Back to basics: Fast denoising iterative algorithm

We introduce Back to Basics (BTB), a fast iterative algorithm for noise reduction. Our method is computationally efficient, does not require training or ground truth data, and can be applied in the presence of independent noise, as well as correlated (coherent) noise, where the noise level is unknow...

Full description

Saved in:
Bibliographic Details
Published in:Signal processing Vol. 221; p. 109482
Main Author: Pereg, Deborah
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2024
Subjects:
ISSN:0165-1684, 1872-7557
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract We introduce Back to Basics (BTB), a fast iterative algorithm for noise reduction. Our method is computationally efficient, does not require training or ground truth data, and can be applied in the presence of independent noise, as well as correlated (coherent) noise, where the noise level is unknown. We examine three study cases: natural image denoising in the presence of additive white Gaussian noise, Poisson-distributed image denoising, and speckle suppression in optical coherence tomography (OCT). Experimental results demonstrate that the proposed approach can effectively improve image quality, in challenging noise settings. Theoretical guarantees are provided for convergence stability. •We introduce Back to Basics (BTB), a fast iterative algorithm for noise reduction.•Our method is computationally efficient and does not require ground truth data.•BTB can mitigate independent or correlated noise with unknown noise level.•Experimental results demonstrate improved image quality, in challenging noise settings.•Theoretical guarantees are provided for convergence stability.
AbstractList We introduce Back to Basics (BTB), a fast iterative algorithm for noise reduction. Our method is computationally efficient, does not require training or ground truth data, and can be applied in the presence of independent noise, as well as correlated (coherent) noise, where the noise level is unknown. We examine three study cases: natural image denoising in the presence of additive white Gaussian noise, Poisson-distributed image denoising, and speckle suppression in optical coherence tomography (OCT). Experimental results demonstrate that the proposed approach can effectively improve image quality, in challenging noise settings. Theoretical guarantees are provided for convergence stability. •We introduce Back to Basics (BTB), a fast iterative algorithm for noise reduction.•Our method is computationally efficient and does not require ground truth data.•BTB can mitigate independent or correlated noise with unknown noise level.•Experimental results demonstrate improved image quality, in challenging noise settings.•Theoretical guarantees are provided for convergence stability.
ArticleNumber 109482
Author Pereg, Deborah
Author_xml – sequence: 1
  givenname: Deborah
  orcidid: 0000-0002-2453-6577
  surname: Pereg
  fullname: Pereg, Deborah
  email: deborahp@mit.edu, dvorapereg@gmail.com
  organization: MIT MechE, Harvard School of Engineering and Applied Sciences, United States of America
BookMark eNqFz81KAzEQwPEgFWzVN_CwL7A1X5vd9CBosSoUvOg5ZJPZOrXdlCQUfHu3rCcPehoY5j_wm5FJH3og5IbROaNM3W7nCTeHGOaccjmstGz4GZmypuZlXVX1hEyHs6pkqpEXZJbSllLKhKJTwh-s-yxyKFqb0KVFsbIpFx76gAn7TYEZos14hMLuNiFi_thfkfPO7hJc_8xL8r56fFs-l-vXp5fl_bp0gqpcWkG5tlpI4UHy1mvKOisqD5ZSzrva6VYJULpprK6cawXUTa06KbRnTDouLokc_7oYUorQmUPEvY1fhlFzcputGd3m5Daje8gWvzKHeSCEPkeLu__iuzGGAXZEiCY5hN6BxwguGx_w7wffKWd3wg
CitedBy_id crossref_primary_10_1016_j_compmedimag_2025_102596
Cites_doi 10.1109/ICCVW60793.2023.00412
10.3390/jimaging9110237
10.1002/cpa.20042
10.1109/ICCVW54120.2021.00213
10.1109/MSP.2008.930649
10.1364/BOE.9.000486
10.1109/ICCV.2001.937655
10.1137/140990978
10.1117/1.1578087
10.1137/16M1102884
10.1109/TIP.2010.2053941
10.1038/s41598-019-51062-7
10.5201/ipol.2011.bcm_nlm
10.1016/j.optcom.2012.10.053
10.1016/j.jvcir.2016.09.009
10.1002/jbio.201960135
10.1109/CVPR.2018.00652
10.1364/OL.41.000994
10.1109/TIP.2017.2662206
10.1364/OE.15.006200
10.1016/0022-247X(73)90087-5
10.1137/080716542
10.1088/1361-6560/ab3556
10.1007/s11042-019-07999-y
10.1007/978-3-030-01252-6_1
10.1109/TIP.2013.2283400
10.1364/BOE.9.003354
10.2307/3318418
10.1109/TIP.2006.881969
10.1364/BOE.9.005129
10.4064/fm-3-1-133-181
10.1016/j.neunet.2023.08.032
10.1109/TPAMI.2016.2596743
10.1117/1.429925
10.1002/jemt.20294
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2024.109482
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2024_109482
S0165168424001014
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-a3029a9343de42bd901fa35dea0022f7c9b63e6988a95ccb3e7876f439d114c23
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001224318500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Tue Nov 18 21:53:58 EST 2025
Sat Nov 29 03:23:04 EST 2025
Sat May 11 15:33:03 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Speckle suppression
Inverse problems
Fixed-point
Image denoising
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-a3029a9343de42bd901fa35dea0022f7c9b63e6988a95ccb3e7876f439d114c23
ORCID 0000-0002-2453-6577
ParticipantIDs crossref_primary_10_1016_j_sigpro_2024_109482
crossref_citationtrail_10_1016_j_sigpro_2024_109482
elsevier_sciencedirect_doi_10_1016_j_sigpro_2024_109482
PublicationCentury 2000
PublicationDate August 2024
2024-08-00
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: August 2024
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Curatolo, Kennedy, Sampson, Hillman (b32) 2013
Buades, Coll, Morel (b11) 2011; 1
Cohen, Blau, Freedman, Rivlin (b48) 2021; 34
Figueiredo, Bioucas-Dias (b30) 2010; 19
Goodman (b3) 2007
C. Chen, Z. Xiong, X. Tian, F. Wu, Deep boosting for image denoising, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–18.
Desjardins, Vakoc, Oh, Motaghiannezam, Tearney, Bouma (b36) 2007; 15
Starck, Murtagh (b28) 2007
Kadkhodaie, Simoncelli (b26) 2021; 34
Elad, Kawar, Vaksman (b1) 2023
Liu, Tanaka, Okutomi (b18) 2013; 22
Beck, Teboulle (b53) 2009; 2
Dey, Blanc-Feraud, Zimmer, Roux, Kam, Olivo-Marin, Zerubia (b29) 2006; 69
Porat (b34) 1996
B. Kawar, G. Vaksman, M. Elad, Stochastic image denoising by sampling from the posterior distribution, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 1866–1875.
Zhao, Winetraub, Yuan, Chan, Aasi, Sarin, Zohar, de la Zerda (b37) 2020; 10
Petryshyn, Williamson (b46) 1973; 43
Nye, Berry (b55) 1974; 336
Banach (b45) 1922; 3
Ratner, Schechner (b59) 2007
MATLAB (b61) 2021
Zhang, Zuo, Chen, Meng, Zhang (b16) 2017; 26
Sohl-Dickstein, Weiss, Maheswaranathan, Ganguli (b22) 2015
Elad, Aharon (b6) 2006; 15
Braaf, Donner, Nam, Bouma, Vakoc (b63) 2018; 9
Romano, Elad, Milanfar (b8) 2017; 10
Chen, Pock (b4) 2016; 39
Jain, Seung (b17) 2008; 21
Dabov, Foi, Katkovnik, Egiazarian (b10) 2006; vol. 6064
Géron (b54) 2017
Ho, Jain, Abbeel (b23) 2020; 33
Zoran, Weiss (b7) 2011
Yu, Gao, Li (b12) 2016; 41
N. Torem, R. Ronen, Y.Y. Schechner, M. Elad, Complex-Valued Retrievals from Noisy Images Using Diffusion Models, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3810–3820.
D. Martin, C. Fowlkes, D. Tal, J. Malik, A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics, in: Proc. 8th Int’L Conf. Computer Vision, Vol. 2, 2001, pp. 416–423.
Costantini, Susstrunk (b14) 2004; vol. 5301
Lebrun, Colom, Morel (b19) 2014
Roberts, Tweedie (b50) 1996
Cuartas-Vélez, Restrepo, Bouma, Uribe-Patarroyo (b13) 2018; 9
Delbracio, Milanfar (b27) 2023
Venkatakrishnan, Bouman, Wohlberg (b9) 2013
Rond, Giryes, Elad (b31) 2016; 41
Y. Blau, T. Michaeli, The perception-distortion tradeoff, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6228–6237.
Alsaiari, Rustagi, Thomas, Forbes (b5) 2019
Pircher, Gö tzinger, Leitgeb, Fercher, Hitzenberger (b35) 2003; 8
Shi, Cai, Gu, Hu, Ma, Chen, Chen (b39) 2019; 64
Deutsch, Yamada (b49) 1998; 19
Song, Meng, Ermon (b24) 2020
Dong, Liu, Ni, Jerwick, Duan, Zhou (b42) 2020; 13
Pereg, Cohen, Vassiliou (b52) 2021
Villiger, Ren, Uribe-Patarroyo, Bouma (b60) 2020
Keahey, Bouma, Villiger (b62) 2023
Devalla, Subramanian, Pham, Wang, Perera, Tun, Aung, Schmetterer, Thiéry, Girard (b40) 2019; 9
Pereg (b44) 2023; 9
Gour, Khanna (b41) 2020; 79
Wang, Bovik (b56) 2009; 26
Schmitt, Xiang, Yung (b33) 1999; 4
Chong, Zhu (b38) 2013; 291
Pereg, Villiger, Bouma, Golland (b15) 2022
Ma, Chen, Zhu, Cheng, Xiang, Shi (b43) 2018; 9
Besag (b51) 2001; 9
Romano, Elad (b20) 2015; 8
Pereg (b64) 2023; 167
Daubechies, Defrise, De Mol (b47) 2004; 57
Shi (10.1016/j.sigpro.2024.109482_b39) 2019; 64
Zhang (10.1016/j.sigpro.2024.109482_b16) 2017; 26
10.1016/j.sigpro.2024.109482_b25
Schmitt (10.1016/j.sigpro.2024.109482_b33) 1999; 4
10.1016/j.sigpro.2024.109482_b21
Villiger (10.1016/j.sigpro.2024.109482_b60) 2020
Romano (10.1016/j.sigpro.2024.109482_b20) 2015; 8
Ho (10.1016/j.sigpro.2024.109482_b23) 2020; 33
Chong (10.1016/j.sigpro.2024.109482_b38) 2013; 291
Ma (10.1016/j.sigpro.2024.109482_b43) 2018; 9
Venkatakrishnan (10.1016/j.sigpro.2024.109482_b9) 2013
Alsaiari (10.1016/j.sigpro.2024.109482_b5) 2019
Cuartas-Vélez (10.1016/j.sigpro.2024.109482_b13) 2018; 9
Banach (10.1016/j.sigpro.2024.109482_b45) 1922; 3
Costantini (10.1016/j.sigpro.2024.109482_b14) 2004; vol. 5301
Cohen (10.1016/j.sigpro.2024.109482_b48) 2021; 34
Buades (10.1016/j.sigpro.2024.109482_b11) 2011; 1
Elad (10.1016/j.sigpro.2024.109482_b6) 2006; 15
Géron (10.1016/j.sigpro.2024.109482_b54) 2017
10.1016/j.sigpro.2024.109482_b57
Romano (10.1016/j.sigpro.2024.109482_b8) 2017; 10
10.1016/j.sigpro.2024.109482_b58
Song (10.1016/j.sigpro.2024.109482_b24) 2020
Petryshyn (10.1016/j.sigpro.2024.109482_b46) 1973; 43
Pereg (10.1016/j.sigpro.2024.109482_b44) 2023; 9
Figueiredo (10.1016/j.sigpro.2024.109482_b30) 2010; 19
Beck (10.1016/j.sigpro.2024.109482_b53) 2009; 2
10.1016/j.sigpro.2024.109482_b2
Dey (10.1016/j.sigpro.2024.109482_b29) 2006; 69
Goodman (10.1016/j.sigpro.2024.109482_b3) 2007
Braaf (10.1016/j.sigpro.2024.109482_b63) 2018; 9
Dong (10.1016/j.sigpro.2024.109482_b42) 2020; 13
Roberts (10.1016/j.sigpro.2024.109482_b50) 1996
Yu (10.1016/j.sigpro.2024.109482_b12) 2016; 41
Starck (10.1016/j.sigpro.2024.109482_b28) 2007
Desjardins (10.1016/j.sigpro.2024.109482_b36) 2007; 15
Elad (10.1016/j.sigpro.2024.109482_b1) 2023
Chen (10.1016/j.sigpro.2024.109482_b4) 2016; 39
Keahey (10.1016/j.sigpro.2024.109482_b62) 2023
Kadkhodaie (10.1016/j.sigpro.2024.109482_b26) 2021; 34
Devalla (10.1016/j.sigpro.2024.109482_b40) 2019; 9
Besag (10.1016/j.sigpro.2024.109482_b51) 2001; 9
Pereg (10.1016/j.sigpro.2024.109482_b52) 2021
Pereg (10.1016/j.sigpro.2024.109482_b15) 2022
Pircher (10.1016/j.sigpro.2024.109482_b35) 2003; 8
Liu (10.1016/j.sigpro.2024.109482_b18) 2013; 22
Nye (10.1016/j.sigpro.2024.109482_b55) 1974; 336
Pereg (10.1016/j.sigpro.2024.109482_b64) 2023; 167
Jain (10.1016/j.sigpro.2024.109482_b17) 2008; 21
Lebrun (10.1016/j.sigpro.2024.109482_b19) 2014
Dabov (10.1016/j.sigpro.2024.109482_b10) 2006; vol. 6064
Ratner (10.1016/j.sigpro.2024.109482_b59) 2007
MATLAB (10.1016/j.sigpro.2024.109482_b61) 2021
Curatolo (10.1016/j.sigpro.2024.109482_b32) 2013
Gour (10.1016/j.sigpro.2024.109482_b41) 2020; 79
Sohl-Dickstein (10.1016/j.sigpro.2024.109482_b22) 2015
Wang (10.1016/j.sigpro.2024.109482_b56) 2009; 26
Zhao (10.1016/j.sigpro.2024.109482_b37) 2020; 10
Porat (10.1016/j.sigpro.2024.109482_b34) 1996
Daubechies (10.1016/j.sigpro.2024.109482_b47) 2004; 57
Rond (10.1016/j.sigpro.2024.109482_b31) 2016; 41
Deutsch (10.1016/j.sigpro.2024.109482_b49) 1998; 19
Delbracio (10.1016/j.sigpro.2024.109482_b27) 2023
Zoran (10.1016/j.sigpro.2024.109482_b7) 2011
References_xml – volume: 69
  start-page: 260
  year: 2006
  end-page: 266
  ident: b29
  article-title: Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution
  publication-title: Microsc. Res. Tech.
– start-page: 1
  year: 2007
  end-page: 8
  ident: b59
  article-title: Illumination multiplexing within fundamental limits
  publication-title: 2007 IEEE Conference on Computer Vision and Pattern Recognition
– volume: 10
  start-page: 1804
  year: 2017
  end-page: 1844
  ident: b8
  article-title: The little engine that could: Regularization by denoising (RED)
  publication-title: SIAM J. Imaging Sci.
– volume: 4
  year: 1999
  ident: b33
  article-title: Speckle in optical coherence tomography
  publication-title: J. Biomed. Opt.
– volume: 19
  start-page: 33
  year: 1998
  end-page: 56
  ident: b49
  article-title: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings
  publication-title: Numer. Funct. Anal. Optim.
– volume: 15
  start-page: 3736
  year: 2006
  end-page: 3745
  ident: b6
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
– year: 2023
  ident: b27
  article-title: Inversion by direct iteration: An alternative to denoising diffusion for image restoration
– volume: 26
  start-page: 98
  year: 2009
  end-page: 117
  ident: b56
  article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
– volume: 8
  start-page: 1187
  year: 2015
  end-page: 1219
  ident: b20
  article-title: Boosting of image denoising algorithms
  publication-title: SIAM J. Imaging Sci.
– year: 1996
  ident: b34
  article-title: A Course in Digital Signal Processing
– reference: C. Chen, Z. Xiong, X. Tian, F. Wu, Deep boosting for image denoising, in: Proceedings of the European Conference on Computer Vision, ECCV, 2018, pp. 3–18.
– volume: 10
  start-page: 1
  year: 2020
  end-page: 11
  ident: b37
  article-title: Angular compounding for speckle reduction in optical coherence tomography using geometric image registration algorithm and digital focusing
  publication-title: Sci. Rep.
– year: 2023
  ident: b1
  article-title: Image denoising: The deep learning revolution and beyond – A survey paper
– reference: N. Torem, R. Ronen, Y.Y. Schechner, M. Elad, Complex-Valued Retrievals from Noisy Images Using Diffusion Models, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2023, pp. 3810–3820.
– volume: 33
  start-page: 6840
  year: 2020
  end-page: 6851
  ident: b23
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 126
  year: 2019
  end-page: 132
  ident: b5
  article-title: Image denoising using a generative adversarial network
  publication-title: 2019 IEEE 2nd International Conference on Information and Computer Technologies
– volume: 57
  start-page: 1413
  year: 2004
  end-page: 1457
  ident: b47
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Comm. Pure Appl. Math.
– year: 2017
  ident: b54
  article-title: Hands-on Machine Learning with Scikit-Learn and Tensorflow : Concepts, Tools, and Techniques to Build Intelligent Systems
– volume: 9
  start-page: 1
  year: 2019
  end-page: 13
  ident: b40
  article-title: A deep learning approach to denoise optical coherence tomography images of the optic nerve head
  publication-title: Sci. Rep.
– volume: 21
  year: 2008
  ident: b17
  article-title: Natural image denoising with convolutional networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1
  year: 2021
  end-page: 19
  ident: b52
  article-title: Convolutional sparse coding fast approximation with application to seismic reflectivity estimation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 9
  start-page: 24
  year: 2001
  end-page: 25
  ident: b51
  article-title: Markov chain Monte Carlo for statistical inference
  publication-title: Cent. Stat. Soc. Sci.
– start-page: 341
  year: 1996
  end-page: 363
  ident: b50
  article-title: Exponential convergence of Langevin distributions and their discrete approximations
  publication-title: Bernoulli
– volume: 39
  start-page: 1256
  year: 2016
  end-page: 1272
  ident: b4
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– year: 2013
  ident: b32
  article-title: Speckle in Optical Coherence Tomography
– reference: D. Martin, C. Fowlkes, D. Tal, J. Malik, A Database of Human Segmented Natural Images and its Application to Evaluating Segmentation Algorithms and Measuring Ecological Statistics, in: Proc. 8th Int’L Conf. Computer Vision, Vol. 2, 2001, pp. 416–423.
– volume: 3
  start-page: 133
  year: 1922
  end-page: 181
  ident: b45
  article-title: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales
  publication-title: Fundam. Math.
– volume: 22
  start-page: 5226
  year: 2013
  end-page: 5237
  ident: b18
  article-title: Single-image noise level estimation for blind denoising
  publication-title: IEEE Trans. Image Process.
– volume: vol. 5301
  start-page: 408
  year: 2004
  end-page: 419
  ident: b14
  article-title: Virtual sensor design
  publication-title: Sensors and Camera Systems for Scientific, Industrial, and Digital Photography Applications V
– volume: 43
  start-page: 459
  year: 1973
  end-page: 497
  ident: b46
  article-title: Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings
  publication-title: J. Math. Anal. Appl.
– volume: 79
  start-page: 15679
  year: 2020
  end-page: 15695
  ident: b41
  article-title: Speckle denoising in optical coherence tomography images using residual deep convolutional neural network
  publication-title: Multimedia Tools Appl.
– volume: 2
  start-page: 183
  year: 2009
  end-page: 202
  ident: b53
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Img. Sci.
– reference: Y. Blau, T. Michaeli, The perception-distortion tradeoff, in: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018, pp. 6228–6237.
– volume: 9
  start-page: 486
  year: 2018
  end-page: 506
  ident: b63
  article-title: Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina
  publication-title: Biomed. Opt. Express
– start-page: 945
  year: 2013
  end-page: 948
  ident: b9
  article-title: Plug-and-play priors for model based reconstruction
  publication-title: 2013 IEEE Global Conference on Signal and Information Processing
– year: 2023
  ident: b62
  article-title: Angular compounding for physically informed training of speckle suppression algorithms
  publication-title: Optical Coherence Tomography and Coherence Domain Optical Methods in Biomedicine XXVII
– start-page: 175
  year: 2020
  end-page: 191
  ident: b60
  article-title: Future development
  publication-title: Cardiovascular OCT Imaging
– year: 2021
  ident: b61
  article-title: Version 7.10.0 (R2021a)
– volume: 336
  start-page: 165
  year: 1974
  end-page: 190
  ident: b55
  article-title: Dislocations in wave trains
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
– start-page: 2256
  year: 2015
  end-page: 2265
  ident: b22
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
  publication-title: International Conference on Machine Learning
– volume: 41
  start-page: 96
  year: 2016
  end-page: 108
  ident: b31
  article-title: Poisson inverse problems by the plug-and-play scheme
  publication-title: J. Vis. Commun. Image Represent.
– volume: 34
  start-page: 13242
  year: 2021
  end-page: 13254
  ident: b26
  article-title: Stochastic solutions for linear inverse problems using the prior implicit in a denoiser
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2020
  ident: b24
  article-title: Denoising diffusion implicit models
– year: 2007
  ident: b3
  article-title: Speckle Phenomena in Optics: Theory and Applications
– volume: 13
  year: 2020
  ident: b42
  article-title: Optical coherence tomography image denoising using a generative adversarial network with speckle modulation
  publication-title: J. Biophoton.
– volume: 19
  start-page: 3133
  year: 2010
  end-page: 3145
  ident: b30
  article-title: Restoration of Poissonian images using alternating direction optimization
  publication-title: IEEE Trans. Image Process.
– volume: 8
  start-page: 565
  year: 2003
  end-page: 569
  ident: b35
  article-title: Speckle reduction in optical coherence tomography by frequency compounding
  publication-title: J. Biomed. Opt.
– volume: 15
  start-page: 6200
  year: 2007
  end-page: 6209
  ident: b36
  article-title: Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction
  publication-title: Opt. Express
– start-page: 2674
  year: 2014
  end-page: 2678
  ident: b19
  article-title: The noise clinic: A universal blind denoising algorithm
  publication-title: 2014 IEEE International Conference on Image Processing
– volume: 167
  start-page: 445
  year: 2023
  end-page: 449
  ident: b64
  article-title: Information theoretic perspective on sample complexity
  publication-title: Neural Netw.
– volume: 41
  start-page: 994
  year: 2016
  end-page: 997
  ident: b12
  article-title: Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images
  publication-title: Opt. Lett.
– volume: 9
  year: 2023
  ident: b44
  article-title: Domain-aware few-shot learning for optical coherence tomography noise reduction
  publication-title: J. Imaging
– year: 2007
  ident: b28
  article-title: Astronomical Image and Data Analysis
– volume: 64
  year: 2019
  ident: b39
  article-title: DeSpecNet: a CNN-based method for speckle reduction in retinal optical coherence tomography images
  publication-title: Phys. Med. Biol.
– reference: B. Kawar, G. Vaksman, M. Elad, Stochastic image denoising by sampling from the posterior distribution, in: Proceedings of the IEEE/CVF International Conference on Computer Vision, 2021, pp. 1866–1875.
– volume: vol. 6064
  start-page: 354
  year: 2006
  end-page: 365
  ident: b10
  article-title: Image denoising with block-matching and 3D filtering
  publication-title: Image Processing: Algorithms and Systems, Neural Networks, and Machine Learning
– volume: 9
  start-page: 3354
  year: 2018
  end-page: 3372
  ident: b13
  article-title: Volumetric non-local-means based speckle reduction for optical coherence tomography
  publication-title: Biomed. Opt. Express
– volume: 9
  start-page: 5129
  year: 2018
  end-page: 5146
  ident: b43
  article-title: Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN
  publication-title: Biomed. Opt. Express
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: b16
  article-title: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– start-page: 479
  year: 2011
  end-page: 486
  ident: b7
  article-title: From learning models of natural image patches to whole image restoration
  publication-title: 2011 International Conference on Computer Vision
– year: 2022
  ident: b15
  article-title: Less is more: Rethinking few-shot learning and recurrent neural nets
– volume: 34
  start-page: 18152
  year: 2021
  end-page: 18164
  ident: b48
  article-title: It has potential: Gradient-driven denoisers for convergent solutions to inverse problems
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 291
  start-page: 461
  year: 2013
  end-page: 469
  ident: b38
  article-title: Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter
  publication-title: Opt. Commun.
– volume: 1
  start-page: 208
  year: 2011
  end-page: 212
  ident: b11
  article-title: Non-local means denoising
  publication-title: Image Process. Line
– ident: 10.1016/j.sigpro.2024.109482_b2
  doi: 10.1109/ICCVW60793.2023.00412
– volume: 9
  issue: 11
  year: 2023
  ident: 10.1016/j.sigpro.2024.109482_b44
  article-title: Domain-aware few-shot learning for optical coherence tomography noise reduction
  publication-title: J. Imaging
  doi: 10.3390/jimaging9110237
– start-page: 2674
  year: 2014
  ident: 10.1016/j.sigpro.2024.109482_b19
  article-title: The noise clinic: A universal blind denoising algorithm
– volume: 57
  start-page: 1413
  issue: 11
  year: 2004
  ident: 10.1016/j.sigpro.2024.109482_b47
  article-title: An iterative thresholding algorithm for linear inverse problems with a sparsity constraint
  publication-title: Comm. Pure Appl. Math.
  doi: 10.1002/cpa.20042
– ident: 10.1016/j.sigpro.2024.109482_b25
  doi: 10.1109/ICCVW54120.2021.00213
– volume: 26
  start-page: 98
  issue: 1
  year: 2009
  ident: 10.1016/j.sigpro.2024.109482_b56
  article-title: Mean squared error: Love it or leave it? A new look at signal fidelity measures
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2008.930649
– volume: 9
  start-page: 486
  issue: 2
  year: 2018
  ident: 10.1016/j.sigpro.2024.109482_b63
  article-title: Complex differential variance angiography with noise-bias correction for optical coherence tomography of the retina
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.000486
– ident: 10.1016/j.sigpro.2024.109482_b58
  doi: 10.1109/ICCV.2001.937655
– volume: 8
  start-page: 1187
  issue: 2
  year: 2015
  ident: 10.1016/j.sigpro.2024.109482_b20
  article-title: Boosting of image denoising algorithms
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/140990978
– volume: 9
  start-page: 24
  year: 2001
  ident: 10.1016/j.sigpro.2024.109482_b51
  article-title: Markov chain Monte Carlo for statistical inference
  publication-title: Cent. Stat. Soc. Sci.
– volume: 8
  start-page: 565
  issue: 3
  year: 2003
  ident: 10.1016/j.sigpro.2024.109482_b35
  article-title: Speckle reduction in optical coherence tomography by frequency compounding
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.1578087
– year: 2020
  ident: 10.1016/j.sigpro.2024.109482_b24
– volume: 10
  start-page: 1804
  issue: 4
  year: 2017
  ident: 10.1016/j.sigpro.2024.109482_b8
  article-title: The little engine that could: Regularization by denoising (RED)
  publication-title: SIAM J. Imaging Sci.
  doi: 10.1137/16M1102884
– volume: 19
  start-page: 3133
  issue: 12
  year: 2010
  ident: 10.1016/j.sigpro.2024.109482_b30
  article-title: Restoration of Poissonian images using alternating direction optimization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2010.2053941
– year: 2021
  ident: 10.1016/j.sigpro.2024.109482_b61
– volume: 9
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.sigpro.2024.109482_b40
  article-title: A deep learning approach to denoise optical coherence tomography images of the optic nerve head
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-51062-7
– volume: 1
  start-page: 208
  year: 2011
  ident: 10.1016/j.sigpro.2024.109482_b11
  article-title: Non-local means denoising
  publication-title: Image Process. Line
  doi: 10.5201/ipol.2011.bcm_nlm
– volume: 34
  start-page: 13242
  year: 2021
  ident: 10.1016/j.sigpro.2024.109482_b26
  article-title: Stochastic solutions for linear inverse problems using the prior implicit in a denoiser
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 291
  start-page: 461
  year: 2013
  ident: 10.1016/j.sigpro.2024.109482_b38
  article-title: Speckle reduction in optical coherence tomography images of human finger skin by wavelet modified BM3D filter
  publication-title: Opt. Commun.
  doi: 10.1016/j.optcom.2012.10.053
– year: 1996
  ident: 10.1016/j.sigpro.2024.109482_b34
– start-page: 1
  year: 2021
  ident: 10.1016/j.sigpro.2024.109482_b52
  article-title: Convolutional sparse coding fast approximation with application to seismic reflectivity estimation
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 41
  start-page: 96
  year: 2016
  ident: 10.1016/j.sigpro.2024.109482_b31
  article-title: Poisson inverse problems by the plug-and-play scheme
  publication-title: J. Vis. Commun. Image Represent.
  doi: 10.1016/j.jvcir.2016.09.009
– volume: 13
  issue: 4
  year: 2020
  ident: 10.1016/j.sigpro.2024.109482_b42
  article-title: Optical coherence tomography image denoising using a generative adversarial network with speckle modulation
  publication-title: J. Biophoton.
  doi: 10.1002/jbio.201960135
– ident: 10.1016/j.sigpro.2024.109482_b57
  doi: 10.1109/CVPR.2018.00652
– volume: 21
  year: 2008
  ident: 10.1016/j.sigpro.2024.109482_b17
  article-title: Natural image denoising with convolutional networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 19
  start-page: 33
  issue: 1
  year: 1998
  ident: 10.1016/j.sigpro.2024.109482_b49
  article-title: Minimizing certain convex functions over the intersection of the fixed point sets of nonexpansive mappings
  publication-title: Numer. Funct. Anal. Optim.
– volume: 41
  start-page: 994
  issue: 5
  year: 2016
  ident: 10.1016/j.sigpro.2024.109482_b12
  article-title: Probability-based non-local means filter for speckle noise suppression in optical coherence tomography images
  publication-title: Opt. Lett.
  doi: 10.1364/OL.41.000994
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.sigpro.2024.109482_b16
  article-title: Beyond a Gaussian denoiser: Residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– year: 2023
  ident: 10.1016/j.sigpro.2024.109482_b62
  article-title: Angular compounding for physically informed training of speckle suppression algorithms
– volume: 15
  start-page: 6200
  issue: 10
  year: 2007
  ident: 10.1016/j.sigpro.2024.109482_b36
  article-title: Angle-resolved optical coherence tomography with sequential angular selectivity for speckle reduction
  publication-title: Opt. Express
  doi: 10.1364/OE.15.006200
– volume: 34
  start-page: 18152
  year: 2021
  ident: 10.1016/j.sigpro.2024.109482_b48
  article-title: It has potential: Gradient-driven denoisers for convergent solutions to inverse problems
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: vol. 5301
  start-page: 408
  year: 2004
  ident: 10.1016/j.sigpro.2024.109482_b14
  article-title: Virtual sensor design
– volume: 43
  start-page: 459
  issue: 2
  year: 1973
  ident: 10.1016/j.sigpro.2024.109482_b46
  article-title: Strong and weak convergence of the sequence of successive approximations for quasi-nonexpansive mappings
  publication-title: J. Math. Anal. Appl.
  doi: 10.1016/0022-247X(73)90087-5
– year: 2013
  ident: 10.1016/j.sigpro.2024.109482_b32
– volume: 2
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.sigpro.2024.109482_b53
  article-title: A fast iterative shrinkage-thresholding algorithm for linear inverse problems
  publication-title: SIAM J. Img. Sci.
  doi: 10.1137/080716542
– volume: 64
  issue: 17
  year: 2019
  ident: 10.1016/j.sigpro.2024.109482_b39
  article-title: DeSpecNet: a CNN-based method for speckle reduction in retinal optical coherence tomography images
  publication-title: Phys. Med. Biol.
  doi: 10.1088/1361-6560/ab3556
– volume: 79
  start-page: 15679
  year: 2020
  ident: 10.1016/j.sigpro.2024.109482_b41
  article-title: Speckle denoising in optical coherence tomography images using residual deep convolutional neural network
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-019-07999-y
– year: 2007
  ident: 10.1016/j.sigpro.2024.109482_b3
– ident: 10.1016/j.sigpro.2024.109482_b21
  doi: 10.1007/978-3-030-01252-6_1
– volume: vol. 6064
  start-page: 354
  year: 2006
  ident: 10.1016/j.sigpro.2024.109482_b10
  article-title: Image denoising with block-matching and 3D filtering
– volume: 22
  start-page: 5226
  issue: 12
  year: 2013
  ident: 10.1016/j.sigpro.2024.109482_b18
  article-title: Single-image noise level estimation for blind denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2283400
– year: 2007
  ident: 10.1016/j.sigpro.2024.109482_b28
– volume: 9
  start-page: 3354
  issue: 7
  year: 2018
  ident: 10.1016/j.sigpro.2024.109482_b13
  article-title: Volumetric non-local-means based speckle reduction for optical coherence tomography
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.003354
– year: 2023
  ident: 10.1016/j.sigpro.2024.109482_b27
– start-page: 341
  year: 1996
  ident: 10.1016/j.sigpro.2024.109482_b50
  article-title: Exponential convergence of Langevin distributions and their discrete approximations
  publication-title: Bernoulli
  doi: 10.2307/3318418
– start-page: 1
  year: 2007
  ident: 10.1016/j.sigpro.2024.109482_b59
  article-title: Illumination multiplexing within fundamental limits
– start-page: 175
  year: 2020
  ident: 10.1016/j.sigpro.2024.109482_b60
  article-title: Future development
– volume: 15
  start-page: 3736
  issue: 12
  year: 2006
  ident: 10.1016/j.sigpro.2024.109482_b6
  article-title: Image denoising via sparse and redundant representations over learned dictionaries
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2006.881969
– year: 2023
  ident: 10.1016/j.sigpro.2024.109482_b1
– start-page: 479
  year: 2011
  ident: 10.1016/j.sigpro.2024.109482_b7
  article-title: From learning models of natural image patches to whole image restoration
– volume: 10
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.sigpro.2024.109482_b37
  article-title: Angular compounding for speckle reduction in optical coherence tomography using geometric image registration algorithm and digital focusing
  publication-title: Sci. Rep.
– volume: 9
  start-page: 5129
  issue: 11
  year: 2018
  ident: 10.1016/j.sigpro.2024.109482_b43
  article-title: Speckle noise reduction in optical coherence tomography images based on edge-sensitive cGAN
  publication-title: Biomed. Opt. Express
  doi: 10.1364/BOE.9.005129
– year: 2017
  ident: 10.1016/j.sigpro.2024.109482_b54
– start-page: 945
  year: 2013
  ident: 10.1016/j.sigpro.2024.109482_b9
  article-title: Plug-and-play priors for model based reconstruction
– start-page: 126
  year: 2019
  ident: 10.1016/j.sigpro.2024.109482_b5
  article-title: Image denoising using a generative adversarial network
– volume: 3
  start-page: 133
  issue: 1
  year: 1922
  ident: 10.1016/j.sigpro.2024.109482_b45
  article-title: Sur les opérations dans les ensembles abstraits et leur application aux équations intégrales
  publication-title: Fundam. Math.
  doi: 10.4064/fm-3-1-133-181
– start-page: 2256
  year: 2015
  ident: 10.1016/j.sigpro.2024.109482_b22
  article-title: Deep unsupervised learning using nonequilibrium thermodynamics
– volume: 167
  start-page: 445
  year: 2023
  ident: 10.1016/j.sigpro.2024.109482_b64
  article-title: Information theoretic perspective on sample complexity
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2023.08.032
– volume: 33
  start-page: 6840
  year: 2020
  ident: 10.1016/j.sigpro.2024.109482_b23
  article-title: Denoising diffusion probabilistic models
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 39
  start-page: 1256
  issue: 6
  year: 2016
  ident: 10.1016/j.sigpro.2024.109482_b4
  article-title: Trainable nonlinear reaction diffusion: A flexible framework for fast and effective image restoration
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2596743
– volume: 4
  year: 1999
  ident: 10.1016/j.sigpro.2024.109482_b33
  article-title: Speckle in optical coherence tomography
  publication-title: J. Biomed. Opt.
  doi: 10.1117/1.429925
– volume: 69
  start-page: 260
  issue: 4
  year: 2006
  ident: 10.1016/j.sigpro.2024.109482_b29
  article-title: Richardson–Lucy algorithm with total variation regularization for 3D confocal microscope deconvolution
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.20294
– year: 2022
  ident: 10.1016/j.sigpro.2024.109482_b15
– volume: 336
  start-page: 165
  issue: 1605
  year: 1974
  ident: 10.1016/j.sigpro.2024.109482_b55
  article-title: Dislocations in wave trains
  publication-title: Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci.
SSID ssj0001360
Score 2.4300427
Snippet We introduce Back to Basics (BTB), a fast iterative algorithm for noise reduction. Our method is computationally efficient, does not require training or ground...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109482
SubjectTerms Fixed-point
Image denoising
Inverse problems
Speckle suppression
Title Back to basics: Fast denoising iterative algorithm
URI https://dx.doi.org/10.1016/j.sigpro.2024.109482
Volume 221
WOSCitedRecordID wos001224318500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1JS8QwGA06etCDuOJOD94kg03aJvGmoqgHEWaEuZU0Tce6dIaZKvPz_dK0tTjiBl5KKU2T5oWXl49vQejAlT5jjLvYP9Ice650sQwigkkSJTThWgYkKopNsJsb3uuJ27KS57goJ8CyjE8mYvivUMMzANuEzv4C7vqj8ADuAXS4Auxw_RHwp1I9GkUJ-5NxAoIT_4Uc54fAL4O0MAzYRMrGY0g-9QejNL9_bkrUTto3CnVoIwiqna1gz5HuNziqaTAgXu2uVlqxpiJZrGEx8LEb2HJtbW3JkDNQ375NIF2xJbEBzVPMa40AD-1x2ocBtk3HJlWVZ0sLfchp3THdmd6MB6upFjyL5gjzBTDr3MnVee-63kxdWgR618Oroh8LF73pvj5XFw3F0F1GS6XUd04sRCtoRmeraLGRAHINEQOWkw8cC9axY6ByaqicGiqnhmod3V2cd88ucVnFAis4juVY0iMipKAejbVHohgEWCKpH2tp9FPClIgCqgPBuRS-UhHVwKFBAkIxhrOqInQDtbJBpjeRoyUBQamD2FcUiJfxWOlYSKqpBBUe0S1Eq78PVZni3VQaeQorX76H0M5ZaOYstHO2hXDdamhTnHzzPqsmNixlmpVfIayFL1tu_7nlDlp4X8q7qJWPXvQemleveToe7ZeL5g2aWGFN
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Back+to+basics%3A+Fast+denoising+iterative+algorithm&rft.jtitle=Signal+processing&rft.au=Pereg%2C+Deborah&rft.date=2024-08-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=221&rft_id=info:doi/10.1016%2Fj.sigpro.2024.109482&rft.externalDocID=S0165168424001014
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon