Stream-learn — open-source Python library for difficult data stream batch analysis

Stream-learn is a Python package compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis. Its main component is a stream generator, which allows producing a synthetic data stream that may incorporate each of the three main concept drift types (i.e., sudden, gr...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 478; s. 11 - 21
Hlavní autoři: Ksieniewicz, P., Zyblewski, P.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 14.03.2022
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Stream-learn is a Python package compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis. Its main component is a stream generator, which allows producing a synthetic data stream that may incorporate each of the three main concept drift types (i.e., sudden, gradual and incremental drift) in their recurring or non-recurring version, as well as static and dynamic class imbalance. The package allows conducting experiments following established evaluation methodologies (i.e., Test-Then-Train and Prequential). Besides, estimators adapted for data stream classification have been implemented, including both simple classifiers and state-of-the-art chunk-based and online classifier ensembles. The package utilises its own implementations of prediction metrics for imbalanced binary classification tasks to improve computational efficiency.
ISSN:0925-2312
1872-8286
DOI:10.1016/j.neucom.2021.10.120