Stream-learn — open-source Python library for difficult data stream batch analysis

Stream-learn is a Python package compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis. Its main component is a stream generator, which allows producing a synthetic data stream that may incorporate each of the three main concept drift types (i.e., sudden, gr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neurocomputing (Amsterdam) Jg. 478; S. 11 - 21
Hauptverfasser: Ksieniewicz, P., Zyblewski, P.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 14.03.2022
Schlagworte:
ISSN:0925-2312, 1872-8286
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Stream-learn is a Python package compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis. Its main component is a stream generator, which allows producing a synthetic data stream that may incorporate each of the three main concept drift types (i.e., sudden, gradual and incremental drift) in their recurring or non-recurring version, as well as static and dynamic class imbalance. The package allows conducting experiments following established evaluation methodologies (i.e., Test-Then-Train and Prequential). Besides, estimators adapted for data stream classification have been implemented, including both simple classifiers and state-of-the-art chunk-based and online classifier ensembles. The package utilises its own implementations of prediction metrics for imbalanced binary classification tasks to improve computational efficiency.
AbstractList Stream-learn is a Python package compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis. Its main component is a stream generator, which allows producing a synthetic data stream that may incorporate each of the three main concept drift types (i.e., sudden, gradual and incremental drift) in their recurring or non-recurring version, as well as static and dynamic class imbalance. The package allows conducting experiments following established evaluation methodologies (i.e., Test-Then-Train and Prequential). Besides, estimators adapted for data stream classification have been implemented, including both simple classifiers and state-of-the-art chunk-based and online classifier ensembles. The package utilises its own implementations of prediction metrics for imbalanced binary classification tasks to improve computational efficiency.
Author Zyblewski, P.
Ksieniewicz, P.
Author_xml – sequence: 1
  givenname: P.
  surname: Ksieniewicz
  fullname: Ksieniewicz, P.
– sequence: 2
  givenname: P.
  surname: Zyblewski
  fullname: Zyblewski, P.
BookMark eNqFkM1KAzEUhYNUsK2-gYu8wIxJ5t-FIMU_KChY1-FOcoemTJOSpEJ3PoRP6JM4bV250NWFD77DuWdCRtZZJOSSs5QzXl6tUotb5dapYIKneyrYCRnzuhJJLepyRMasEUUiMi7OyCSEFWO84qIZk8Vr9AjrpEfwln59fFK3QZsEt_UK6csuLp2lvWk9-B3tnKfadJ1R2z5SDRFoOOi0haiWFCz0u2DCOTntoA948XOn5O3-bjF7TObPD0-z23miMlbGBJhC1mRZxbhuhOhqXeSFrjRnWAhdQluphmk98DxvVQ6dyFoOTaaA14LnOpuS_JirvAvBYyc33qyHppIzuV9GruRxGblf5kAFG7TrX5oyEaJxNnow_X_yzVHG4bF3g14GZdAq1MajilI783fAN3Mrhgc
CitedBy_id crossref_primary_10_1109_TII_2022_3217541
crossref_primary_10_1109_TNSM_2024_3435516
crossref_primary_10_1109_ACCESS_2023_3295694
crossref_primary_10_1007_s10994_023_06353_6
crossref_primary_10_3390_electronics11233962
crossref_primary_10_1016_j_ins_2023_02_046
crossref_primary_10_1007_s11227_025_07482_6
crossref_primary_10_1007_s11042_024_19737_0
crossref_primary_10_1007_s10994_024_06612_0
crossref_primary_10_1016_j_neucom_2023_126554
crossref_primary_10_3390_machines11020151
crossref_primary_10_1016_j_ins_2024_120555
crossref_primary_10_1016_j_neucom_2024_128194
Cites_doi 10.1016/B978-0-12-804291-5.00024-6
10.1016/S0031-3203(02)00257-1
10.1109/IJCNN52387.2021.9533795
10.1109/ICSMC.2005.1571498
10.1016/j.inffus.2020.09.004
10.1007/s13748-016-0094-0
10.1007/978-3-642-01091-0_2
10.1016/j.inffus.2017.02.004
10.1145/956750.956778
10.1109/IJCNN48605.2020.9207498
10.1016/j.neucom.2018.05.130
10.1201/EBK1439826119-c1
10.1007/s10994-012-5320-9
10.1016/j.ins.2018.06.020
10.1109/TKDE.2014.2345380
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright_xml – notice: 2022 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.10.120
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 21
ExternalDocumentID 10_1016_j_neucom_2021_10_120
S0925231222000108
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-a0ce0933701d922f8d545d7d10e52d6ab7c90ddf8d44bc4af23b1a93ca18214d3
ISICitedReferencesCount 18
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000761815800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:13:35 EST 2025
Tue Nov 18 22:23:56 EST 2025
Fri Feb 23 02:40:50 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Imbalanced data
Data stream
Dynamic class imbalance
Concept drift
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-a0ce0933701d922f8d545d7d10e52d6ab7c90ddf8d44bc4af23b1a93ca18214d3
PageCount 11
ParticipantIDs crossref_primary_10_1016_j_neucom_2021_10_120
crossref_citationtrail_10_1016_j_neucom_2021_10_120
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_10_120
PublicationCentury 2000
PublicationDate 2022-03-14
PublicationDateYYYYMMDD 2022-03-14
PublicationDate_xml – month: 03
  year: 2022
  text: 2022-03-14
  day: 14
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Pedregosa, Varoquaux, Gramfort, Michel, Thirion, Grisel, Blondel, Prettenhofer, Weiss, Dubourg, Vanderplas, Passos, Cournapeau, Brucher, Perrot, Duchesnay (b0020) 2011; 12
Appendix b - the weka workbench, in: I.H. Witten, E. Frank, M.A. Hall, C.J. Pal (Eds.), Data Mining (Fourth Edition), fourth edition Edition, Morgan Kaufmann, 2017, pp. 553 – 571.
Powers (b0090) 2011; 2
Kelleher, Namee, D’Arcy (b0110) 2015
Krawczyk (b0015) 2016; 5
J. Gama, P.P. Rodrigues, An overview on mining data streams, in: Foundations of Computational, IntelligenceVolume 6, Springer, 2009, pp. 29–45.
Woźniak, Kasprzak, Cal (b0080) 2013
J. Gama, Knowledge Discovery from Data Streams, 1st Edition, Chapman Hall/CRC, 2010.
Street, Kim (b0055) 2001
Brodersen, Ong, Stephan, Buhmann (b0105) 2010
Krawczyk, Minku, Gama, Stefanowski, Wozniak (b0010) 2017; 37
Montiel, Read, Bifet, Abdessalem (b0035) 2018; 19
M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: One-sided selection, in: ICML, 1997.
P. Ksieniewicz, M. Woźniak, B. Cyganek, A. Kasprzak, K. Walkowiak, Data stream classification using active learned neural networks, Neurocomputing 353 (2019) 74–82, recent Advancements in Hybrid Artificial Intelligence Systems.
Zyblewski, Ksieniewicz, Woźniak (b0150) 2019
Baeza-Yates, Ribeiro-Neto (b0095) 1999
N.C. Oza, Online bagging and boosting, in: 2005 IEEE International Conference on Systems, Man and Cybernetics, Vol. 3, 2005, pp. 2340–2345 Vol. 3.
Y. Sasaki, The truth of the f-measure, Teach Tutor Mater.
H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using ensemble classifiers, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, ACM, New York, NY, USA, 2003, pp. 226–235.
Wang, Minku, Yao (b0065) 2015; 27
Guyon (b0050) 2003
Zyblewski, Sabourin, Woźniak (b0160) 2021; 66
P. Ksieniewicz, P. Zyblewski, M. Choraś, R. Kozik, A. Giełczyk, M. Woźniak, Fake news detection from data streams, in: 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020, pp. 1–8.
R.M.O. Cruz, L.G. Hafemann, R. Sabourin, G.D.C. Cavalcanti, DESlib: A Dynamic ensemble selection library in Python, arXiv preprint arXiv:1802.04967.
Visual-based analysis of classification measures and their properties for class imbalanced problems, Information Sciences 462 (2018) 242 – 261.
Zyblewski, Sabourin, Woźniak (b0155) 2020
Bifet, Holmes, Kirkby, Pfahringer (b0040) 2010; 11
Barandela, Sánchez, García, Rangel (b0115) 2003; 36
J. Komorniczak, P. Zyblewski, P. Ksieniewicz, Prior probability estimation in dynamically imbalanced data streams, in: The International Joint Conference on Neural Networks, 2021.
Gama, Sebastião, Rodrigues (b0135) 2013; 90
Gulowaty, Ksieniewicz (b0140) 2019
Lemaıˇtre, Nogueira, Aridas (b0025) 2017; 18
Brzeziński, Stefanowski (b0075) 2011
Brodersen (10.1016/j.neucom.2021.10.120_b0105) 2010
Krawczyk (10.1016/j.neucom.2021.10.120_b0010) 2017; 37
10.1016/j.neucom.2021.10.120_b0030
Wang (10.1016/j.neucom.2021.10.120_b0065) 2015; 27
10.1016/j.neucom.2021.10.120_b0130
Kelleher (10.1016/j.neucom.2021.10.120_b0110) 2015
10.1016/j.neucom.2021.10.120_b0070
Gulowaty (10.1016/j.neucom.2021.10.120_b0140) 2019
Krawczyk (10.1016/j.neucom.2021.10.120_b0015) 2016; 5
Montiel (10.1016/j.neucom.2021.10.120_b0035) 2018; 19
Powers (10.1016/j.neucom.2021.10.120_b0090) 2011; 2
Baeza-Yates (10.1016/j.neucom.2021.10.120_b0095) 1999
Woźniak (10.1016/j.neucom.2021.10.120_b0080) 2013
Gama (10.1016/j.neucom.2021.10.120_b0135) 2013; 90
Bifet (10.1016/j.neucom.2021.10.120_b0040) 2010; 11
Street (10.1016/j.neucom.2021.10.120_b0055) 2001
Zyblewski (10.1016/j.neucom.2021.10.120_b0155) 2020
Zyblewski (10.1016/j.neucom.2021.10.120_b0160) 2021; 66
Barandela (10.1016/j.neucom.2021.10.120_b0115) 2003; 36
10.1016/j.neucom.2021.10.120_b0125
10.1016/j.neucom.2021.10.120_b0005
10.1016/j.neucom.2021.10.120_b0120
10.1016/j.neucom.2021.10.120_b0165
10.1016/j.neucom.2021.10.120_b0045
10.1016/j.neucom.2021.10.120_b0100
Brzeziński (10.1016/j.neucom.2021.10.120_b0075) 2011
10.1016/j.neucom.2021.10.120_b0145
10.1016/j.neucom.2021.10.120_b0085
Lemaıˇtre (10.1016/j.neucom.2021.10.120_b0025) 2017; 18
10.1016/j.neucom.2021.10.120_b0060
Pedregosa (10.1016/j.neucom.2021.10.120_b0020) 2011; 12
Guyon (10.1016/j.neucom.2021.10.120_b0050) 2003
Zyblewski (10.1016/j.neucom.2021.10.120_b0150) 2019
References_xml – start-page: 367
  year: 2020
  end-page: 379
  ident: b0155
  article-title: Data preprocessing and dynamic ensemble selection for imbalanced data stream classification
  publication-title: Machine Learning and Knowledge Discovery in Databases
– volume: 18
  start-page: 1
  year: 2017
  end-page: 5
  ident: b0025
  article-title: Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– volume: 5
  start-page: 221
  year: 2016
  end-page: 232
  ident: b0015
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Progress Artif. Intell.
– volume: 19
  start-page: 1
  year: 2018
  end-page: 5
  ident: b0035
  article-title: Scikit-multiflow: A multi-output streaming framework
  publication-title: J. Mach. Learn. Res.
– reference: P. Ksieniewicz, P. Zyblewski, M. Choraś, R. Kozik, A. Giełczyk, M. Woźniak, Fake news detection from data streams, in: 2020 International Joint Conference on Neural Networks (IJCNN), IEEE, 2020, pp. 1–8.
– volume: 36
  start-page: 849
  year: 2003
  end-page: 851
  ident: b0115
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recogn.
– reference: J. Gama, Knowledge Discovery from Data Streams, 1st Edition, Chapman Hall/CRC, 2010.
– year: 2015
  ident: b0110
  article-title: Fundamentals of Machine Learning for Predictive Data Analytics: Algorithms, Worked Examples, and Case Studies
– year: 1999
  ident: b0095
  article-title: Modern Information Retrieval
– volume: 11
  start-page: 1601
  year: 2010
  end-page: 1604
  ident: b0040
  article-title: MOA: massive online analysis
  publication-title: J. Mach. Learn. Res.
– start-page: 3121
  year: 2010
  end-page: 3124
  ident: b0105
  article-title: The balanced accuracy and its posterior distribution
  publication-title: Proceedings of the 2010 20th International Conference on Pattern Recognition, ICPR ’10
– volume: 90
  start-page: 317
  year: 2013
  end-page: 346
  ident: b0135
  article-title: On evaluating stream learning algorithms
  publication-title: Machine Learning
– start-page: 626
  year: 2019
  end-page: 635
  ident: b0150
  article-title: Classifier selection for highly imbalanced data streams with minority driven ensemble
  publication-title: Artificial Intelligence and Soft Computing
– reference: N.C. Oza, Online bagging and boosting, in: 2005 IEEE International Conference on Systems, Man and Cybernetics, Vol. 3, 2005, pp. 2340–2345 Vol. 3.
– volume: 12
  start-page: 2825
  year: 2011
  end-page: 2830
  ident: b0020
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 2229
  year: 2011
  end-page: 3981
  ident: b0090
  article-title: Ailab, Evaluation: From precision, recall and f-measure to roc, informedness, markedness correlation
  publication-title: J. Mach. Learn. Technol
– reference: J. Komorniczak, P. Zyblewski, P. Ksieniewicz, Prior probability estimation in dynamically imbalanced data streams, in: The International Joint Conference on Neural Networks, 2021.
– start-page: 579
  year: 2013
  end-page: 588
  ident: b0080
  article-title: Weighted aging classifier ensemble for the incremental drifted data streams
  publication-title: Flexible Query Answering Systems
– start-page: 305
  year: 2019
  end-page: 312
  ident: b0140
  article-title: Smote algorithm variations in balancing data streams
  publication-title: Intelligent Data Engineering and Automated Learning – IDEAL 2019
– volume: 27
  start-page: 1356
  year: 2015
  end-page: 1368
  ident: b0065
  article-title: Resampling-based ensemble methods for online class imbalance learning
  publication-title: IEEE Trans. Knowl. Data Eng.
– reference: R.M.O. Cruz, L.G. Hafemann, R. Sabourin, G.D.C. Cavalcanti, DESlib: A Dynamic ensemble selection library in Python, arXiv preprint arXiv:1802.04967.
– volume: 37
  start-page: 132
  year: 2017
  end-page: 156
  ident: b0010
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Inform. Fusion
– year: 2003
  ident: b0050
  article-title: Design of experiments of the nips 2003 variable selection benchmark
  publication-title: NIPS 2003 workshop on feature extraction and feature selection
– volume: 66
  start-page: 138
  year: 2021
  end-page: 154
  ident: b0160
  article-title: Preprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streams
  publication-title: Information Fusion
– start-page: 377
  year: 2001
  end-page: 382
  ident: b0055
  article-title: A streaming ensemble algorithm (sea) for large-scale classification
  publication-title: Proceedings of the 7Th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– reference: H. Wang, W. Fan, P.S. Yu, J. Han, Mining concept-drifting data streams using ensemble classifiers, in: Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’03, ACM, New York, NY, USA, 2003, pp. 226–235.
– start-page: 155
  year: 2011
  end-page: 163
  ident: b0075
  article-title: Accuracy updated ensemble for data streams with concept drift
  publication-title: Hybrid Artificial Intelligent Systems
– reference: P. Ksieniewicz, M. Woźniak, B. Cyganek, A. Kasprzak, K. Walkowiak, Data stream classification using active learned neural networks, Neurocomputing 353 (2019) 74–82, recent Advancements in Hybrid Artificial Intelligence Systems.
– reference: J. Gama, P.P. Rodrigues, An overview on mining data streams, in: Foundations of Computational, IntelligenceVolume 6, Springer, 2009, pp. 29–45.
– reference: Visual-based analysis of classification measures and their properties for class imbalanced problems, Information Sciences 462 (2018) 242 – 261.]
– reference: M. Kubat, S. Matwin, Addressing the curse of imbalanced training sets: One-sided selection, in: ICML, 1997.
– reference: Y. Sasaki, The truth of the f-measure, Teach Tutor Mater.
– reference: Appendix b - the weka workbench, in: I.H. Witten, E. Frank, M.A. Hall, C.J. Pal (Eds.), Data Mining (Fourth Edition), fourth edition Edition, Morgan Kaufmann, 2017, pp. 553 – 571.
– year: 2003
  ident: 10.1016/j.neucom.2021.10.120_b0050
  article-title: Design of experiments of the nips 2003 variable selection benchmark
– volume: 19
  start-page: 1
  issue: 72
  year: 2018
  ident: 10.1016/j.neucom.2021.10.120_b0035
  article-title: Scikit-multiflow: A multi-output streaming framework
  publication-title: J. Mach. Learn. Res.
– start-page: 305
  year: 2019
  ident: 10.1016/j.neucom.2021.10.120_b0140
  article-title: Smote algorithm variations in balancing data streams
– volume: 2
  start-page: 2229
  year: 2011
  ident: 10.1016/j.neucom.2021.10.120_b0090
  article-title: Ailab, Evaluation: From precision, recall and f-measure to roc, informedness, markedness correlation
  publication-title: J. Mach. Learn. Technol
– ident: 10.1016/j.neucom.2021.10.120_b0045
  doi: 10.1016/B978-0-12-804291-5.00024-6
– start-page: 579
  year: 2013
  ident: 10.1016/j.neucom.2021.10.120_b0080
  article-title: Weighted aging classifier ensemble for the incremental drifted data streams
– volume: 36
  start-page: 849
  year: 2003
  ident: 10.1016/j.neucom.2021.10.120_b0115
  article-title: Strategies for learning in class imbalance problems
  publication-title: Pattern Recogn.
  doi: 10.1016/S0031-3203(02)00257-1
– start-page: 626
  year: 2019
  ident: 10.1016/j.neucom.2021.10.120_b0150
  article-title: Classifier selection for highly imbalanced data streams with minority driven ensemble
– start-page: 3121
  year: 2010
  ident: 10.1016/j.neucom.2021.10.120_b0105
  article-title: The balanced accuracy and its posterior distribution
– ident: 10.1016/j.neucom.2021.10.120_b0125
  doi: 10.1109/IJCNN52387.2021.9533795
– ident: 10.1016/j.neucom.2021.10.120_b0060
  doi: 10.1109/ICSMC.2005.1571498
– ident: 10.1016/j.neucom.2021.10.120_b0100
– volume: 18
  start-page: 1
  issue: 17
  year: 2017
  ident: 10.1016/j.neucom.2021.10.120_b0025
  article-title: Imbalanced-learn: A python toolbox to tackle the curse of imbalanced datasets in machine learning
  publication-title: J. Mach. Learn. Res.
– volume: 66
  start-page: 138
  year: 2021
  ident: 10.1016/j.neucom.2021.10.120_b0160
  article-title: Preprocessed dynamic classifier ensemble selection for highly imbalanced drifted data streams
  publication-title: Information Fusion
  doi: 10.1016/j.inffus.2020.09.004
– start-page: 367
  year: 2020
  ident: 10.1016/j.neucom.2021.10.120_b0155
  article-title: Data preprocessing and dynamic ensemble selection for imbalanced data stream classification
– volume: 5
  start-page: 221
  issue: 4
  year: 2016
  ident: 10.1016/j.neucom.2021.10.120_b0015
  article-title: Learning from imbalanced data: open challenges and future directions
  publication-title: Progress Artif. Intell.
  doi: 10.1007/s13748-016-0094-0
– ident: 10.1016/j.neucom.2021.10.120_b0005
  doi: 10.1007/978-3-642-01091-0_2
– start-page: 155
  year: 2011
  ident: 10.1016/j.neucom.2021.10.120_b0075
  article-title: Accuracy updated ensemble for data streams with concept drift
– volume: 37
  start-page: 132
  year: 2017
  ident: 10.1016/j.neucom.2021.10.120_b0010
  article-title: Ensemble learning for data stream analysis: A survey
  publication-title: Inform. Fusion
  doi: 10.1016/j.inffus.2017.02.004
– start-page: 377
  year: 2001
  ident: 10.1016/j.neucom.2021.10.120_b0055
  article-title: A streaming ensemble algorithm (sea) for large-scale classification
– ident: 10.1016/j.neucom.2021.10.120_b0030
– volume: 11
  start-page: 1601
  year: 2010
  ident: 10.1016/j.neucom.2021.10.120_b0040
  article-title: MOA: massive online analysis
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2021.10.120_b0070
  doi: 10.1145/956750.956778
– year: 2015
  ident: 10.1016/j.neucom.2021.10.120_b0110
– ident: 10.1016/j.neucom.2021.10.120_b0165
  doi: 10.1109/IJCNN48605.2020.9207498
– ident: 10.1016/j.neucom.2021.10.120_b0120
– volume: 12
  start-page: 2825
  year: 2011
  ident: 10.1016/j.neucom.2021.10.120_b0020
  article-title: Scikit-learn: Machine learning in Python
  publication-title: J. Mach. Learn. Res.
– ident: 10.1016/j.neucom.2021.10.120_b0145
  doi: 10.1016/j.neucom.2018.05.130
– ident: 10.1016/j.neucom.2021.10.120_b0130
  doi: 10.1201/EBK1439826119-c1
– volume: 90
  start-page: 317
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2021.10.120_b0135
  article-title: On evaluating stream learning algorithms
  publication-title: Machine Learning
  doi: 10.1007/s10994-012-5320-9
– year: 1999
  ident: 10.1016/j.neucom.2021.10.120_b0095
– ident: 10.1016/j.neucom.2021.10.120_b0085
  doi: 10.1016/j.ins.2018.06.020
– volume: 27
  start-page: 1356
  issue: 5
  year: 2015
  ident: 10.1016/j.neucom.2021.10.120_b0065
  article-title: Resampling-based ensemble methods for online class imbalance learning
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2014.2345380
SSID ssj0017129
Score 2.480275
Snippet Stream-learn is a Python package compatible with scikit-learn and developed for the drifting and imbalanced data stream analysis. Its main component is a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 11
SubjectTerms Concept drift
Data stream
Dynamic class imbalance
Imbalanced data
Title Stream-learn — open-source Python library for difficult data stream batch analysis
URI https://dx.doi.org/10.1016/j.neucom.2021.10.120
Volume 478
WOSCitedRecordID wos000761815800002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LaxsxEBYl6aGXvkvTFzr0tsistFprdTQlpe0hBOqCb4teBod4G2KnTW79Ef2F_SWdkbTrhYS-oJfFFl5baD59Hs3OzEfI63qqG85NybwIDRxQpoJpiW_rUNrKcmtKF8Um1NFRs1jo45w2tolyAqrrmstLffZfTQ1jYGwsnf0Lcw9fCgPwGowOVzA7XP_I8Pic2axZlIMo-lwGWaBMFkuh-uL4CjsGFDmCEzMNUSgltuEoMGc0lpCYdWGBqLH0LTUuGTuysamHi5IQOdgwW2PPBY8A2yVwb4A5VuHryqU49WSIU1_ZU6DXpJmdh3PsAY6tmMi2iz1eL4pJkUVRM3AbE8mGxKuNErFifUy8Mon3ZOrMnBsyj95I7ynScDLpwgXm-sCU-CR2yCh3f2dDkuFHnAjOQ2A5EseK8H2hag30vT97f7j4MDxtUlyknox54n2JZcwDvP5bN7swI7dkfp_czecJOks4eEBuhe4huddrddBM3Y_IfAwL-uPbdzoCBE2AoBkQFABBB0BQBARNgKARELQHxGPy6e3h_M07lhU1mIOj4ZbBxgsYwlIl91qIZePBgfbK8zLUwk-NVU6X3sO4lNZJsxSwXY2unIFjKJe-ekL2us9deEqoFdhaUFhX20YKpaw2QQZbBauXzXLKD0jVL1Lrcrt5VD05bfu8wpM2LW2LSxtHRXlA2HDXWWq38pvPq3792-wyJlewBcj88s5n_3znc3JntxdekL3t-UV4SW67L9vV5vxVxtZPKduSRA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Stream-learn+%E2%80%94+open-source+Python+library+for+difficult+data+stream+batch+analysis&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Ksieniewicz%2C+P.&rft.au=Zyblewski%2C+P.&rft.date=2022-03-14&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=478&rft.spage=11&rft.epage=21&rft_id=info:doi/10.1016%2Fj.neucom.2021.10.120&rft.externalDocID=S0925231222000108
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon