A novel smart meter data compression method via stacked convolutional sparse auto-encoder

•An efficient and lightweight DNN for smart meter data compression is proposed.•The reconstruction error and computation time is significantly reduced.•The lightweight model is suitable for running on embedded devices.•Grouping compression is proposed to further improve the compression effect. With...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of electrical power & energy systems Jg. 118; S. 105761
Hauptverfasser: Wang, Shouxiang, Chen, Haiwen, Wu, Lei, Wang, Jianfeng
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2020
Schlagworte:
ISSN:0142-0615
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •An efficient and lightweight DNN for smart meter data compression is proposed.•The reconstruction error and computation time is significantly reduced.•The lightweight model is suitable for running on embedded devices.•Grouping compression is proposed to further improve the compression effect. With the wide deployment of smart meters in distribution systems, a new challenge emerges for the storage and transmission of huge volume of power consumption data collected by smart meters. In this paper, a deep-learning-based compression method for smart meter data is proposed via stacked convolutional sparse auto-encoder (SCSAE). An efficient and lightweight auto-encoder structure is first designed by leveraging the unique characteristics of smart meter readings. Specifically, the encoder is designed based on 2D separable convolution layers and the decoder is based on transposed convolution layers. Compared with the existing auto-encoder method and traditional methods, the proposed structure is redesigned, and the parameters and reconstruction errors are efficiently reduced. In addition, cluster-based indexes are used to represent the regularity of power consumption behavior and the relationship between electricity consumption behavior and compression effect is studied. Case studies illustrate that the proposed method can attain significant enhancement in model size, computational efficiency, and reconstruction error reduction while maintaining the most abundant details. And grouping compression considering users’ electricity consumption rules can further improve the compression effect.
AbstractList •An efficient and lightweight DNN for smart meter data compression is proposed.•The reconstruction error and computation time is significantly reduced.•The lightweight model is suitable for running on embedded devices.•Grouping compression is proposed to further improve the compression effect. With the wide deployment of smart meters in distribution systems, a new challenge emerges for the storage and transmission of huge volume of power consumption data collected by smart meters. In this paper, a deep-learning-based compression method for smart meter data is proposed via stacked convolutional sparse auto-encoder (SCSAE). An efficient and lightweight auto-encoder structure is first designed by leveraging the unique characteristics of smart meter readings. Specifically, the encoder is designed based on 2D separable convolution layers and the decoder is based on transposed convolution layers. Compared with the existing auto-encoder method and traditional methods, the proposed structure is redesigned, and the parameters and reconstruction errors are efficiently reduced. In addition, cluster-based indexes are used to represent the regularity of power consumption behavior and the relationship between electricity consumption behavior and compression effect is studied. Case studies illustrate that the proposed method can attain significant enhancement in model size, computational efficiency, and reconstruction error reduction while maintaining the most abundant details. And grouping compression considering users’ electricity consumption rules can further improve the compression effect.
ArticleNumber 105761
Author Wang, Shouxiang
Chen, Haiwen
Wu, Lei
Wang, Jianfeng
Author_xml – sequence: 1
  givenname: Shouxiang
  surname: Wang
  fullname: Wang, Shouxiang
  email: sxwang@tju.edu.cn
  organization: Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
– sequence: 2
  givenname: Haiwen
  surname: Chen
  fullname: Chen, Haiwen
  email: haiwen.c@icloud.com
  organization: Key Laboratory of Smart Grid of Ministry of Education, Tianjin University, Tianjin 300072, China
– sequence: 3
  givenname: Lei
  surname: Wu
  fullname: Wu, Lei
  email: lei.wu@stevens.edu
  organization: ECE Department, Stevens Institute of Technology, Hoboken, NJ 07030, USA
– sequence: 4
  givenname: Jianfeng
  surname: Wang
  fullname: Wang, Jianfeng
  organization: State Grid Tianjin Electric Power Company, Tianjin 300000, China
BookMark eNqFkM1KxDAUhbMYwZnRN3CRF-h4k_5k6kIYBv9AcKMLVyFNbjG105QkU_DtzVBXLnR14Vy-A99ZkcXgBiTkisGGAauuu43tcMSw4cDqFJWiYguyBFbwDCpWnpNVCB0AiLrgS_K-o4ObsKfhoHykB4zoqVFRUe0Oo8cQrBtO8YczdLKKhqj0J5r0HibXH2N6q0SPygek6hhdhoN2Bv0FOWtVH_Dy567J2_3d6_4xe355eNrvnjOdQxUzxQG0gVwX24ZXOlcl6lYA1qXQolbllgMappqSl4itaOpcbIEJaHSrOK95vibF3Ku9C8FjK0dvk8yXZCBPk8hOzpPI0yRyniRhN78wbaM66USvbP8ffDvDmMQmi14GbZM3GutRR2mc_bvgG2ZAhTU
CitedBy_id crossref_primary_10_1007_s13369_022_06587_x
crossref_primary_10_3390_s20216034
crossref_primary_10_1016_j_energy_2020_117775
crossref_primary_10_1016_j_ijepes_2021_107004
crossref_primary_10_1016_j_epsr_2022_108085
crossref_primary_10_1155_2022_8606244
crossref_primary_10_1134_S0361768820080101
crossref_primary_10_3390_electronics10243152
crossref_primary_10_1038_s41598_022_07539_z
crossref_primary_10_1109_OJCOMS_2025_3537105
crossref_primary_10_3390_s24237499
crossref_primary_10_1007_s13369_024_09486_5
crossref_primary_10_32604_cmes_2024_056022
crossref_primary_10_3390_s21093157
crossref_primary_10_1016_j_jpdc_2020_05_004
crossref_primary_10_1155_2022_9855022
crossref_primary_10_1109_JSEN_2023_3285784
crossref_primary_10_1109_TIM_2024_3449934
crossref_primary_10_3390_su16188043
crossref_primary_10_3390_en13143730
crossref_primary_10_1016_j_asoc_2023_111028
crossref_primary_10_3390_s21041521
crossref_primary_10_3390_su17031033
crossref_primary_10_3390_en15072479
crossref_primary_10_1016_j_epsr_2023_109300
crossref_primary_10_1109_TIE_2022_3229372
crossref_primary_10_1016_j_scs_2022_104007
crossref_primary_10_1016_j_jenvman_2023_119789
crossref_primary_10_62943_rig_v3n2_2024_122
crossref_primary_10_3389_fenrg_2020_584463
crossref_primary_10_1109_ACCESS_2025_3544147
crossref_primary_10_1016_j_compbiomed_2024_107984
crossref_primary_10_1016_j_engfailanal_2020_105157
crossref_primary_10_1016_j_apenergy_2024_123545
crossref_primary_10_3390_en17061396
crossref_primary_10_1002_int_22876
crossref_primary_10_1109_ACCESS_2022_3163270
crossref_primary_10_3390_app11199062
crossref_primary_10_1016_j_epsr_2021_107233
crossref_primary_10_1155_2022_1176279
crossref_primary_10_1109_ACCESS_2020_2971033
Cites_doi 10.1016/j.ijepes.2016.03.051
10.1109/TSG.2014.2364686
10.1007/s00429-013-0687-3
10.3390/en12040653
10.1016/j.rser.2015.07.128
10.1109/ISET-India.2011.6145362
10.1109/TSG.2015.2456979
10.1126/science.1127647
10.1109/TSG.2017.2679111
10.1109/TII.2018.2799855
10.1109/TSG.2013.2293957
10.1016/j.rser.2018.03.088
10.1109/TSG.2016.2544883
10.1109/TSG.2015.2513900
10.1016/j.neucom.2015.08.104
10.1126/science.1136800
10.1038/nn.3331
10.1080/03610927408827101
10.1016/0377-0427(87)90125-7
10.1145/1553374.1553463
10.1109/TPWRS.2016.2604389
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijepes.2019.105761
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijepes_2019_105761
S0142061519318502
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-a200cd03c48b26c3a5ecf70e957c79a5820ed1ab525eef7b93780170bcfa22923
ISICitedReferencesCount 48
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000518691600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Sat Nov 29 07:21:10 EST 2025
Tue Nov 18 21:02:52 EST 2025
Sun Apr 06 06:54:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lossy compression
Auto-encoder
Separable convolution
Smart meter
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-a200cd03c48b26c3a5ecf70e957c79a5820ed1ab525eef7b93780170bcfa22923
ParticipantIDs crossref_primary_10_1016_j_ijepes_2019_105761
crossref_citationtrail_10_1016_j_ijepes_2019_105761
elsevier_sciencedirect_doi_10_1016_j_ijepes_2019_105761
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Masci, Meier, Cireşan, Schmidhuber (b0105) 2011
Frey, Dueck (b0115) 2007; 315
Tate (b0035) 2016; 7
Kingma DP, Ba J. Adam: a method for stochastic optimization. ArXiv Prepr ArXiv14126980 2014:434–5.
Schuelke-Leech, Barry, Muratori, Yurkovich (b0015) 2015; 52
Wen, Zhou, Yang, Li (b0050) 2018; 91
Wang, Yao, Zhao (b0070) 2016; 184
Das S, Rao PSN. Principal component analysis based compression scheme for power system steady state operational data. ISGT2011-India, IEEE; 2011, p. 95–100. https://doi.org/10.1109/ISET-India.2011.6145362.
Suk, Lee, Shen (b0075) 2015; 220
Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning tensorflow: a system for large-scale machine learning. In: 12th USENIX symp oper syst des implement (OSDI ’16); 2016. https://doi.org/10.1038/nn.3331.
Tripathi, De (b0055) 2018; 14
Rubinstein R, Zibulevsky M, Elad M. Efficient implementation of the K-SVD algorithm and the batch-OMP method; 2008.
Sun, Cui, Lu, Wang (b0060) 2016; 83
Tong, Kang, Xia (b0100) 2016; 7
Abuadbba, Khalil, Yu (b0025) 2018; 9
Rousseeuw (b0120) 1987; 20
Huang, Hu, Ye, Xu, Wang, Chen (b0085) 2019; 12
Tcheou, Lovisolo, Ribeiro, Da Silva, Rodrigues, Romano (b0030) 2014; 5
Mannion (bib158) 2010
Dumoulin, Francesco (bib157) 2016
Mairal J, Bach F, Ponce J, Sapiro G. Online dictionary learning for sparse coding. Proc. 26th Annu. Int. Conf. Mach. Learn. – ICML ’09, New York, New York, USA: ACM Press; 2009, p. 1–8. https://doi.org/10.1145/1553374.1553463.
Yu, Mirowski, Ho (b0095) 2016; 8
Howard (bib156) 2017
Chollet F. Keras: the python deep learning library. KerasIo; 2015.
Guenter, Schraudolph, Vishwanathan (b0130) 2007
Calinski, Harabasz (b0125) 1974; 3
Zhao J, Mathieu M, Goroshin R, LeCun Y. Stacked what-where auto-encoders 2015;1:1–12.
Wang, Chen, Kang, Xia, Luo (b0005) 2017; 32
Wang, Chen, Hong, Kang (b0010) 2018
Hinton (b0065) 2006; 313
Unterweger, Engel (b0020) 2015; 6
Kolter JZ, Johnson MJ. REDD : a public data set for energy disaggregation research. SustKDD work; 2011.
De Souza, Lessa Assis, Pal (b0045) 2017; 8
Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel (b0155) 2011
Wen (10.1016/j.ijepes.2019.105761_b0050) 2018; 91
10.1016/j.ijepes.2019.105761_b0150
Pedregosa (10.1016/j.ijepes.2019.105761_b0155) 2011
10.1016/j.ijepes.2019.105761_b0090
Howard (10.1016/j.ijepes.2019.105761_bib156) 2017
Unterweger (10.1016/j.ijepes.2019.105761_b0020) 2015; 6
De Souza (10.1016/j.ijepes.2019.105761_b0045) 2017; 8
Dumoulin (10.1016/j.ijepes.2019.105761_bib157) 2016
Wang (10.1016/j.ijepes.2019.105761_b0010) 2018
Tate (10.1016/j.ijepes.2019.105761_b0035) 2016; 7
Frey (10.1016/j.ijepes.2019.105761_b0115) 2007; 315
10.1016/j.ijepes.2019.105761_b0135
Tcheou (10.1016/j.ijepes.2019.105761_b0030) 2014; 5
Suk (10.1016/j.ijepes.2019.105761_b0075) 2015; 220
Sun (10.1016/j.ijepes.2019.105761_b0060) 2016; 83
Guenter (10.1016/j.ijepes.2019.105761_b0130) 2007
10.1016/j.ijepes.2019.105761_b0110
Mannion (10.1016/j.ijepes.2019.105761_bib158) 2010
10.1016/j.ijepes.2019.105761_b0040
Tripathi (10.1016/j.ijepes.2019.105761_b0055) 2018; 14
10.1016/j.ijepes.2019.105761_b0080
Hinton (10.1016/j.ijepes.2019.105761_b0065) 2006; 313
Wang (10.1016/j.ijepes.2019.105761_b0005) 2017; 32
Abuadbba (10.1016/j.ijepes.2019.105761_b0025) 2018; 9
Yu (10.1016/j.ijepes.2019.105761_b0095) 2016; 8
Calinski (10.1016/j.ijepes.2019.105761_b0125) 1974; 3
Huang (10.1016/j.ijepes.2019.105761_b0085) 2019; 12
Masci (10.1016/j.ijepes.2019.105761_b0105) 2011
Tong (10.1016/j.ijepes.2019.105761_b0100) 2016; 7
10.1016/j.ijepes.2019.105761_b0145
Rousseeuw (10.1016/j.ijepes.2019.105761_b0120) 1987; 20
10.1016/j.ijepes.2019.105761_b0140
Schuelke-Leech (10.1016/j.ijepes.2019.105761_b0015) 2015; 52
Wang (10.1016/j.ijepes.2019.105761_b0070) 2016; 184
References_xml – volume: 83
  start-page: 21
  year: 2016
  end-page: 25
  ident: b0060
  article-title: Data compression and reconstruction of smart grid customers based on compressed sensing theory
  publication-title: Int J Electr Power Energy Syst
– volume: 7
  start-page: 718
  year: 2016
  end-page: 729
  ident: b0035
  article-title: Preprocessing and golomb-rice encoding for lossless compression of phasor angle data
  publication-title: IEEE Trans Smart Grid
– volume: 52
  start-page: 937
  year: 2015
  end-page: 947
  ident: b0015
  article-title: Big Data issues and opportunities for electric utilities
  publication-title: Renew Sustain Energy Rev
– volume: 315
  start-page: 972
  year: 2007
  end-page: 976
  ident: b0115
  article-title: Clustering by passing messages between data points
  publication-title: Science (80-)
– volume: 8
  start-page: 275
  year: 2017
  end-page: 284
  ident: b0045
  article-title: Data compression in smart distribution systems via singular value decomposition
  publication-title: IEEE Trans Smart Grid
– volume: 8
  start-page: 1
  year: 2016
  end-page: 11
  ident: b0095
  article-title: A sparse coding approach to household electricity demand forecasting in smart grids
  publication-title: IEEE Trans Smart Grid
– year: 2018
  ident: b0010
  article-title: Review of smart meter data analytics: applications, methodologies, and challenges
  publication-title: IEEE Trans Smart Grid
– reference: Mairal J, Bach F, Ponce J, Sapiro G. Online dictionary learning for sparse coding. Proc. 26th Annu. Int. Conf. Mach. Learn. – ICML ’09, New York, New York, USA: ACM Press; 2009, p. 1–8. https://doi.org/10.1145/1553374.1553463.
– reference: Kingma DP, Ba J. Adam: a method for stochastic optimization. ArXiv Prepr ArXiv14126980 2014:434–5.
– start-page: 52
  year: 2011
  end-page: 59
  ident: b0105
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– year: 2007
  ident: b0130
  article-title: Fast Iterative Kernel Principal Component Analysis
  publication-title: J Mach Learn Res
– volume: 9
  start-page: 5047
  year: 2018
  end-page: 5056
  ident: b0025
  article-title: Gaussian approximation-based lossless compression of smart meter readings
  publication-title: IEEE Trans Smart Grid
– year: 2010
  ident: bib158
  article-title: Smart metering project - Commission for Energy Regulation (CER) Ireland
  publication-title: Conference: Smart Metering 2010
– reference: Chollet F. Keras: the python deep learning library. KerasIo; 2015.
– volume: 6
  start-page: 919
  year: 2015
  end-page: 929
  ident: b0020
  article-title: Resumable load data compression in smart grids
  publication-title: IEEE Trans Smart Grid
– volume: 14
  start-page: 4300
  year: 2018
  end-page: 4308
  ident: b0055
  article-title: An efficient data characterization and reduction scheme for smart metering infrastructure
  publication-title: IEEE Trans Ind Inform
– volume: 220
  start-page: 841
  year: 2015
  end-page: 859
  ident: b0075
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct Funct
– reference: Das S, Rao PSN. Principal component analysis based compression scheme for power system steady state operational data. ISGT2011-India, IEEE; 2011, p. 95–100. https://doi.org/10.1109/ISET-India.2011.6145362.
– volume: 12
  start-page: 653
  year: 2019
  ident: b0085
  article-title: Electric load data compression and classification based on deep stacked auto-encoders
  publication-title: Energies
– year: 2017
  ident: bib156
  article-title: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
  publication-title: arXiv: Computer Vision and Pattern Recognition
– reference: Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. TensorFlow: a system for large-scale machine learning tensorflow: a system for large-scale machine learning. In: 12th USENIX symp oper syst des implement (OSDI ’16); 2016. https://doi.org/10.1038/nn.3331.
– volume: 32
  start-page: 2142
  year: 2017
  end-page: 2151
  ident: b0005
  article-title: Sparse and redundant representation-based smart meter data compression and pattern extraction
  publication-title: IEEE Trans Power Syst
– volume: 7
  start-page: 2414
  year: 2016
  end-page: 2422
  ident: b0100
  article-title: Smart Metering Load Data Compression Based on Load Feature Identification
  publication-title: IEEE Trans Smart Grid
– volume: 91
  start-page: 59
  year: 2018
  end-page: 69
  ident: b0050
  article-title: Compression of smart meter big data: a survey
  publication-title: Renew Sustain Energy Rev
– volume: 184
  start-page: 232
  year: 2016
  end-page: 242
  ident: b0070
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
– year: 2011
  ident: b0155
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– reference: Kolter JZ, Johnson MJ. REDD : a public data set for energy disaggregation research. SustKDD work; 2011.
– year: 2016
  ident: bib157
  article-title: A guide to convolution arithmetic for deep learning
  publication-title: arXiv: Machine Learning
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b0065
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science (80-)
– volume: 20
  start-page: 53
  year: 1987
  end-page: 65
  ident: b0120
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
– reference: Zhao J, Mathieu M, Goroshin R, LeCun Y. Stacked what-where auto-encoders 2015;1:1–12.
– volume: 3
  start-page: 1
  year: 1974
  end-page: 27
  ident: b0125
  article-title: A dendrite method for cluster analysis
  publication-title: Commun Stat – Theory Methods
– volume: 5
  start-page: 291
  year: 2014
  end-page: 302
  ident: b0030
  article-title: The compression of electric signal waveforms for smart grids: state of the art and future trends
  publication-title: IEEE Trans Smart Grid
– reference: Rubinstein R, Zibulevsky M, Elad M. Efficient implementation of the K-SVD algorithm and the batch-OMP method; 2008.
– year: 2017
  ident: 10.1016/j.ijepes.2019.105761_bib156
  article-title: MobileNets: Efficient Convolutional Neural Networks for Mobile Vision Applications
  publication-title: arXiv: Computer Vision and Pattern Recognition
– volume: 83
  start-page: 21
  year: 2016
  ident: 10.1016/j.ijepes.2019.105761_b0060
  article-title: Data compression and reconstruction of smart grid customers based on compressed sensing theory
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2016.03.051
– volume: 6
  start-page: 919
  year: 2015
  ident: 10.1016/j.ijepes.2019.105761_b0020
  article-title: Resumable load data compression in smart grids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2014.2364686
– volume: 220
  start-page: 841
  year: 2015
  ident: 10.1016/j.ijepes.2019.105761_b0075
  article-title: Latent feature representation with stacked auto-encoder for AD/MCI diagnosis
  publication-title: Brain Struct Funct
  doi: 10.1007/s00429-013-0687-3
– volume: 12
  start-page: 653
  year: 2019
  ident: 10.1016/j.ijepes.2019.105761_b0085
  article-title: Electric load data compression and classification based on deep stacked auto-encoders
  publication-title: Energies
  doi: 10.3390/en12040653
– year: 2010
  ident: 10.1016/j.ijepes.2019.105761_bib158
  article-title: Smart metering project - Commission for Energy Regulation (CER) Ireland
  publication-title: Conference: Smart Metering 2010
– year: 2011
  ident: 10.1016/j.ijepes.2019.105761_b0155
  article-title: Scikit-learn: machine learning in Python
  publication-title: J Mach Learn Res
– volume: 52
  start-page: 937
  year: 2015
  ident: 10.1016/j.ijepes.2019.105761_b0015
  article-title: Big Data issues and opportunities for electric utilities
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2015.07.128
– year: 2016
  ident: 10.1016/j.ijepes.2019.105761_bib157
  article-title: A guide to convolution arithmetic for deep learning
  publication-title: arXiv: Machine Learning
– ident: 10.1016/j.ijepes.2019.105761_b0140
– volume: 7
  start-page: 718
  year: 2016
  ident: 10.1016/j.ijepes.2019.105761_b0035
  article-title: Preprocessing and golomb-rice encoding for lossless compression of phasor angle data
  publication-title: IEEE Trans Smart Grid
– ident: 10.1016/j.ijepes.2019.105761_b0080
– start-page: 52
  year: 2011
  ident: 10.1016/j.ijepes.2019.105761_b0105
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinformatics)
– ident: 10.1016/j.ijepes.2019.105761_b0040
  doi: 10.1109/ISET-India.2011.6145362
– volume: 8
  start-page: 275
  year: 2017
  ident: 10.1016/j.ijepes.2019.105761_b0045
  article-title: Data compression in smart distribution systems via singular value decomposition
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2456979
– ident: 10.1016/j.ijepes.2019.105761_b0090
– year: 2007
  ident: 10.1016/j.ijepes.2019.105761_b0130
  article-title: Fast Iterative Kernel Principal Component Analysis
  publication-title: J Mach Learn Res
– volume: 313
  start-page: 504
  year: 2006
  ident: 10.1016/j.ijepes.2019.105761_b0065
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science (80-)
  doi: 10.1126/science.1127647
– volume: 9
  start-page: 5047
  year: 2018
  ident: 10.1016/j.ijepes.2019.105761_b0025
  article-title: Gaussian approximation-based lossless compression of smart meter readings
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2679111
– volume: 14
  start-page: 4300
  year: 2018
  ident: 10.1016/j.ijepes.2019.105761_b0055
  article-title: An efficient data characterization and reduction scheme for smart metering infrastructure
  publication-title: IEEE Trans Ind Inform
  doi: 10.1109/TII.2018.2799855
– volume: 5
  start-page: 291
  year: 2014
  ident: 10.1016/j.ijepes.2019.105761_b0030
  article-title: The compression of electric signal waveforms for smart grids: state of the art and future trends
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2013.2293957
– volume: 91
  start-page: 59
  year: 2018
  ident: 10.1016/j.ijepes.2019.105761_b0050
  article-title: Compression of smart meter big data: a survey
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2018.03.088
– volume: 7
  start-page: 2414
  year: 2016
  ident: 10.1016/j.ijepes.2019.105761_b0100
  article-title: Smart Metering Load Data Compression Based on Load Feature Identification
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2544883
– volume: 8
  start-page: 1
  year: 2016
  ident: 10.1016/j.ijepes.2019.105761_b0095
  article-title: A sparse coding approach to household electricity demand forecasting in smart grids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2513900
– year: 2018
  ident: 10.1016/j.ijepes.2019.105761_b0010
  article-title: Review of smart meter data analytics: applications, methodologies, and challenges
  publication-title: IEEE Trans Smart Grid
– volume: 184
  start-page: 232
  year: 2016
  ident: 10.1016/j.ijepes.2019.105761_b0070
  article-title: Auto-encoder based dimensionality reduction
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.104
– volume: 315
  start-page: 972
  year: 2007
  ident: 10.1016/j.ijepes.2019.105761_b0115
  article-title: Clustering by passing messages between data points
  publication-title: Science (80-)
  doi: 10.1126/science.1136800
– ident: 10.1016/j.ijepes.2019.105761_b0150
  doi: 10.1038/nn.3331
– volume: 3
  start-page: 1
  year: 1974
  ident: 10.1016/j.ijepes.2019.105761_b0125
  article-title: A dendrite method for cluster analysis
  publication-title: Commun Stat – Theory Methods
  doi: 10.1080/03610927408827101
– ident: 10.1016/j.ijepes.2019.105761_b0145
– ident: 10.1016/j.ijepes.2019.105761_b0110
– volume: 20
  start-page: 53
  year: 1987
  ident: 10.1016/j.ijepes.2019.105761_b0120
  article-title: Silhouettes: a graphical aid to the interpretation and validation of cluster analysis
  publication-title: J Comput Appl Math
  doi: 10.1016/0377-0427(87)90125-7
– ident: 10.1016/j.ijepes.2019.105761_b0135
  doi: 10.1145/1553374.1553463
– volume: 32
  start-page: 2142
  year: 2017
  ident: 10.1016/j.ijepes.2019.105761_b0005
  article-title: Sparse and redundant representation-based smart meter data compression and pattern extraction
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2016.2604389
SSID ssj0007942
Score 2.4834564
Snippet •An efficient and lightweight DNN for smart meter data compression is proposed.•The reconstruction error and computation time is significantly reduced.•The...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105761
SubjectTerms Auto-encoder
Lossy compression
Separable convolution
Smart meter
Title A novel smart meter data compression method via stacked convolutional sparse auto-encoder
URI https://dx.doi.org/10.1016/j.ijepes.2019.105761
Volume 118
WOSCitedRecordID wos000518691600017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMcEE9RXtoDt2ireB1nvccIFZUKVRwKhJO1Xo_BUepYjRPyV_i3zD78SIsKPXCxIse7Xnk-j2dH33xDyFs5MWF7FjCZ6pBNVByxGECzMBsDgBRhasmYXz6Ks7N4PpefBoNfTS3MdinKMt7tZPVfTY3n0NimdPYW5m4nxRP4G42ORzQ7Hv_J8LNRudrCcrS-wD9Nh2jTA1zVyrLHHeu19I2jR9tCmWQCvsmZ5Z_7hZkakgp3vDBSm3rFjNZl5lm8i4753iUSe_ITrq2OtXxlGrBZaIErMFz31NFtDt-nqn-sNjtE6feOauB84YkqfnaVal83NocAxdXxpzg2Bz_cJzD4uCNatTlNbhpMRHtO2Xtl51ZNM2Kn2X7N47vkw-KoWEAFRn89kEfd5fsC21c-fC0dsWG6LRI3S2JmSdwsd8gBF5GMh-Rg9uF4ftp-5tGRccePdatv6jItefD6av4c9_RimfOH5IHfhNCZA88jMoDyMbnfk6Z8Qr7NqIURtTCiFkbUwIj2YEQdjCjCiHoY0T0YUQcj2ofRU_L5_fH5uxPm23AwjfvJmil8u3Q2DvUkTvlUhyoCnYsxyEhoIVWEMSRkgUojHgHkIsWANzaqTKnOFee4gXhGhuWqhOeEqiyfplbiUOG-V00lzhanYQgB10GeZockbB5Sor1GvWmVskxuMtEhYe2oymm0_OV60Tz_xMeZLn5MEFQ3jnxxyzu9JPc6xL8iw_pyA6_JXb2ti_XlG4-o33XdpOI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+smart+meter+data+compression+method+via+stacked+convolutional+sparse+auto-encoder&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Wang%2C+Shouxiang&rft.au=Chen%2C+Haiwen&rft.au=Wu%2C+Lei&rft.au=Wang%2C+Jianfeng&rft.date=2020-06-01&rft.issn=0142-0615&rft.volume=118&rft.spage=105761&rft_id=info:doi/10.1016%2Fj.ijepes.2019.105761&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijepes_2019_105761
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon