Optimal pyranometer placement in bifacial PV plants on complex terrain

[Display omitted] •Seven pyranometer placement algorithms are benchmarked in utility-scale PV plants.•Simulated irradiance includes shading, tracking geometry, and bifacial effects.•Multi-objective methods outperform geometric heuristics in accuracy and generalization.•Validation is performed using...

Full description

Saved in:
Bibliographic Details
Published in:Solar energy Vol. 302; p. 114056
Main Authors: Salinas, Conrado García, Furones, Angel Martín, Julián, Ana Belén Anquela, Moreno, Jorge Aleix
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2025
Subjects:
ISSN:0038-092X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract [Display omitted] •Seven pyranometer placement algorithms are benchmarked in utility-scale PV plants.•Simulated irradiance includes shading, tracking geometry, and bifacial effects.•Multi-objective methods outperform geometric heuristics in accuracy and generalization.•Validation is performed using real SCADA data from three mountainous PV sites.•A hybrid two-stage strategy is proposed for scalable sensor deployment. Accurate placement of irradiance sensors is critical for performance monitoring in utility-scale photovoltaic (PV) plants, particularly those featuring single-axis trackers, bifacial modules, and non-uniform terrain. Installing pyranometers on every tracker row is infeasible, making optimal sensor selection a key design challenge. In this work, we benchmark seven pyranometer placement algorithms—including geometric heuristics, unsupervised clustering, metaheuristics, and multi-objective optimization using a detailed simulation framework that incorporates clear-sky irradiance modeling, terrain-induced shading, backtracking dynamics, and bifacial rear-side contribution. The methods are evaluated across three operational PV plants in Spain, ranging from 30 to 70 MWp, each characterized by complex topography. We assess each algorithm using multiple performance metrics: mean absolute error (MAE), mean relative error (MRE), temporal correlation (R2), and inter-sensor redundancy. Results show that multi-objective algorithms, particularly those incorporating simulated irradiance, consistently outperform geometry-only approaches in both accuracy and robustness. Notably, a geometry-based multi-objective method achieves comparable performance. We find that simple dispersion heuristics fail to generalize under steep terrain, while simulated annealing offers a strong trade-off between accuracy and runtime. These findings support a hybrid sensor placement strategy combining fast geometric pre-selection with energy-based refinement. The proposed methodology is scalable and applicable to modern PV systems, offering a reproducible framework for data-driven sensor deployment in heterogeneous landscapes.
AbstractList [Display omitted] •Seven pyranometer placement algorithms are benchmarked in utility-scale PV plants.•Simulated irradiance includes shading, tracking geometry, and bifacial effects.•Multi-objective methods outperform geometric heuristics in accuracy and generalization.•Validation is performed using real SCADA data from three mountainous PV sites.•A hybrid two-stage strategy is proposed for scalable sensor deployment. Accurate placement of irradiance sensors is critical for performance monitoring in utility-scale photovoltaic (PV) plants, particularly those featuring single-axis trackers, bifacial modules, and non-uniform terrain. Installing pyranometers on every tracker row is infeasible, making optimal sensor selection a key design challenge. In this work, we benchmark seven pyranometer placement algorithms—including geometric heuristics, unsupervised clustering, metaheuristics, and multi-objective optimization using a detailed simulation framework that incorporates clear-sky irradiance modeling, terrain-induced shading, backtracking dynamics, and bifacial rear-side contribution. The methods are evaluated across three operational PV plants in Spain, ranging from 30 to 70 MWp, each characterized by complex topography. We assess each algorithm using multiple performance metrics: mean absolute error (MAE), mean relative error (MRE), temporal correlation (R2), and inter-sensor redundancy. Results show that multi-objective algorithms, particularly those incorporating simulated irradiance, consistently outperform geometry-only approaches in both accuracy and robustness. Notably, a geometry-based multi-objective method achieves comparable performance. We find that simple dispersion heuristics fail to generalize under steep terrain, while simulated annealing offers a strong trade-off between accuracy and runtime. These findings support a hybrid sensor placement strategy combining fast geometric pre-selection with energy-based refinement. The proposed methodology is scalable and applicable to modern PV systems, offering a reproducible framework for data-driven sensor deployment in heterogeneous landscapes.
ArticleNumber 114056
Author Moreno, Jorge Aleix
Furones, Angel Martín
Salinas, Conrado García
Julián, Ana Belén Anquela
Author_xml – sequence: 1
  givenname: Conrado García
  orcidid: 0009-0008-7342-2331
  surname: Salinas
  fullname: Salinas, Conrado García
  email: cgarcia@grupotec.es
  organization: Grupotec Servicios Avanzados S.A, Av. de les Corts Valencianes, 47, Campanar, 46015 Valencia, Spain
– sequence: 2
  givenname: Angel Martín
  orcidid: 0000-0001-9379-0694
  surname: Furones
  fullname: Furones, Angel Martín
  organization: Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría, Universitat Politènica de València, Camino de vera s/n 46022 Valéncia, Spain
– sequence: 3
  givenname: Ana Belén Anquela
  surname: Julián
  fullname: Julián, Ana Belén Anquela
  organization: Departamento de Ingeniería Cartográfica, Geodesia y Fotogrametría, Universitat Politènica de València, Camino de vera s/n 46022 Valéncia, Spain
– sequence: 4
  givenname: Jorge Aleix
  orcidid: 0009-0003-2173-0723
  surname: Moreno
  fullname: Moreno, Jorge Aleix
  organization: Grupotec Servicios Avanzados S.A, Av. de les Corts Valencianes, 47, Campanar, 46015 Valencia, Spain
BookMark eNqFkM1KAzEUhbOoYKs-gpAXmPEm00mnK5FiVSjUhYq7kLm5gZSZZEgGsW_vlHbv6izOD4dvwWYhBmLsXkApQKiHQ5ljR4FSKUHWpRBLqNWMzQGqpoC1_L5mi5wPAGIlmtWcbffD6HvT8eGYTIg9jZT40BmknsLIfeCtdwb9lHj_OhlhzDwGjrEfOvrlUzwZH27ZlTNdpruL3rDP7fPH5rXY7V_eNk-7AitQY2GUamHZWqmatkJjrUSoG-cUWuvWsJpSVW2kqAQqYxWiq2EpoTHKigYlVjesPu9iijkncnpI0_101AL0CYA-6AsAfQKgzwCm3uO5R9O5Hz-5GT0FJOsT4aht9P8s_AEu9mwi
Cites_doi 10.3390/w16131835
10.3390/su16145977
10.1016/j.apenergy.2023.120981
10.1109/36.58986
10.1016/j.ref.2024.100645
10.1016/j.apenergy.2024.123574
10.1109/PVSC.2017.8366704
10.1016/S0038-092X(02)00045-2
10.1016/j.solener.2025.113679
10.1016/j.renene.2011.06.042
10.1109/ICCEP.2013.6586968
10.2172/1660126
10.1016/j.solener.2024.113139
10.1016/j.renene.2023.04.110
10.1002/pip.3847
10.1016/j.renene.2025.122945
10.1016/j.solener.2025.113475
10.1016/j.segan.2024.101615
ContentType Journal Article
Copyright 2025 The Author(s)
Copyright_xml – notice: 2025 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.solener.2025.114056
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_solener_2025_114056
S0038092X25008199
GroupedDBID --K
--M
-ET
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
6I.
6TJ
7-5
71M
8P~
9DU
9JN
AABNK
AABXZ
AAEDT
AAEDW
AAEPC
AAFTH
AAHCO
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ABXRA
ACDAQ
ACGFS
ACGOD
ACIWK
ACLOT
ACNNM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADHUB
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEZYN
AFJKZ
AFPUW
AFRAH
AFRZQ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
AXJTR
AZFZN
BELTK
BKOJK
BKOMP
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MAGPM
MO0
N9A
NEJ
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
ROL
RPZ
RXW
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSM
SSR
SSZ
T5K
TAE
TN5
UKR
VOH
WH7
WUQ
XOL
XPP
YNT
ZMT
ZY4
~02
~A~
~G-
~HD
~KM
~S-
AAYXX
CITATION
ID FETCH-LOGICAL-c306t-a66b04bd268b3cadd2c058ff6cddf907c3035a2131c6ad6ccf504208a6d18c2c3
ISICitedReferencesCount 0
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001605584900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0038-092X
IngestDate Thu Nov 27 01:08:09 EST 2025
Sat Nov 29 17:01:16 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Sensor placement
Multi-Objective Algorithm
Irradiation modelling
Topography
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-a66b04bd268b3cadd2c058ff6cddf907c3035a2131c6ad6ccf504208a6d18c2c3
ORCID 0009-0008-7342-2331
0009-0003-2173-0723
0000-0001-9379-0694
OpenAccessLink https://dx.doi.org/10.1016/j.solener.2025.114056
ParticipantIDs crossref_primary_10_1016_j_solener_2025_114056
elsevier_sciencedirect_doi_10_1016_j_solener_2025_114056
PublicationCentury 2000
PublicationDate December 2025
2025-12-00
PublicationDateYYYYMMDD 2025-12-01
PublicationDate_xml – month: 12
  year: 2025
  text: December 2025
PublicationDecade 2020
PublicationTitle Solar energy
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Stein, Maugeri, Riedel-Lyngskær, Ovaitt, Müller, Wang (b0040) 2024; 13–26
16 (14), 5977.
Li, Li, Diao (b0115) 2024; 51
Hou, Givisiez, Liu, Ochoa (b0125) 2025; 41
Rakovec, Zakšek (b0105) 2012; 37
Kuszamaul, Ellis, Stein, Johnson (b0010) 2010
(July),.
Riedel-Lyngskær, Andersen (b0055) 2025; 298
Ernst, Asselineau, Tillmann, Jäger, Becker (b0070) 2024; 369
Anderson, K. and Mikofski, M. (2020) Slope-Aware Backtracking for Single-Axis Trackers.
IEC 61724-1 (2021) Photovoltaic system performance – Part 1: Monitoring.
Naushad, Hossain, Khan (b0025) 2025; 27
Dozier (b0075) 1990; 28
Pau, Locci, Muscas (b0130) 2014
GRASS Development Team (2024) GRASS.
Ineichen, Perez (b0090) 2002; 73
16 (13), 1835.
Anderson, Hansen, Holmgren, Jensen, Mikofski, Driesse (b0085) 2023; 8
Salilih, Leon-Salas, Ruiz Gonzalez, Larico, Cornejo, Postigo-Málaga (b0065) 2025; 28
Yu, S., Wang, J., Wu, Z., Menapace, A., Zanfei, A., Herrera, M., et al. (2024) Graph Neural Networks for Sensor Placement: A Proof of Concept towards a Digital Twin of Water Distribution Systems.
339.
Ferry, Parenti, Thebault, Ménézo, Fossa (b0060) 2025; 293
Pau, M., Muscas, C., Ponci, F., and Monti, A. (2013) Measurement issues for performance assessment in large photovoltaic plants. in: 4th International Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2013, .
Li, C., Zhang, W., Liu, F., Li, X., Wang, J., and Li, C. (2024) Multi-Objective Optimization of Bifacial Photovoltaic Sunshade: Towards Better Optical, Electrical and Economical Performance.
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b0080) 2011; 12
Anoma, M.A., Jacob, D., Bourne, B.C., Scholl, J.A., Riley, D.M., and Hansen, C.W. (2018) View Factor Model and Validation for Bifacial PV and Diffuse Shade on Single-Axis Trackers. in: .
Zang, Li, Cheng, Liu, Wei, Sun (b0030) 2025; 246
Alcañiz, van Kouwen, Isabella, Ziar (b0045) 2025; 286
Zainali, S., Ma Lu, S., Stridh, B., Avelin, A., Amaducci, S., Colauzzi, M., et al. (2023) Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts.
Barbón, Carreira-Fontao, Bayón, Silva (b0020) 2023; 211
Ledesma, Lorenzo, Narvarte (b0050) 2025; 33
Ineichen (10.1016/j.solener.2025.114056_b0090) 2002; 73
Riedel-Lyngskær (10.1016/j.solener.2025.114056_b0055) 2025; 298
Pedregosa (10.1016/j.solener.2025.114056_b0080) 2011; 12
Anderson (10.1016/j.solener.2025.114056_b0085) 2023; 8
Hou (10.1016/j.solener.2025.114056_b0125) 2025; 41
Pau (10.1016/j.solener.2025.114056_b0130) 2014
10.1016/j.solener.2025.114056_b0005
Ferry (10.1016/j.solener.2025.114056_b0060) 2025; 293
Stein (10.1016/j.solener.2025.114056_b0040) 2024; 13–26
Kuszamaul (10.1016/j.solener.2025.114056_b0010) 2010
Dozier (10.1016/j.solener.2025.114056_b0075) 1990; 28
10.1016/j.solener.2025.114056_b0120
10.1016/j.solener.2025.114056_b0100
Ernst (10.1016/j.solener.2025.114056_b0070) 2024; 369
Naushad (10.1016/j.solener.2025.114056_b0025) 2025; 27
Li (10.1016/j.solener.2025.114056_b0115) 2024; 51
Zang (10.1016/j.solener.2025.114056_b0030) 2025; 246
Salilih (10.1016/j.solener.2025.114056_b0065) 2025; 28
10.1016/j.solener.2025.114056_b0015
10.1016/j.solener.2025.114056_b0135
Ledesma (10.1016/j.solener.2025.114056_b0050) 2025; 33
Alcañiz (10.1016/j.solener.2025.114056_b0045) 2025; 286
10.1016/j.solener.2025.114056_b0095
Rakovec (10.1016/j.solener.2025.114056_b0105) 2012; 37
10.1016/j.solener.2025.114056_b0110
10.1016/j.solener.2025.114056_b0035
Barbón (10.1016/j.solener.2025.114056_b0020) 2023; 211
References_xml – volume: 27
  year: 2025
  ident: b0025
  article-title: Modeling any bifacial solar panel array configuration on sloped terrain: generalization using a precursor formulation
  publication-title: Energy Convers. Manage.: X
– volume: 28
  year: 2025
  ident: b0065
  article-title: Energy output assessment and tilt angle optimization of north/south configured bifacial PV module using single diode model in mountainous region
  publication-title: Energy Convers. Manage.: X
– reference: . 339.
– year: 2014
  ident: b0130
  article-title: A tool to define the position and the number of irradiance sensors in large PV plants
  publication-title: In: ENERGYCON 2014 - IEEE International Energy Conference
– volume: 286
  year: 2025
  ident: b0045
  article-title: Wide-area sky view factor analysis and Fourier-based decomposition model for optimizing irradiance sensors allocation in European solar photovoltaic farms: a software tool
  publication-title: Sol. Energy
– reference: Zainali, S., Ma Lu, S., Stridh, B., Avelin, A., Amaducci, S., Colauzzi, M., et al. (2023) Direct and diffuse shading factors modelling for the most representative agrivoltaic system layouts.
– reference: Li, C., Zhang, W., Liu, F., Li, X., Wang, J., and Li, C. (2024) Multi-Objective Optimization of Bifacial Photovoltaic Sunshade: Towards Better Optical, Electrical and Economical Performance.
– reference: Anoma, M.A., Jacob, D., Bourne, B.C., Scholl, J.A., Riley, D.M., and Hansen, C.W. (2018) View Factor Model and Validation for Bifacial PV and Diffuse Shade on Single-Axis Trackers. in: .
– volume: 33
  start-page: 309
  year: 2025
  end-page: 325
  ident: b0050
  article-title: Single‐axis tracking and bifacial gain on sloping terrain
  publication-title: Prog. Photovolt. Res. Appl.
– volume: 12
  year: 2011
  ident: b0080
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– reference: IEC 61724-1 (2021) Photovoltaic system performance – Part 1: Monitoring.
– volume: 293
  year: 2025
  ident: b0060
  article-title: Optimal tilt angles for bifacial photovoltaic plants across Europe based on cumulative sky and typical Meteorological Year data
  publication-title: Sol. Energy
– volume: 211
  year: 2023
  ident: b0020
  article-title: Optimal design and cost analysis of single-axis tracking photovoltaic power plants
  publication-title: Renew. Energy
– volume: 246
  year: 2025
  ident: b0030
  article-title: Short-term multi-site solar irradiance prediction with dynamic-graph-convolution-based spatial-temporal correlation capturing
  publication-title: Renew. Energy
– volume: 37
  year: 2012
  ident: b0105
  article-title: On the proper analytical expression for the sky-view factor and the diffuse irradiation of a slope for an isotropic sky
  publication-title: Renew. Energy
– volume: 28
  start-page: 963
  year: 1990
  end-page: 969
  ident: b0075
  article-title: Rapid calculation of terin parameters for radiation modeling from digital elevation data
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 41
  year: 2025
  ident: b0125
  article-title: Increasing PV hosting capacity with phase rebalancing in LV networks: a network-agnostic rule-based approach
  publication-title: Sustainable Energy Grids Networks
– volume: 73
  year: 2002
  ident: b0090
  article-title: A new airmass independent formulation for the linke turbidity coefficient
  publication-title: Sol. Energy
– reference: Pau, M., Muscas, C., Ponci, F., and Monti, A. (2013) Measurement issues for performance assessment in large photovoltaic plants. in: 4th International Conference on Clean Electrical Power: Renewable Energy Resources Impact, ICCEP 2013, .
– volume: 13–26
  start-page: 2024
  year: 2024
  ident: b0040
  article-title: Best practices for the optimization of bifacial photovoltaic tracking systems
  publication-title: Report IEA-PVPS T
– reference: Anderson, K. and Mikofski, M. (2020) Slope-Aware Backtracking for Single-Axis Trackers.
– reference: GRASS Development Team (2024) GRASS.
– year: 2010
  ident: b0010
  article-title: Lanai high-density irradiance sensor network for characterizing SOLAR resource variability of MW-scale PV system
  publication-title: Conf. Rec. IEEE Photovolt. Spec. Conf.
– reference: . 16 (14), 5977.
– volume: 8
  year: 2023
  ident: b0085
  article-title: pvlib python: 2023 project update
  publication-title: J. Open Sour. Software.
– reference: . (July),.
– volume: 298
  year: 2025
  ident: b0055
  article-title: Rear irradiance monitoring on tracked bifacial photovoltaic systems
  publication-title: Sol. Energy
– reference: Yu, S., Wang, J., Wu, Z., Menapace, A., Zanfei, A., Herrera, M., et al. (2024) Graph Neural Networks for Sensor Placement: A Proof of Concept towards a Digital Twin of Water Distribution Systems.
– reference: . 16 (13), 1835.
– volume: 51
  year: 2024
  ident: b0115
  article-title: A precise and efficient K-means-ELM model to improve ultra-short-term solar irradiance forecasting
  publication-title: Renewable Energy Focus
– volume: 369
  year: 2024
  ident: b0070
  article-title: Modelling bifacial irradiance – Step-by-step comparison and validation of view factor and ray tracing models
  publication-title: Appl. Energy
– ident: 10.1016/j.solener.2025.114056_b0035
  doi: 10.3390/w16131835
– volume: 8
  issue: 92
  year: 2023
  ident: 10.1016/j.solener.2025.114056_b0085
  article-title: pvlib python: 2023 project update
  publication-title: J. Open Sour. Software.
– ident: 10.1016/j.solener.2025.114056_b0120
  doi: 10.3390/su16145977
– ident: 10.1016/j.solener.2025.114056_b0100
  doi: 10.1016/j.apenergy.2023.120981
– volume: 28
  start-page: 963
  issue: 5
  year: 1990
  ident: 10.1016/j.solener.2025.114056_b0075
  article-title: Rapid calculation of terin parameters for radiation modeling from digital elevation data
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/36.58986
– volume: 51
  year: 2024
  ident: 10.1016/j.solener.2025.114056_b0115
  article-title: A precise and efficient K-means-ELM model to improve ultra-short-term solar irradiance forecasting
  publication-title: Renewable Energy Focus
  doi: 10.1016/j.ref.2024.100645
– volume: 369
  year: 2024
  ident: 10.1016/j.solener.2025.114056_b0070
  article-title: Modelling bifacial irradiance – Step-by-step comparison and validation of view factor and ray tracing models
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2024.123574
– ident: 10.1016/j.solener.2025.114056_b0110
  doi: 10.1109/PVSC.2017.8366704
– volume: 73
  issue: 3
  year: 2002
  ident: 10.1016/j.solener.2025.114056_b0090
  article-title: A new airmass independent formulation for the linke turbidity coefficient
  publication-title: Sol. Energy
  doi: 10.1016/S0038-092X(02)00045-2
– ident: 10.1016/j.solener.2025.114056_b0015
– ident: 10.1016/j.solener.2025.114056_b0095
– year: 2010
  ident: 10.1016/j.solener.2025.114056_b0010
  article-title: Lanai high-density irradiance sensor network for characterizing SOLAR resource variability of MW-scale PV system
  publication-title: Conf. Rec. IEEE Photovolt. Spec. Conf.
– volume: 298
  year: 2025
  ident: 10.1016/j.solener.2025.114056_b0055
  article-title: Rear irradiance monitoring on tracked bifacial photovoltaic systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2025.113679
– volume: 37
  issue: 1
  year: 2012
  ident: 10.1016/j.solener.2025.114056_b0105
  article-title: On the proper analytical expression for the sky-view factor and the diffuse irradiation of a slope for an isotropic sky
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2011.06.042
– ident: 10.1016/j.solener.2025.114056_b0005
  doi: 10.1109/ICCEP.2013.6586968
– ident: 10.1016/j.solener.2025.114056_b0135
  doi: 10.2172/1660126
– volume: 286
  year: 2025
  ident: 10.1016/j.solener.2025.114056_b0045
  article-title: Wide-area sky view factor analysis and Fourier-based decomposition model for optimizing irradiance sensors allocation in European solar photovoltaic farms: a software tool
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2024.113139
– volume: 12
  year: 2011
  ident: 10.1016/j.solener.2025.114056_b0080
  article-title: Scikit-learn: machine learning in Python
  publication-title: J. Mach. Learn. Res.
– year: 2014
  ident: 10.1016/j.solener.2025.114056_b0130
  article-title: A tool to define the position and the number of irradiance sensors in large PV plants
– volume: 211
  year: 2023
  ident: 10.1016/j.solener.2025.114056_b0020
  article-title: Optimal design and cost analysis of single-axis tracking photovoltaic power plants
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2023.04.110
– volume: 33
  start-page: 309
  issue: 2
  year: 2025
  ident: 10.1016/j.solener.2025.114056_b0050
  article-title: Single‐axis tracking and bifacial gain on sloping terrain
  publication-title: Prog. Photovolt. Res. Appl.
  doi: 10.1002/pip.3847
– volume: 27
  year: 2025
  ident: 10.1016/j.solener.2025.114056_b0025
  article-title: Modeling any bifacial solar panel array configuration on sloped terrain: generalization using a precursor formulation
  publication-title: Energy Convers. Manage.: X
– volume: 13–26
  start-page: 2024
  year: 2024
  ident: 10.1016/j.solener.2025.114056_b0040
  article-title: Best practices for the optimization of bifacial photovoltaic tracking systems
  publication-title: Report IEA-PVPS T
– volume: 246
  year: 2025
  ident: 10.1016/j.solener.2025.114056_b0030
  article-title: Short-term multi-site solar irradiance prediction with dynamic-graph-convolution-based spatial-temporal correlation capturing
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2025.122945
– volume: 293
  year: 2025
  ident: 10.1016/j.solener.2025.114056_b0060
  article-title: Optimal tilt angles for bifacial photovoltaic plants across Europe based on cumulative sky and typical Meteorological Year data
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2025.113475
– volume: 41
  year: 2025
  ident: 10.1016/j.solener.2025.114056_b0125
  article-title: Increasing PV hosting capacity with phase rebalancing in LV networks: a network-agnostic rule-based approach
  publication-title: Sustainable Energy Grids Networks
  doi: 10.1016/j.segan.2024.101615
– volume: 28
  year: 2025
  ident: 10.1016/j.solener.2025.114056_b0065
  article-title: Energy output assessment and tilt angle optimization of north/south configured bifacial PV module using single diode model in mountainous region
  publication-title: Energy Convers. Manage.: X
SSID ssj0017187
Score 2.477392
Snippet [Display omitted] •Seven pyranometer placement algorithms are benchmarked in utility-scale PV plants.•Simulated irradiance includes shading, tracking geometry,...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 114056
SubjectTerms Irradiation modelling
Multi-Objective Algorithm
Sensor placement
Topography
Title Optimal pyranometer placement in bifacial PV plants on complex terrain
URI https://dx.doi.org/10.1016/j.solener.2025.114056
Volume 302
WOSCitedRecordID wos001605584900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0038-092X
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017187
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdKxwM8THyKMUB-4C3KSJzGcR4LrHwIRqWNqm-R4zhSps6dunYq_z13tpNGY0KAxEuUuI4b3f3kO_t-dybkNQczLnTOwjITdTgSqgpLsNMh0ykr65HOtGUTzr5kJydiPs-ng8GmzYW5XmTGiO02v_yvqoY2UDamzv6FurtBoQHuQelwBbXD9Y8U_w0mgQvMr_oBZmh5gXSXwDKvbNi_MUHZ1NJulE9n-INxEQPLLdfbALrjqRF9p_UUl7-BtlmC3Y6MxExeV58ATyiolsEHEKSNu7_vpvrJZtWeBTBG9iymBq1dnw6UNkMbm2JfzUAGb_XCBfANPILhWnQDfl2utHHBItzLx_ycZtvfuWDpDRZIl1Kz4y_ZKTpBPoY9Y72bohOblf3rdO92Hs6PrpDDoLG8K0ux-nGU3iivbQ32KY6NQ4Pbh55QfofssSzNxZDsjT8dzz934Scw2K7Yqv-WXerXm1v_7HanpueonD0g-36FQccOGQ_JQJtH5H6v7uRjMvEYoT2M0A4jtDG0xQidzqjDCF0a6jFCPUaekO-T47N3H0N_oEaoYGW4DiXnZTQqK8ZFmSiwbExFqahrrqqqzqMMeiWpZHESKy4rrlSdRki_kLyKhWIqeUqGBmDzjFAuwC_UUVZjRcc45jIS-UiV8G0Jy2WZH5CjViLFpaubUrSEwvPCi7BAERZOhAdEtHIrvPPnnLoClP37V5__-6uH5N4OmS_IcL3a6JfkrrpeN1erVx4WPwG3j4Cg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+pyranometer+placement+in+bifacial+PV+plants+on+complex+terrain&rft.jtitle=Solar+energy&rft.au=Salinas%2C+Conrado+Garc%C3%ADa&rft.au=Furones%2C+Angel+Mart%C3%ADn&rft.au=Juli%C3%A1n%2C+Ana+Bel%C3%A9n+Anquela&rft.au=Moreno%2C+Jorge+Aleix&rft.date=2025-12-01&rft.pub=Elsevier+Ltd&rft.issn=0038-092X&rft.volume=302&rft_id=info:doi/10.1016%2Fj.solener.2025.114056&rft.externalDocID=S0038092X25008199
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0038-092X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0038-092X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0038-092X&client=summon