustness
– start-page: 125
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0089
  article-title: Adversarial examples are not bugs, they are features
– start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2022.108889_bib0107
  article-title: Weakly-convex–concave min–max optimization: provable algorithms and applications in machine learning
  publication-title: Optim. Methods Softw.
– year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0097
  article-title: Robust local features for improving the generalization of adversarial training
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.patcog.2022.108889_bib0042
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
  doi: 10.1109/5.726791
– ident: 10.1016/j.patcog.2022.108889_bib0066
– start-page: 4584
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0011
  article-title: Towards robust detection of adversarial examples
– start-page: 39
  year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0019
  article-title: Towards evaluating the robustness of neural networks
– start-page: 826
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0024
  article-title: Generalized adversarial training in Riemannian space
– ident: 10.1016/j.patcog.2022.108889_bib0009
– start-page: 2196
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0063
  article-title: Minimally distorted adversarial examples with a fast adaptive boundary attack
– ident: 10.1016/j.patcog.2022.108889_bib0083
– start-page: 2574
  year: 2016
  ident: 10.1016/j.patcog.2022.108889_bib0045
  article-title: DeepFool: a simple and accurate method to fool deep neural networks
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0049
  article-title: Ensemble adversarial training: attacks and defenses
– start-page: 1
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0105
  article-title: Enhancing robustness of machine learning systems via data transformations
– start-page: 10067
  year: 2021
  ident: 10.1016/j.patcog.2022.108889_bib0111
  article-title: An online method for A class of distributionally robust optimization with non-convex objectives
– start-page: 274
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0050
  article-title: Obfuscated gradients give a false sense of security: circumventing defenses to adversarial examples
– ident: 10.1016/j.patcog.2022.108889_bib0103
– volume: 140
  start-page: 282
  year: 2021
  ident: 10.1016/j.patcog.2022.108889_bib0082
  article-title: Manifold adversarial training for supervised and semi-supervised learning
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.03.031
– volume: 30
  start-page: 2805
  issue: 9
  year: 2019
  ident: 10.1016/j.patcog.2022.108889_bib0026
  article-title: Adversarial examples: attacks and defenses for deep learning
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2018.2886017
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0053
  article-title: Spatially transformed adversarial examples
– year: 2017
  ident: 10.1016/j.patcog.2022.108889_bib0037
  article-title: Delving into transferable adversarial examples and black-box attacks
– start-page: 5764
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0032
  article-title: Generative adversarial learning towards fast weakly supervised detection
– ident: 10.1016/j.patcog.2022.108889_bib0029
– ident: 10.1016/j.patcog.2022.108889_bib0004
– year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0077
  article-title: Ensemble adversarial training: attacks and defenses
– start-page: 484
  year: 2020
  ident: 10.1016/j.patcog.2022.108889_bib0064
  article-title: Square attack: a query-efficient black-box adversarial attack via random search
– volume: 41
  start-page: 1979
  issue: 8
  year: 2018
  ident: 10.1016/j.patcog.2022.108889_bib0081
  article-title: Virtual adversarial training: a regularization method for supervised and semi-supervised learning
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858821
SSID ssj0017142
Score 2.643018
Snippet •We present a timely and comprehensive survey on robust adversarial training.•This survey offers the fundamentals of adversarial training, a unified theory...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108889
SubjectTerms Adversarial examples
Adversarial training
Robust learning
Title A survey of robust adversarial training in pattern recognition: Fundamental, theory, and methodologies
URI https://dx.doi.org/10.1016/j.patcog.2022.108889
Volume 131
WOSCitedRecordID wos000854976600009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9wwEBbLpode-i5NX-jQ20bBtuyV1NtSEvoipDQt216MZEnEIXjD7npJAv3vlTyy19stfUEvxghLsmc-j0ajeSD0QnCdceuln1aKpEYLomxREOvWWiuSRGZNlYjP79nREZ9OxfFg8K2NhVmds6ril5fi4r-y2rU5ZvvQ2b9gdzeoa3D3junu6tjurn_E-MloUc9Xpjk5n89UvVj6g36n5cmmQEdbE2IESVW9PXDUeRGBn8ehjw6BpP-eA02s41Xr5gklpxuRGdwPg2p7vD1YZ1Utwcz69bSWYaVskBRs1e9keX1ar0370PqhrIkjbPd4Z9qe1uSLnPXNFW6nG2-YK7o4mrXTUiOXaUxoEoGoMyCKOaPEqXObshqWjC25DyaIs31HN_eN-35i7z3JoTzRDxm1P0LCysjJMp9-x-eK3UlYJvgQ7UzeHEzfdsdQLE4h3Xx4vTb2snEQ3J7r57pNT185uYNuhY0GngBA7qKBqe6h220RDxxk-n1kJxjwgmcWA15wDy-4xQsuKxzwgnssfol7aNnDgJU97JCCN5DyAH06PDh59ZqE4hukcLvIJZFjy3hhUpOMdZZYSqmKBDUsthkThc0yLUUmMkljo3TKIib9zjvSVlHTKJ0P0bCaVeYRwtpwpakRheBxqgrJldTCqqiwMdVSjncRbcmWFyEzvf-487x1QTzLgdi5J3YOxN5FpOt1AZlZfvM8azmSB-0StMbcgeiXPR__c88n6Ob6H3iKhst5bZ6hG8VqWS7mzwPavgOc1KR-
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+survey+of+robust+adversarial+training+in+pattern+recognition%3A+Fundamental%2C+theory%2C+and+methodologies&rft.jtitle=Pattern+recognition&rft.au=Qian%2C+Zhuang&rft.au=Huang%2C+Kaizhu&rft.au=Wang%2C+Qiu-Feng&rft.au=Zhang%2C+Xu-Yao&rft.date=2022-11-01&rft.pub=Elsevier+Ltd&rft.issn=0031-3203&rft.eissn=1873-5142&rft.volume=131&rft_id=info:doi/10.1016%2Fj.patcog.2022.108889&rft.externalDocID=S0031320322003703
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon