YOLO-FaceV2: A scale and occlusion aware face detector

In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Pattern recognition Ročník 155; s. 110714
Hlavní autoři: Yu, Ziping, Huang, Hongbo, Chen, Weijun, Su, Yongxin, Liu, Yahui, Wang, Xiuying
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.11.2024
Témata:
ISSN:0031-3203, 1873-5142
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features. In this paper, we propose a novel real-time face detector, YOLO-FaceV2, built upon the YOLOv5 architecture. Our approach introduces a Receptive Field Enhancement (RFE) module designed to extract multi-scale pixel information and augment the receptive field for accurately detecting small faces. To address issues related to face occlusion, we introduce an attention mechanism termed the Separated and Enhancement Attention Module (SEAM), which effectively focuses on the regions affected by occlusion. Furthermore, we propose a Slide Weight Function (SWF) to mitigate the imbalance between easy and hard samples. The experiments demonstrate that our YOLO-FaceV2 achieves performance exceeding the state-of-the-art on the WiderFace validation dataset. Source code and pre-trained model are available at https://github.com/Krasjet-Yu/YOLO-FaceV2. •Proposed an YOLO-FaceV2 detector to address face detection.•Good performance under face occlusion and varying scales.•Designed a novel weighting function alleviated the problem of imbalanced samples.•Detection results on the WiderFace validation dataset are 98.6%, 97.9% and 91.9%.•Achieved state-of-the-art performance on the easy and medium subset of WiderFace dataset.
AbstractList In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small and occlusion faces remains challenging, primarily stemming from the limitations in pixel information and the presence of missing features. In this paper, we propose a novel real-time face detector, YOLO-FaceV2, built upon the YOLOv5 architecture. Our approach introduces a Receptive Field Enhancement (RFE) module designed to extract multi-scale pixel information and augment the receptive field for accurately detecting small faces. To address issues related to face occlusion, we introduce an attention mechanism termed the Separated and Enhancement Attention Module (SEAM), which effectively focuses on the regions affected by occlusion. Furthermore, we propose a Slide Weight Function (SWF) to mitigate the imbalance between easy and hard samples. The experiments demonstrate that our YOLO-FaceV2 achieves performance exceeding the state-of-the-art on the WiderFace validation dataset. Source code and pre-trained model are available at https://github.com/Krasjet-Yu/YOLO-FaceV2. •Proposed an YOLO-FaceV2 detector to address face detection.•Good performance under face occlusion and varying scales.•Designed a novel weighting function alleviated the problem of imbalanced samples.•Detection results on the WiderFace validation dataset are 98.6%, 97.9% and 91.9%.•Achieved state-of-the-art performance on the easy and medium subset of WiderFace dataset.
ArticleNumber 110714
Author Liu, Yahui
Su, Yongxin
Chen, Weijun
Yu, Ziping
Wang, Xiuying
Huang, Hongbo
Author_xml – sequence: 1
  givenname: Ziping
  orcidid: 0000-0003-0755-9301
  surname: Yu
  fullname: Yu, Ziping
  organization: School of Instrument Science and Opto-electronic Engineering, Beijing Information Science and Technology University, Beijing, China
– sequence: 2
  givenname: Hongbo
  orcidid: 0000-0002-2963-8257
  surname: Huang
  fullname: Huang, Hongbo
  email: hhb@bistu.edu.cn
  organization: Computer School, Beijing Information Science and Technology University, Beijing, China
– sequence: 3
  givenname: Weijun
  surname: Chen
  fullname: Chen, Weijun
  organization: Data Algorithm NIO, Shanghai, China
– sequence: 4
  givenname: Yongxin
  surname: Su
  fullname: Su, Yongxin
  organization: School of Mechanical and Electrical Engineering, Beijing Information Science and Technology University, Beijing, China
– sequence: 5
  givenname: Yahui
  surname: Liu
  fullname: Liu, Yahui
  organization: School of Information Management, Beijing Information Science and Technology University, Beijing, China
– sequence: 6
  givenname: Xiuying
  surname: Wang
  fullname: Wang, Xiuying
  organization: Computer School, Beijing Information Science and Technology University, Beijing, China
BookMark eNqFkMFKxDAURYOM4Iz6By7yA615SZq2sxCGwVFhYDYquApp-iIZajskUfHv7VBXLnT1Nvdc3j0LMuuHHgm5ApYDA3W9zw8m2eE154zLHICVIE_IHKpSZAVIPiNzxgRkgjNxRhYx7hmDMcPnRL3strtsYyw-8yVd0WhNh9T0LR2s7d6jH3pqPk1A6sYMbTGhTUO4IKfOdBEvf-45edrcPq7vs-3u7mG92mZWMJUyo6CxiomirBQI1wrZqLoSDUPnuKnLtpAGalVJqCtoZFMXVQ2oSsfBSVk6cU6WU68NQ4wBnbY-mTR-lYLxnQamjwb0Xk8G9NGAngyMsPwFH4J_M-HrP-xmwnAc9uEx6Gg99hZbH8bxuh383wXf1Yp2qA
CitedBy_id crossref_primary_10_1016_j_dsp_2025_105537
crossref_primary_10_1016_j_ecoinf_2025_103185
crossref_primary_10_3390_pr13020349
crossref_primary_10_1109_JSEN_2025_3543918
crossref_primary_10_1155_joro_8556780
crossref_primary_10_3390_cryptography9030057
crossref_primary_10_3390_app142311088
crossref_primary_10_1038_s41598_025_00239_4
crossref_primary_10_3390_app15126589
crossref_primary_10_1088_2631_8695_adb6f3
crossref_primary_10_3390_app15116090
crossref_primary_10_1016_j_eswa_2025_128519
crossref_primary_10_3390_horticulturae11091010
crossref_primary_10_1016_j_jksuci_2024_102198
crossref_primary_10_1016_j_engappai_2025_110918
crossref_primary_10_3390_rs17111883
crossref_primary_10_3390_s25175506
crossref_primary_10_1109_ACCESS_2025_3546946
crossref_primary_10_1109_JSTARS_2024_3494838
crossref_primary_10_3390_ani15182669
crossref_primary_10_1117_1_JEI_33_5_053003
crossref_primary_10_3390_s25102989
crossref_primary_10_3390_drones8090479
crossref_primary_10_3390_nano15110821
crossref_primary_10_3390_electronics14081673
crossref_primary_10_1016_j_eswa_2025_127834
crossref_primary_10_3390_agronomy14081667
crossref_primary_10_1109_TIM_2025_3604118
crossref_primary_10_1088_1361_6501_ad7e3d
crossref_primary_10_3390_rs16224226
crossref_primary_10_1177_00405175251315069
crossref_primary_10_1016_j_dsp_2025_105158
crossref_primary_10_1016_j_engappai_2025_110640
crossref_primary_10_1080_0305215X_2025_2485147
crossref_primary_10_1109_ACCESS_2025_3550541
crossref_primary_10_3390_agriengineering7070232
crossref_primary_10_1016_j_jestch_2024_101893
crossref_primary_10_1016_j_measurement_2025_117321
crossref_primary_10_1016_j_indcrop_2025_121723
crossref_primary_10_3390_app15179664
crossref_primary_10_3390_s25082518
crossref_primary_10_1109_TIM_2025_3552879
crossref_primary_10_1016_j_precisioneng_2025_02_020
crossref_primary_10_3390_app15084197
crossref_primary_10_1109_ACCESS_2025_3526974
crossref_primary_10_1109_TIM_2025_3527589
crossref_primary_10_1002_cpe_70209
crossref_primary_10_3389_fpls_2025_1561018
crossref_primary_10_1016_j_plaphe_2025_100072
crossref_primary_10_1038_s41598_024_80957_3
crossref_primary_10_3390_fire8030104
crossref_primary_10_1016_j_rineng_2025_105930
crossref_primary_10_1007_s11227_025_07625_9
crossref_primary_10_1109_ACCESS_2024_3450582
crossref_primary_10_3390_fire8090338
crossref_primary_10_3390_agriculture15060617
crossref_primary_10_3390_app15158377
crossref_primary_10_3390_s25175538
crossref_primary_10_3390_agronomy15040791
crossref_primary_10_1049_ipr2_70134
crossref_primary_10_1088_2631_8695_adf525
crossref_primary_10_3389_fbioe_2025_1626299
crossref_primary_10_3390_app14167153
crossref_primary_10_1007_s11227_024_06738_x
crossref_primary_10_1109_TGRS_2024_3482358
crossref_primary_10_1007_s10499_025_02216_0
crossref_primary_10_1109_ACCESS_2025_3551892
crossref_primary_10_3390_foods14142513
crossref_primary_10_3390_agronomy14091936
crossref_primary_10_1109_ACCESS_2024_3416332
crossref_primary_10_3390_bdcc9060158
crossref_primary_10_1016_j_eswa_2025_128719
crossref_primary_10_1016_j_dsp_2025_105465
crossref_primary_10_1109_JSEN_2024_3425156
crossref_primary_10_1080_10589759_2025_2474103
crossref_primary_10_3390_rs16162953
crossref_primary_10_3390_plants14030365
crossref_primary_10_3390_jmse12101774
crossref_primary_10_3390_app15094966
crossref_primary_10_1007_s11760_025_04805_1
crossref_primary_10_3390_plants14131990
crossref_primary_10_1016_j_ymssp_2025_112690
crossref_primary_10_1016_j_dibe_2025_100609
crossref_primary_10_1109_ACCESS_2025_3591247
crossref_primary_10_3390_fire7090303
crossref_primary_10_3390_rs17173118
crossref_primary_10_1109_TIM_2025_3541692
crossref_primary_10_1109_ACCESS_2025_3545149
crossref_primary_10_1109_ACCESS_2024_3496514
crossref_primary_10_3390_electronics13214184
crossref_primary_10_1109_ACCESS_2024_3520181
crossref_primary_10_1109_ACCESS_2025_3570792
crossref_primary_10_3390_app142210713
crossref_primary_10_1007_s11760_025_04059_x
crossref_primary_10_1016_j_asoc_2025_113569
crossref_primary_10_1007_s10499_024_01798_5
crossref_primary_10_1007_s44443_025_00223_y
crossref_primary_10_1088_1402_4896_ad69d5
crossref_primary_10_1109_TIM_2025_3595241
crossref_primary_10_3390_electronics14030517
crossref_primary_10_1016_j_eswa_2025_127525
crossref_primary_10_1007_s11554_025_01736_5
crossref_primary_10_3390_app15137588
crossref_primary_10_1016_j_eswa_2024_125727
crossref_primary_10_3390_machines13040301
crossref_primary_10_3390_s24196495
crossref_primary_10_1186_s13007_025_01369_6
crossref_primary_10_3390_s25165084
crossref_primary_10_1111_nyas_70017
crossref_primary_10_3390_s25051551
crossref_primary_10_1038_s41598_024_72727_y
crossref_primary_10_1038_s41598_025_86593_9
crossref_primary_10_1088_2631_8695_adf52e
crossref_primary_10_3390_jmse13081528
crossref_primary_10_3390_mi15091136
crossref_primary_10_1007_s00530_025_01901_7
crossref_primary_10_1007_s10791_025_09684_1
Cites_doi 10.1007/978-3-031-25072-9_15
10.1007/978-3-030-01240-3_21
10.1609/aaai.v33i01.33018231
10.1007/978-3-319-46448-0_2
10.1109/CVPR.2018.00442
10.1109/BTAS.2017.8272675
10.1007/s00371-020-01831-7
10.1109/TPAMI.2016.2577031
10.1109/TPAMI.2020.2997456
10.1016/j.patcog.2023.109553
10.1109/CVPR42600.2020.00525
10.1109/CVPR.2016.89
10.1109/LSP.2016.2603342
10.1109/ICCV.2017.30
10.1109/ICASSP49357.2023.10096516
10.1109/ICCV.2017.522
10.1109/DDCLS49620.2020.9275060
10.1109/CVPR42600.2020.01160
10.1109/CVPR.2018.00244
10.1007/978-3-030-01240-3_49
10.1109/CVPR46437.2021.01350
10.1109/CVPR.2018.00377
10.1109/CVPR.2018.00913
10.1109/TPAMI.2018.2858826
10.1109/CVPR.2015.7299170
10.1109/CVPR.2019.00520
10.1109/ICCV.2019.00615
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.110714
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2024_110714
S0031320324004655
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-a61bc603578613fd34b6983b0eff2a97d54a196841981b4b95891e67f21f447f3
ISICitedReferencesCount 160
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001284255400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 03:52:40 EST 2025
Tue Nov 18 20:04:03 EST 2025
Sat Aug 03 15:30:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords YOLO
Occlusion
Imbalance problem
Face detection
Scale-aware
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-a61bc603578613fd34b6983b0eff2a97d54a196841981b4b95891e67f21f447f3
ORCID 0000-0003-0755-9301
0000-0002-2963-8257
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2024_110714
crossref_primary_10_1016_j_patcog_2024_110714
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110714
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, F. Huang, DSFD: Dual Shot Face Detector, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 5055–5064.
B. Singh, L.S. Davis, An Analysis of Scale Invariance in Object Detection - SNIP, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 3578–3587.
S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-Shot Refinement Neural Network for Object Detection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4203–4212.
S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, S
Liu, Huang, Wang (b22) 2018
Z. Li, P. Chao, Y. Gang, X. Zhang, S. Jian, DetNet: A Backbone network for Object Detection, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, 2018, pp. 339–354.
Chen, Huang, Peng, Zhou, Zhang (b5) 2021; 37
Q. Hou, D. Zhou, J. Feng, Coordinate Attention for Efficient Mobile Network Design, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Nashville, TN, USA, 2021, pp. 13708–13717.
M. Najibi, P. Samangouei, R. Chellappa, L.S. Davis, SSH: Single Stage Headless Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 4885–4894.
Zhou, Zhao, Leng (b20) 2021; 124
Ren, He, Girshick, Sun (b3) 2017; 39
X. Shi, S. Shan, M. Kan, S. Wu, X. Chen, Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 2295–2303.
FD: Single Shot Scale-Invariant Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 192–201.
H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, MA, USA, 2015, pp. 5325–5334.
M. Chen, X. Ren, Z. Yan, Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism, in: 2020 IEEE 9th Data Driven Control and Learning Systems Conference, DDCLS, Liuzhou, China, 2020, pp. 772–777.
Ju, Kittler, Rana, Yang, Feng (b13) 2023; 140
Wang, Xu, Yang, Yu (b12) 2021
J. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou, RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 5202–5211.
D. Qi, W. Tan, Q. Yao, J. Liu, YOLO5Face: Why Reinventing a Face Detector, in: Computer Vision – ECCV 2022 Workshops, Cham, 2023, pp. 228–244.
G. Jocher, YOLOv5
Luo, Li, Urtasun, Zemel (b8) 2016
C. Chi, S. Zhang, J. Xing, Z. Lei, S.Z. Li, X. Zou, Selective refinement network for high performance face detection, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 8231–8238.
A. Shrivastava, A. Gupta, R. Girshick, Training Region-Based Object Detectors with Online Hard Example Mining, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769.
.
D. Ouyang, S. He, G. Zhang, M. Luo, H. Guo, J. Zhan, Z. Huang, Efficient Multi-Scale Attention Module with Cross-Spatial Learning, in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Rhodes Island, Greece, 2023, pp. 1–5.
Lin, Goyal, Girshick, He, Dollár (b4) 2020; 42
S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, FaceBoxes: A CPU real-time face detector with high accuracy, in: 2017 IEEE International Joint Conference on Biometrics, IJCB, Denver, CO, USA, 2017, pp. 1–9.
W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.E. Reed, C.-Y. Fu, A.C. Berg, SSD: Single Shot MultiBox Detector, in: European Conference on Computer Vision, 2015.
Y. Li, Y. Chen, N. Wang, Z.-X. Zhang, Scale-Aware Trident Networks for Object Detection, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Korea (South), 2019, pp. 6053–6062.
S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path Aggregation Network for Instance Segmentation, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759–8768.
Y. Cao, K. Chen, C.C. Loy, D. Lin, Prime Sample Attention in Object Detection, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 11580–11588.
Zhang, Chi, Lei, Li (b18) 2021; 43
Zhang, Zhang, Li, Qiao (b1) 2016; 23
Wang, Yuan, Yu (b14) 2017
X. Tang, D.K. Du, Z. He, J. Liu, Pyramidbox: A context-assisted single shot face detector, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, Cham, 2018, pp. 797–813.
Wang (10.1016/j.patcog.2024.110714_b12) 2021
10.1016/j.patcog.2024.110714_b2
10.1016/j.patcog.2024.110714_b7
10.1016/j.patcog.2024.110714_b6
10.1016/j.patcog.2024.110714_b29
10.1016/j.patcog.2024.110714_b28
10.1016/j.patcog.2024.110714_b27
10.1016/j.patcog.2024.110714_b26
10.1016/j.patcog.2024.110714_b9
10.1016/j.patcog.2024.110714_b25
Zhang (10.1016/j.patcog.2024.110714_b18) 2021; 43
10.1016/j.patcog.2024.110714_b24
10.1016/j.patcog.2024.110714_b23
Ren (10.1016/j.patcog.2024.110714_b3) 2017; 39
10.1016/j.patcog.2024.110714_b21
Ju (10.1016/j.patcog.2024.110714_b13) 2023; 140
Liu (10.1016/j.patcog.2024.110714_b22) 2018
Chen (10.1016/j.patcog.2024.110714_b5) 2021; 37
10.1016/j.patcog.2024.110714_b19
Wang (10.1016/j.patcog.2024.110714_b14) 2017
10.1016/j.patcog.2024.110714_b17
10.1016/j.patcog.2024.110714_b16
10.1016/j.patcog.2024.110714_b15
Zhang (10.1016/j.patcog.2024.110714_b1) 2016; 23
Luo (10.1016/j.patcog.2024.110714_b8) 2016
Zhou (10.1016/j.patcog.2024.110714_b20) 2021; 124
Lin (10.1016/j.patcog.2024.110714_b4) 2020; 42
10.1016/j.patcog.2024.110714_b11
10.1016/j.patcog.2024.110714_b33
10.1016/j.patcog.2024.110714_b10
10.1016/j.patcog.2024.110714_b32
10.1016/j.patcog.2024.110714_b31
10.1016/j.patcog.2024.110714_b30
References_xml – volume: 37
  start-page: 805
  year: 2021
  end-page: 813
  ident: b5
  article-title: YOLO-face: a real-time face detector
  publication-title: Vis. Comput.
– reference: J. Li, Y. Wang, C. Wang, Y. Tai, J. Qian, J. Yang, C. Wang, J. Li, F. Huang, DSFD: Dual Shot Face Detector, in: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Long Beach, CA, USA, 2019, pp. 5055–5064.
– year: 2021
  ident: b12
  article-title: A normalized Gaussian wasserstein distance for tiny object detection
– reference: D. Ouyang, S. He, G. Zhang, M. Luo, H. Guo, J. Zhan, Z. Huang, Efficient Multi-Scale Attention Module with Cross-Spatial Learning, in: ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP, Rhodes Island, Greece, 2023, pp. 1–5.
– volume: 43
  start-page: 4008
  year: 2021
  end-page: 4020
  ident: b18
  article-title: RefineFace: Refinement neural network for high performance face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: J. Deng, J. Guo, E. Ververas, I. Kotsia, S. Zafeiriou, RetinaFace: Single-Shot Multi-Level Face Localisation in the Wild, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 5202–5211.
– year: 2016
  ident: b8
  article-title: Understanding the effective receptive field in deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems, Vol. 29
– reference: S. Zhang, L. Wen, X. Bian, Z. Lei, S.Z. Li, Single-Shot Refinement Neural Network for Object Detection, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 4203–4212.
– reference: FD: Single Shot Scale-Invariant Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 192–201.
– reference: W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S.E. Reed, C.-Y. Fu, A.C. Berg, SSD: Single Shot MultiBox Detector, in: European Conference on Computer Vision, 2015.
– reference: D. Qi, W. Tan, Q. Yao, J. Liu, YOLO5Face: Why Reinventing a Face Detector, in: Computer Vision – ECCV 2022 Workshops, Cham, 2023, pp. 228–244.
– reference: M. Chen, X. Ren, Z. Yan, Real-time Indoor Object Detection Based on Deep Learning and Gradient Harmonizing Mechanism, in: 2020 IEEE 9th Data Driven Control and Learning Systems Conference, DDCLS, Liuzhou, China, 2020, pp. 772–777.
– volume: 23
  start-page: 1499
  year: 2016
  end-page: 1503
  ident: b1
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
– reference: X. Shi, S. Shan, M. Kan, S. Wu, X. Chen, Real-Time Rotation-Invariant Face Detection with Progressive Calibration Networks, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 2295–2303.
– reference: S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, S
– reference: Y. Cao, K. Chen, C.C. Loy, D. Lin, Prime Sample Attention in Object Detection, in: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Seattle, WA, USA, 2020, pp. 11580–11588.
– reference: Y. Li, Y. Chen, N. Wang, Z.-X. Zhang, Scale-Aware Trident Networks for Object Detection, in: 2019 IEEE/CVF International Conference on Computer Vision, ICCV, Seoul, Korea (South), 2019, pp. 6053–6062.
– volume: 140
  year: 2023
  ident: b13
  article-title: Keep an eye on faces: Robust face detection with heatmap-assisted spatial attention and scale-aware layer attention
  publication-title: Pattern Recognit.
– year: 2017
  ident: b14
  article-title: Face attention network: An effective face detector for the occluded faces
– reference: Z. Li, P. Chao, Y. Gang, X. Zhang, S. Jian, DetNet: A Backbone network for Object Detection, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, 2018, pp. 339–354.
– reference: B. Singh, L.S. Davis, An Analysis of Scale Invariance in Object Detection - SNIP, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 3578–3587.
– volume: 42
  start-page: 318
  year: 2020
  end-page: 327
  ident: b4
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: S. Zhang, X. Zhu, Z. Lei, H. Shi, X. Wang, S.Z. Li, FaceBoxes: A CPU real-time face detector with high accuracy, in: 2017 IEEE International Joint Conference on Biometrics, IJCB, Denver, CO, USA, 2017, pp. 1–9.
– reference: H. Li, Z. Lin, X. Shen, J. Brandt, G. Hua, A convolutional neural network cascade for face detection, in: 2015 IEEE Conference on Computer Vision and Pattern Recognition, CVPR, Boston, MA, USA, 2015, pp. 5325–5334.
– reference: X. Tang, D.K. Du, Z. He, J. Liu, Pyramidbox: A context-assisted single shot face detector, in: Proceedings of the European Conference on Computer Vision, ECCV, Cham, Cham, 2018, pp. 797–813.
– reference: C. Chi, S. Zhang, J. Xing, Z. Lei, S.Z. Li, X. Zou, Selective refinement network for high performance face detection, in: Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 33, No. 01, 2019, pp. 8231–8238.
– reference: A. Shrivastava, A. Gupta, R. Girshick, Training Region-Based Object Detectors with Online Hard Example Mining, in: 2016 IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 761–769.
– reference: Q. Hou, D. Zhou, J. Feng, Coordinate Attention for Efficient Mobile Network Design, in: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR, Nashville, TN, USA, 2021, pp. 13708–13717.
– volume: 39
  start-page: 1137
  year: 2017
  end-page: 1149
  ident: b3
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– reference: .
– reference: G. Jocher, YOLOv5,
– volume: 124
  year: 2021
  ident: b20
  article-title: MTCNet: Multi-task collaboration network for rotation-invariance face detection
  publication-title: Pattern Recognit.
– start-page: 404
  year: 2018
  end-page: 419
  ident: b22
  article-title: Receptive field block net for accurate and fast object detection
  publication-title: Proceedings of the European Conference on Computer Vision
– reference: S. Liu, L. Qi, H. Qin, J. Shi, J. Jia, Path Aggregation Network for Instance Segmentation, in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 2018, pp. 8759–8768.
– reference: M. Najibi, P. Samangouei, R. Chellappa, L.S. Davis, SSH: Single Stage Headless Face Detector, in: 2017 IEEE International Conference on Computer Vision, ICCV, Venice, Italy, 2017, pp. 4885–4894.
– ident: 10.1016/j.patcog.2024.110714_b33
  doi: 10.1007/978-3-031-25072-9_15
– ident: 10.1016/j.patcog.2024.110714_b23
  doi: 10.1007/978-3-030-01240-3_21
– ident: 10.1016/j.patcog.2024.110714_b9
  doi: 10.1609/aaai.v33i01.33018231
– year: 2017
  ident: 10.1016/j.patcog.2024.110714_b14
– ident: 10.1016/j.patcog.2024.110714_b17
  doi: 10.1007/978-3-319-46448-0_2
– ident: 10.1016/j.patcog.2024.110714_b19
  doi: 10.1109/CVPR.2018.00442
– ident: 10.1016/j.patcog.2024.110714_b7
  doi: 10.1109/BTAS.2017.8272675
– ident: 10.1016/j.patcog.2024.110714_b2
– volume: 37
  start-page: 805
  issue: 4
  year: 2021
  ident: 10.1016/j.patcog.2024.110714_b5
  article-title: YOLO-face: a real-time face detector
  publication-title: Vis. Comput.
  doi: 10.1007/s00371-020-01831-7
– year: 2021
  ident: 10.1016/j.patcog.2024.110714_b12
– volume: 124
  year: 2021
  ident: 10.1016/j.patcog.2024.110714_b20
  article-title: MTCNet: Multi-task collaboration network for rotation-invariance face detection
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 1137
  issue: 6
  year: 2017
  ident: 10.1016/j.patcog.2024.110714_b3
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– volume: 43
  start-page: 4008
  issue: 11
  year: 2021
  ident: 10.1016/j.patcog.2024.110714_b18
  article-title: RefineFace: Refinement neural network for high performance face detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2020.2997456
– year: 2016
  ident: 10.1016/j.patcog.2024.110714_b8
  article-title: Understanding the effective receptive field in deep convolutional neural networks
– volume: 140
  year: 2023
  ident: 10.1016/j.patcog.2024.110714_b13
  article-title: Keep an eye on faces: Robust face detection with heatmap-assisted spatial attention and scale-aware layer attention
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109553
– ident: 10.1016/j.patcog.2024.110714_b28
  doi: 10.1109/CVPR42600.2020.00525
– ident: 10.1016/j.patcog.2024.110714_b29
  doi: 10.1109/CVPR.2016.89
– volume: 23
  start-page: 1499
  issue: 10
  year: 2016
  ident: 10.1016/j.patcog.2024.110714_b1
  article-title: Joint face detection and alignment using multitask cascaded convolutional networks
  publication-title: IEEE Signal Process. Lett.
  doi: 10.1109/LSP.2016.2603342
– ident: 10.1016/j.patcog.2024.110714_b6
  doi: 10.1109/ICCV.2017.30
– ident: 10.1016/j.patcog.2024.110714_b32
  doi: 10.1109/ICASSP49357.2023.10096516
– ident: 10.1016/j.patcog.2024.110714_b26
  doi: 10.1109/ICCV.2017.522
– ident: 10.1016/j.patcog.2024.110714_b10
  doi: 10.1109/DDCLS49620.2020.9275060
– ident: 10.1016/j.patcog.2024.110714_b11
  doi: 10.1109/CVPR42600.2020.01160
– ident: 10.1016/j.patcog.2024.110714_b16
  doi: 10.1109/CVPR.2018.00244
– ident: 10.1016/j.patcog.2024.110714_b27
  doi: 10.1007/978-3-030-01240-3_49
– ident: 10.1016/j.patcog.2024.110714_b31
  doi: 10.1109/CVPR46437.2021.01350
– start-page: 404
  year: 2018
  ident: 10.1016/j.patcog.2024.110714_b22
  article-title: Receptive field block net for accurate and fast object detection
– ident: 10.1016/j.patcog.2024.110714_b25
  doi: 10.1109/CVPR.2018.00377
– ident: 10.1016/j.patcog.2024.110714_b30
  doi: 10.1109/CVPR.2018.00913
– volume: 42
  start-page: 318
  issue: 2
  year: 2020
  ident: 10.1016/j.patcog.2024.110714_b4
  article-title: Focal loss for dense object detection
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2858826
– ident: 10.1016/j.patcog.2024.110714_b15
  doi: 10.1109/CVPR.2015.7299170
– ident: 10.1016/j.patcog.2024.110714_b21
  doi: 10.1109/CVPR.2019.00520
– ident: 10.1016/j.patcog.2024.110714_b24
  doi: 10.1109/ICCV.2019.00615
SSID ssj0017142
Score 2.7358038
Snippet In recent years, face detection algorithms based on deep learning have made great progress. Nevertheless, the effective utilization of face detectors for small...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110714
SubjectTerms Face detection
Imbalance problem
Occlusion
Scale-aware
YOLO
Title YOLO-FaceV2: A scale and occlusion aware face detector
URI https://dx.doi.org/10.1016/j.patcog.2024.110714
Volume 155
WOSCitedRecordID wos001284255400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9wwELYo9NALLbQV9IF86K3KKokdO-5tVYEAIUAqtLunyHHiFSuUrNhduj-_40celIrHoRcrcuyx5W80HtvzQOgL1aCE6pgHrAAOplxFgRBQyCIHllK0EKm0ySb46Wk6Golzn95qbtMJ8KpKVysx-69QQx2AbVxnnwF3SxQq4BtAhxJgh_JJwI_PTs6CA6nKn7FzO58DDO6RoFbqejm3Bsi_jcWXhlZfi3Jhb-77auq5jbppPF28eVH3WD9e2vcMk_J60vGEv3U-rKtJXncmA06m_SqvpsuWwA9LYAwtVz7qt790iKn3vusJUhIFJA7JHUGaJD1RaA6Wzj_0npR2FwbTwQx2m3oyMAMMuuZ3g2L_tVm1JoSNddo0c1QyQyVzVF6gjZgnAoTcxvBof3TcPivBPxc-3s--8aW0Bn_3Z_NvXaWnf1y8QZv-4ICHDvAttFZW2-h1k5QDexn9FrEe_t_wEFv0MaCPW_SxRR8b9HGD_jt0ebB_8f0w8MkxAgWnvEUgWZQrFppgRaCR6YLQnImU5GGpdSwFLxIqQbqmNBJwMqG5MOkjS8Z1HGlKuSbv0XpVV-UOwkUohUhyRRLCKGNxqlWaSCLzUHAN1HYRaZYhUz5yvElgcp09BMIuCtpeMxc55ZH2vFnhzGt_TqvLgG0e7PnhmSN9RK86nv6E1hc3y_IzeqluF1fzmz3PM38ACId23w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=YOLO-FaceV2%3A+A+scale+and+occlusion+aware+face+detector&rft.jtitle=Pattern+recognition&rft.au=Yu%2C+Ziping&rft.au=Huang%2C+Hongbo&rft.au=Chen%2C+Weijun&rft.au=Su%2C+Yongxin&rft.date=2024-11-01&rft.issn=0031-3203&rft.volume=155&rft.spage=110714&rft_id=info:doi/10.1016%2Fj.patcog.2024.110714&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2024_110714
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon