Optimality of HLF for scheduling divide-and-conquer UET task graphs on identical parallel processors
The problem of scheduling a set of n unit execution time (UET) tasks subject to precedence constraints on m identical parallel processors is known to be N P -hard in the strong sense. However, polynomial time algorithms exist for some classes of precedence graphs. In this paper, we consider a class...
Uloženo v:
| Vydáno v: | Discrete optimization Ročník 6; číslo 1; s. 79 - 91 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
01.02.2009
|
| Témata: | |
| ISSN: | 1572-5286, 1873-636X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The problem of scheduling a set of
n
unit execution time (UET) tasks subject to precedence constraints on
m
identical parallel processors is known to be
N
P
-hard in the strong sense. However, polynomial time algorithms exist for some classes of precedence graphs. In this paper, we consider a class of divide-and-conquer graphs that naturally models the execution of the recursive control abstraction of divide-and-conquer algorithms. We prove that the Highest Level First (HLF) strategy minimizes the schedule length for this class, thus settling a conjecture of Rayward-Smith and Clark. |
|---|---|
| ISSN: | 1572-5286 1873-636X |
| DOI: | 10.1016/j.disopt.2008.09.001 |