Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images
Alzheimer’s disease, the most common form of dementia is a neurodegenerative brain order that has currently no cure for it. Hence, early diagnosis of such disease using computer-aided systems is a subject of great importance and extensive research amongst researchers. Nowadays, deep learning or part...
Gespeichert in:
| Veröffentlicht in: | Cognitive systems research Jg. 57; S. 147 - 159 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.10.2019
|
| Schlagworte: | |
| ISSN: | 1389-0417, 1389-0417 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Alzheimer’s disease, the most common form of dementia is a neurodegenerative brain order that has currently no cure for it. Hence, early diagnosis of such disease using computer-aided systems is a subject of great importance and extensive research amongst researchers. Nowadays, deep learning or particularly convolutional neural network (CNN) is getting more attention due to its state-of-the-art performances in variety of computer vision tasks such as visual object classification, detection and segmentation. Several recent studies, that have used brain MRI scans and deep learning have shown promising results for diagnosis of Alzheimer’s disease. However, most common issue with deep learning architectures such as CNN is that they require large amount of data for training. In this paper, a mathematical model PFSECTL based on transfer learning is used in which a CNN architecture, VGG-16 trained on ImageNet dataset is used as a feature extractor for the classification task. Experimentation is performed on data collected from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The accuracy of the 3-way classification using the described method is 95.73% for the validation set. |
|---|---|
| AbstractList | Alzheimer’s disease, the most common form of dementia is a neurodegenerative brain order that has currently no cure for it. Hence, early diagnosis of such disease using computer-aided systems is a subject of great importance and extensive research amongst researchers. Nowadays, deep learning or particularly convolutional neural network (CNN) is getting more attention due to its state-of-the-art performances in variety of computer vision tasks such as visual object classification, detection and segmentation. Several recent studies, that have used brain MRI scans and deep learning have shown promising results for diagnosis of Alzheimer’s disease. However, most common issue with deep learning architectures such as CNN is that they require large amount of data for training. In this paper, a mathematical model PFSECTL based on transfer learning is used in which a CNN architecture, VGG-16 trained on ImageNet dataset is used as a feature extractor for the classification task. Experimentation is performed on data collected from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The accuracy of the 3-way classification using the described method is 95.73% for the validation set. |
| Author | Hemanth, D. Jude Jain, Rachna Jain, Nikita Aggarwal, Akshay |
| Author_xml | – sequence: 1 givenname: Rachna surname: Jain fullname: Jain, Rachna organization: Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India – sequence: 2 givenname: Nikita surname: Jain fullname: Jain, Nikita organization: Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India – sequence: 3 givenname: Akshay surname: Aggarwal fullname: Aggarwal, Akshay organization: Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India – sequence: 4 givenname: D. Jude surname: Hemanth fullname: Hemanth, D. Jude email: judehemanth@karunya.edu organization: Department of ECE, Karunya University, Coimbatore, India |
| BookMark | eNqFkE1OwzAQRi0EEm3hBix8gQQ7cRKbBVJV8SdVYgNrK3XGxSWNkSctKiuuwfU4CW7LArGA1VhjvU_zvSE57HwHhJxxlnLGy_NFavwcN5hmjMuUZynjxQEZ8FyqhAleHf54H5Mh4oJFTBXZgLQT3619u-qd7-qWdrAKu9G_-vBMZzVCQ8ft2xO4JYTP9w-kjUOIa2raGtFZZ-otS23wS7qs5xF1hgbAmNcZoLNQu466-AN4Qo5s3SKcfs8Reby-epjcJtP7m7vJeJqYnJV9ohRUUhiVKaPyWQmigEIaJlQuCiEraS2zPOO2AMsqqYCJhuVlKRslmqKSPB8Rsc81wSMGsPolxAvCRnOmt8b0Qu-N6a0xzTMdjUXs4hdmXL9r18cS7X_w5R6GWGztIGg0DqKBxgUwvW68-zvgCxNOjzQ |
| CitedBy_id | crossref_primary_10_14254_2071_8330_2023_17_3_4 crossref_primary_10_3389_fnins_2021_651920 crossref_primary_10_1007_s10462_021_10016_0 crossref_primary_10_1155_2021_9624269 crossref_primary_10_1109_ACCESS_2024_3351809 crossref_primary_10_1016_j_trci_2019_10_001 crossref_primary_10_1007_s12369_020_00628_x crossref_primary_10_1007_s41060_024_00651_5 crossref_primary_10_1002_cpe_7696 crossref_primary_10_1016_j_bbe_2021_02_006 crossref_primary_10_1007_s11042_024_20140_y crossref_primary_10_3390_s21093068 crossref_primary_10_3390_jpm12050815 crossref_primary_10_1016_j_ijleo_2022_170212 crossref_primary_10_1177_13872877241283684 crossref_primary_10_1007_s11042_024_19098_8 crossref_primary_10_1016_j_bspc_2022_103500 crossref_primary_10_1109_JBHI_2024_3412812 crossref_primary_10_1109_ACCESS_2021_3090474 crossref_primary_10_1016_j_jksuci_2021_09_003 crossref_primary_10_1007_s11265_022_01757_4 crossref_primary_10_1109_ACCESS_2023_3285115 crossref_primary_10_1016_j_imed_2025_07_001 crossref_primary_10_3233_IDT_240988 crossref_primary_10_3390_s23146330 crossref_primary_10_3390_a16080377 crossref_primary_10_1007_s13198_023_02180_z crossref_primary_10_3390_bioengineering10060714 crossref_primary_10_1016_j_cmpb_2025_108703 crossref_primary_10_1007_s11042_022_13506_7 crossref_primary_10_1016_j_arr_2023_102072 crossref_primary_10_1007_s40031_021_00571_z crossref_primary_10_1007_s11831_025_10246_3 crossref_primary_10_61882_jiaeee_22_2_129 crossref_primary_10_1145_3450447 crossref_primary_10_3390_diagnostics11061071 crossref_primary_10_1007_s00521_021_06003_9 crossref_primary_10_3390_a17050207 crossref_primary_10_3390_brainsci10030181 crossref_primary_10_1111_exsy_13569 crossref_primary_10_1109_ACCESS_2020_3032164 crossref_primary_10_1088_1757_899X_1084_1_012017 crossref_primary_10_32604_cmc_2023_033860 crossref_primary_10_1002_mp_15871 crossref_primary_10_1109_ACCESS_2024_3454709 crossref_primary_10_1007_s11042_023_14815_1 crossref_primary_10_1109_JBHI_2021_3130028 crossref_primary_10_1016_j_measen_2022_100506 crossref_primary_10_1016_j_compmedimag_2020_101713 crossref_primary_10_1007_s11277_023_10346_y crossref_primary_10_1038_s41598_025_05568_y crossref_primary_10_1007_s11042_025_20597_5 crossref_primary_10_1007_s11042_022_11925_0 crossref_primary_10_1155_2020_9673724 crossref_primary_10_1007_s13042_021_01501_7 crossref_primary_10_1016_j_compeleceng_2024_109796 crossref_primary_10_1007_s40998_023_00622_9 crossref_primary_10_1007_s13735_023_00271_y crossref_primary_10_3390_electronics12020469 crossref_primary_10_1117_1_JMI_10_2_024501 crossref_primary_10_3389_fninf_2021_805669 crossref_primary_10_3389_frai_2022_780405 crossref_primary_10_1007_s10044_024_01280_1 crossref_primary_10_3389_fnins_2022_867664 crossref_primary_10_32628_IJSRST52310248 crossref_primary_10_1109_ACCESS_2021_3060171 crossref_primary_10_1016_j_compbiomed_2025_109790 crossref_primary_10_1109_ACCESS_2022_3183185 crossref_primary_10_3389_fneur_2024_1490829 crossref_primary_10_1016_j_health_2023_100223 crossref_primary_10_1007_s11265_021_01714_7 crossref_primary_10_3389_fpsyt_2024_1395563 crossref_primary_10_1016_j_bspc_2024_106117 crossref_primary_10_1109_ACCESS_2021_3062484 crossref_primary_10_1016_j_bspc_2023_104571 crossref_primary_10_1038_s41598_021_01681_w crossref_primary_10_1093_gigascience_giaa095 crossref_primary_10_1038_s41598_024_66874_5 crossref_primary_10_1038_s41598_024_52185_2 crossref_primary_10_1007_s42979_023_01688_2 crossref_primary_10_1007_s11042_021_10928_7 crossref_primary_10_1155_2021_4186666 crossref_primary_10_1186_s40708_025_00252_3 crossref_primary_10_1016_j_compmedimag_2019_101673 crossref_primary_10_3390_electronics11162601 crossref_primary_10_3390_su15075930 crossref_primary_10_1016_j_cmpb_2019_105242 crossref_primary_10_1007_s11042_024_19677_9 crossref_primary_10_1016_j_arr_2022_101614 crossref_primary_10_1007_s11042_024_20141_x crossref_primary_10_1007_s10479_022_04961_4 crossref_primary_10_1177_13872877251360394 crossref_primary_10_1016_j_cmpb_2021_106282 crossref_primary_10_1016_j_compbiomed_2022_105634 crossref_primary_10_3233_JIFS_211247 crossref_primary_10_3233_IDT_220256 crossref_primary_10_1155_2022_6474515 crossref_primary_10_1007_s11042_023_17288_4 crossref_primary_10_1007_s42979_024_02868_4 crossref_primary_10_3390_make6010024 crossref_primary_10_1109_ACCESS_2025_3542458 crossref_primary_10_1002_brb3_70788 crossref_primary_10_3390_app13031464 crossref_primary_10_1109_JTEHM_2019_2959331 crossref_primary_10_4103_1673_5374_367840 crossref_primary_10_1007_s00521_022_07501_0 crossref_primary_10_1016_j_bspc_2025_107545 crossref_primary_10_1002_ima_22813 crossref_primary_10_1007_s11042_023_16858_w crossref_primary_10_1109_JBHI_2021_3083274 crossref_primary_10_1016_j_arr_2023_102013 crossref_primary_10_3390_bioengineering11111076 crossref_primary_10_1007_s11042_022_12362_9 crossref_primary_10_1007_s13735_021_00210_9 crossref_primary_10_1007_s00521_024_10399_5 crossref_primary_10_1007_s11042_022_13509_4 crossref_primary_10_1007_s12539_021_00470_3 crossref_primary_10_1259_bjr_20211253 crossref_primary_10_1016_j_compbiomed_2019_103345 crossref_primary_10_1016_j_bspc_2021_103293 crossref_primary_10_1016_j_cmpbup_2022_100058 crossref_primary_10_2147_NDT_S496307 crossref_primary_10_1007_s42979_023_02431_7 crossref_primary_10_1016_j_matpr_2021_07_255 crossref_primary_10_1016_j_eswa_2022_118776 crossref_primary_10_1007_s00521_021_05799_w crossref_primary_10_32604_cmc_2023_046872 crossref_primary_10_1007_s10489_023_04702_5 crossref_primary_10_1109_TCDS_2023_3254209 crossref_primary_10_1186_s12859_023_05394_x crossref_primary_10_1007_s12021_023_09625_7 crossref_primary_10_3389_fnins_2022_1050777 crossref_primary_10_1016_j_heliyon_2024_e39037 crossref_primary_10_1007_s12559_021_09946_2 crossref_primary_10_1016_j_bspc_2024_106398 crossref_primary_10_1007_s00521_025_11249_8 crossref_primary_10_1016_j_compmedimag_2022_102171 crossref_primary_10_1007_s41870_022_01010_y crossref_primary_10_3389_fnhum_2023_1150120 crossref_primary_10_1007_s42044_025_00243_x crossref_primary_10_1007_s11042_023_16605_1 crossref_primary_10_1038_s43856_023_00313_w crossref_primary_10_1080_0954898X_2024_2406946 crossref_primary_10_1109_JBHI_2024_3495835 crossref_primary_10_1007_s11227_023_05655_9 crossref_primary_10_1007_s11277_022_09989_0 crossref_primary_10_1007_s40846_025_00973_0 crossref_primary_10_3390_app13137833 crossref_primary_10_3390_diagnostics13010167 crossref_primary_10_1016_j_procs_2022_12_412 crossref_primary_10_1145_3344998 crossref_primary_10_26599_TST_2024_9010080 crossref_primary_10_1155_2022_8739960 crossref_primary_10_1016_j_bbe_2021_11_004 crossref_primary_10_3389_fpubh_2022_1076472 crossref_primary_10_1002_alz_13412 crossref_primary_10_3390_app13148298 crossref_primary_10_4108_eetpht_10_6435 crossref_primary_10_1049_ipr2_12910 crossref_primary_10_1016_j_bspc_2024_107067 crossref_primary_10_3389_fcomp_2024_1404494 crossref_primary_10_1016_j_compbiomed_2021_104537 crossref_primary_10_1080_23311916_2024_2314872 crossref_primary_10_1016_j_compbiomed_2024_108869 crossref_primary_10_1016_j_gep_2022_119259 crossref_primary_10_1038_s41598_024_76445_3 crossref_primary_10_1007_s40031_025_01259_4 crossref_primary_10_3390_s22030740 crossref_primary_10_1016_j_bspc_2020_101926 crossref_primary_10_1049_ccs2_12072 crossref_primary_10_3390_jpm11040280 crossref_primary_10_3390_diagnostics13152489 crossref_primary_10_1007_s11042_022_12228_0 crossref_primary_10_1007_s11517_020_02256_z crossref_primary_10_1016_j_bspc_2022_104400 crossref_primary_10_38124_ijisrt_25may303 crossref_primary_10_1007_s00521_023_09301_6 crossref_primary_10_1016_j_ecoinf_2023_102295 crossref_primary_10_1109_ACCESS_2022_3180073 crossref_primary_10_3390_app12136507 crossref_primary_10_1016_j_bspc_2025_108330 crossref_primary_10_3233_KES_220007 crossref_primary_10_1007_s12021_023_09646_2 crossref_primary_10_1002_ima_22553 crossref_primary_10_1007_s11042_022_13935_4 crossref_primary_10_1016_j_compbiomed_2021_104879 crossref_primary_10_1016_j_simpa_2025_100771 crossref_primary_10_1111_coin_12594 crossref_primary_10_1016_j_medntd_2024_100343 crossref_primary_10_1016_j_neuroscience_2025_08_062 crossref_primary_10_3389_fncom_2023_1038636 crossref_primary_10_3390_app12062900 crossref_primary_10_1002_ima_23079 crossref_primary_10_1109_TAI_2021_3064901 crossref_primary_10_7717_peerj_cs_2897 crossref_primary_10_1016_j_brainres_2025_149549 crossref_primary_10_1016_j_artmed_2022_102332 |
| Cites_doi | 10.1007/s11263-015-0816-y 10.1109/TMI.2016.2528129 10.1109/5.726791 10.1016/j.neuroimage.2011.09.085 10.1016/j.neucom.2011.12.066 10.1016/j.neuroimage.2015.01.048 10.1109/42.538937 10.1109/BIBM.2017.8217822 10.1016/j.cogsys.2018.06.006 10.1002/ima.22176 10.1109/TENCON.2016.7848755 10.1007/s12021-016-9318-5 10.1093/brain/awm319 10.1109/TMI.2016.2535302 10.4018/978-1-4666-1755-1.ch010 10.1016/j.neurobiolaging.2006.09.013 10.1016/j.neuroimage.2014.10.002 10.1109/ISBI.2017.7950647 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier B.V. |
| Copyright_xml | – notice: 2018 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.cogsys.2018.12.015 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Psychology |
| EISSN | 1389-0417 |
| EndPage | 159 |
| ExternalDocumentID | 10_1016_j_cogsys_2018_12_015 S1389041718309562 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29F 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AACTN AADFP AADPK AAEDT AAEDW AAGJA AAGUQ AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFRF ABIVO ABJNI ABMAC ABOYX ABXDB ABYKQ ACDAQ ACGFO ACGFS ACHQT ACNNM ACRLP ACXNI ACZNC ADEZE ADJOM AEBSH AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AFYLN AGHFR AGUBO AGWIK AGYEJ AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W KOM M41 MO0 MOBAO N9A O-L O9- OAUVE OKEIE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSN SST SSV SSY SSZ T5K UHS UNMZH ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT AEIPS AFJKZ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-99e784c929c93b6e45e58c0493454878ff0f121f5ef0789e04d03668d94d57813 |
| ISICitedReferencesCount | 221 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470116200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1389-0417 |
| IngestDate | Tue Nov 18 22:11:16 EST 2025 Sat Nov 29 06:58:11 EST 2025 Fri Feb 23 02:38:05 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Convolutional Neural Network Accuracy Alzheimer Brain images |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-99e784c929c93b6e45e58c0493454878ff0f121f5ef0789e04d03668d94d57813 |
| PageCount | 13 |
| ParticipantIDs | crossref_primary_10_1016_j_cogsys_2018_12_015 crossref_citationtrail_10_1016_j_cogsys_2018_12_015 elsevier_sciencedirect_doi_10_1016_j_cogsys_2018_12_015 |
| PublicationCentury | 2000 |
| PublicationDate | October 2019 2019-10-00 |
| PublicationDateYYYYMMDD | 2019-10-01 |
| PublicationDate_xml | – month: 10 year: 2019 text: October 2019 |
| PublicationDecade | 2010 |
| PublicationTitle | Cognitive systems research |
| PublicationYear | 2019 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cheng, Liu, Shen, Li, Zhang (b0045) 2017; 15 Rmsprop: Divide the gradient by a running average of its recent magnitude – Optimization: How to make the learning go faster | Coursera. [Online]. Available Hemanth, Vijila, Selvakumar, Anitha (b0120) 2014; 130 Payan, A. & Montana, G. (2015). Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. pp. 1–9. Hon, M. & Khan, N. (2017). Towards Alzheimer’s disease classification through transfer learning. Szegedy, Ioffe, Vanhoucke, Alemi (b0210) 2017 Cho, Seong, Jeong, Shin (b0050) 2012; 59 Arunkumar, Mohammed, Ghani, Ibrahim, Abdulhay, Ramirez-Gonzalez, de Albuquerque (b0020) 2018 Chen, Dou, Yu, Qin, Heng (b0040) 2017 Hemanth, D. J., Selvathi, D., & Anitha, J., 2012. Application of adaptive resonance theory neural network for MR brain tumor image classification. Glozman, T. & Liba, O. (2016). Hidden cues: Deep learning for Alzheimer’s disease classification CS331B project final report. No. 1. Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In J. Fürnkranz and T. Joachims (Eds.) Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML'10) (pp. 807–814). USA: Omnipress. Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. ADNI|Alzheimer’s Disease Neuroimaging Initiative. [Online]. Available Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (b0215) 2016; 35 Ahmed, O. B, Benois-Pineau, J., Allard, M., Ben-Amar, C., Catheline, G. (2014). Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimedia Tools and Applications, Springer Verlag, pp. 35. <hal-00993379>. Rebouças, Marques, Braga, Oliveira, de Albuquerque, Rebouças Filho (b0180) 2018 Billones, C. D., Jan, O., Demetria, L. D., Hostallero, D. E. D., Naval, P.C. (2016). DemNet: a convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. p. 3728–3731. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … & Devin, M. TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2016. Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, pp. 1–14. Dou, Chen, Yu, Zhao, Qin, Wang (b0065) 2016; 35 Gupta, A., Ayhan, M., & Maida, A. (2013). Natural image bases to represent neuroimaging data. In Proceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 987–994, vol. 28, no. 3). JMLR Workshop and Conference Proceedings, May 2013. Lecun, Bottou, Bengio, Haffner (b0155) 1998; 86 Hemanth, Anitha, Balas (b0105) 2016; 26 Korolev, S., Safiullin, A., Belyaev, M., & Dodonova, Y. (2017). Residual and plain convolutional neural networks for 3D brain MRI classification. In Proceedings of international symposium on biomedical imaging (pp. 835–838). Yosinski, Clune, Bengio, Lipson (b0220) 2014 Goodfellow, Bengio, Courville (b0085) 2016 Jongkreangkrai, Vichianin, Tocharoenchai, Arimura (b0135) 2016; 694 Chollet, F. (2015). Keras. [Online]. Available Arunkumar, Mohammed, Mostafa, Ibrahim, Rodrigues, de Albuquerque (b0025) 2018 Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (b0140) 2008; 131 He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep residual learning for image recognition, arXiv preprint arXiv: 1512.03385. Hemanth, Vijila, Anitha (b0115) 2011; 16 Zidan, A., Ghali, N. I., Ella Hassanien, A., Hefny, H., & Hemanth, J. (2012). Level set-based CT liver computer aided diagnosis system. . CS231n Convolutional Neural Networks for Visual Recognition. [Online]. Available Krizhevsky, Sutskever, Hinton (b0150) 2012 Bron, Smits, Van Der Flier, Vrenken, Barkhof, Scheltens, Pinto (b0035) 2015 FreeSurfer. [Online]. Available Gupta, Julka, Jain, Aggarwal, Khanna, Arunkumar, de Albuquerque (b0090) 2018; 52 Sahiner, Chan, Petrick, Wei, Helvie, Adler (b0195) 1996; 15 Lerch, Pruessner, Zijdenbos, Collins, Teipel, Hampel, Evans (b0160) 2008; 29 Fargo (b0070) 2014; 10 Hosseini-Asl, E., Gimel’farb, G., & El-Baz, A. (2016) Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. No. 502. Moradi, Pepe, Gaser, Huttunen, Tohka (b0165) 2015; 104 Russakovsky (b0190) 2015; 115 10.1016/j.cogsys.2018.12.015_b0095 10.1016/j.cogsys.2018.12.015_b0170 Russakovsky (10.1016/j.cogsys.2018.12.015_b0190) 2015; 115 10.1016/j.cogsys.2018.12.015_b0055 10.1016/j.cogsys.2018.12.015_b0110 10.1016/j.cogsys.2018.12.015_b0010 Bron (10.1016/j.cogsys.2018.12.015_b0035) 2015 Fargo (10.1016/j.cogsys.2018.12.015_b0070) 2014; 10 Gupta (10.1016/j.cogsys.2018.12.015_b0090) 2018; 52 10.1016/j.cogsys.2018.12.015_b0175 10.1016/j.cogsys.2018.12.015_b0075 10.1016/j.cogsys.2018.12.015_b0130 10.1016/j.cogsys.2018.12.015_b0030 10.1016/j.cogsys.2018.12.015_b0015 Cho (10.1016/j.cogsys.2018.12.015_b0050) 2012; 59 Moradi (10.1016/j.cogsys.2018.12.015_b0165) 2015; 104 Lerch (10.1016/j.cogsys.2018.12.015_b0160) 2008; 29 Szegedy (10.1016/j.cogsys.2018.12.015_b0210) 2017 Dou (10.1016/j.cogsys.2018.12.015_b0065) 2016; 35 Tajbakhsh (10.1016/j.cogsys.2018.12.015_b0215) 2016; 35 Hemanth (10.1016/j.cogsys.2018.12.015_b0105) 2016; 26 10.1016/j.cogsys.2018.12.015_b0060 Goodfellow (10.1016/j.cogsys.2018.12.015_b0085) 2016 Jongkreangkrai (10.1016/j.cogsys.2018.12.015_b0135) 2016; 694 Hemanth (10.1016/j.cogsys.2018.12.015_b0115) 2011; 16 Chen (10.1016/j.cogsys.2018.12.015_b0040) 2017 10.1016/j.cogsys.2018.12.015_b0185 Hemanth (10.1016/j.cogsys.2018.12.015_b0120) 2014; 130 10.1016/j.cogsys.2018.12.015_b0125 Yosinski (10.1016/j.cogsys.2018.12.015_b0220) 2014 10.1016/j.cogsys.2018.12.015_b0145 10.1016/j.cogsys.2018.12.015_b0200 10.1016/j.cogsys.2018.12.015_b0100 Sahiner (10.1016/j.cogsys.2018.12.015_b0195) 1996; 15 10.1016/j.cogsys.2018.12.015_b0205 10.1016/j.cogsys.2018.12.015_b0005 10.1016/j.cogsys.2018.12.015_b0225 Arunkumar (10.1016/j.cogsys.2018.12.015_b0020) 2018 Lecun (10.1016/j.cogsys.2018.12.015_b0155) 1998; 86 Arunkumar (10.1016/j.cogsys.2018.12.015_b0025) 2018 Cheng (10.1016/j.cogsys.2018.12.015_b0045) 2017; 15 10.1016/j.cogsys.2018.12.015_b0080 Klöppel (10.1016/j.cogsys.2018.12.015_b0140) 2008; 131 Rebouças (10.1016/j.cogsys.2018.12.015_b0180) 2018 Krizhevsky (10.1016/j.cogsys.2018.12.015_b0150) 2012 |
| References_xml | – reference: Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting. – volume: 694 year: 2016 ident: b0135 article-title: Computer-aided classification of Alzheimer’s disease based on support vector machine with combination of cerebral image features in MRI publication-title: Journal of Physics: Conference Series – volume: 131 start-page: 681 year: 2008 end-page: 689 ident: b0140 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain – volume: 130 start-page: 98 year: 2014 end-page: 107 ident: b0120 article-title: Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification publication-title: Neurocomputing – reference: Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In J. Fürnkranz and T. Joachims (Eds.) Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML'10) (pp. 807–814). USA: Omnipress. – reference: Chollet, F. (2015). Keras. [Online]. Available: < – volume: 26 start-page: 188 year: 2016 end-page: 195 ident: b0105 article-title: Fast and accurate fuzzy C-means algorithm for MR brain image segmentation publication-title: International Journal of Imaging Systems and Technology – volume: 104 start-page: 398 year: 2015 end-page: 412 ident: b0165 article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects publication-title: Neuroimage – volume: 15 start-page: 598 year: 1996 end-page: 610 ident: b0195 article-title: Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images publication-title: IEEE Transactions on Medical Imaging – reference: FreeSurfer. [Online]. Available: < – volume: 16 start-page: 95 year: 2011 end-page: 102 ident: b0115 article-title: Application of Neuro-fuzzy model for MR brain tumor image classification publication-title: International Journal of Biomedical Soft Computing and Human Sciences: the official journal of the Biomedical Fuzzy Systems Association – volume: 35 start-page: 1182 year: 2016 end-page: 1195 ident: b0065 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Transactions on Medical Imaging – reference: Zidan, A., Ghali, N. I., Ella Hassanien, A., Hefny, H., & Hemanth, J. (2012). Level set-based CT liver computer aided diagnosis system. – reference: He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep residual learning for image recognition, arXiv preprint arXiv: 1512.03385. – year: 2018 ident: b0025 article-title: Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks publication-title: Concurrency and Computation: Practice and Experience – reference: Ahmed, O. B, Benois-Pineau, J., Allard, M., Ben-Amar, C., Catheline, G. (2014). Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimedia Tools and Applications, Springer Verlag, pp. 35. <hal-00993379>. – start-page: 4278 year: 2017 end-page: 4284 ident: b0210 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: AAAI – start-page: 27 year: 2014 ident: b0220 article-title: How transferable are features in deep neural networks? publication-title: Advances in Neural Information Processing Systems – reference: Korolev, S., Safiullin, A., Belyaev, M., & Dodonova, Y. (2017). Residual and plain convolutional neural networks for 3D brain MRI classification. In Proceedings of international symposium on biomedical imaging (pp. 835–838). – reference: Rmsprop: Divide the gradient by a running average of its recent magnitude – Optimization: How to make the learning go faster | Coursera. [Online]. Available: < – volume: 29 start-page: 23 year: 2008 end-page: 30 ident: b0160 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls publication-title: Neurobiology of Aging – reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … & Devin, M. TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2016. – reference: CS231n Convolutional Neural Networks for Visual Recognition. [Online]. Available: < – reference: Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, pp. 1–14. – reference: Billones, C. D., Jan, O., Demetria, L. D., Hostallero, D. E. D., Naval, P.C. (2016). DemNet: a convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. p. 3728–3731. – volume: 115 start-page: 211 year: 2015 end-page: 252 ident: b0190 article-title: ImageNet large scale visual recognition challenge publication-title: International Journal of Computer Vision – reference: ADNI|Alzheimer’s Disease Neuroimaging Initiative. [Online]. Available: < – reference: Hosseini-Asl, E., Gimel’farb, G., & El-Baz, A. (2016) Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. No. 502. – reference: Glozman, T. & Liba, O. (2016). Hidden cues: Deep learning for Alzheimer’s disease classification CS331B project final report. No. 1. – volume: 86 start-page: 2278 year: 1998 end-page: 2324 ident: b0155 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of IEEE – volume: 52 start-page: 36 year: 2018 end-page: 48 ident: b0090 article-title: Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease publication-title: Cognitive Systems Research – reference: >. – reference: Gupta, A., Ayhan, M., & Maida, A. (2013). Natural image bases to represent neuroimaging data. In Proceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 987–994, vol. 28, no. 3). JMLR Workshop and Conference Proceedings, May 2013. – reference: Hemanth, D. J., Selvathi, D., & Anitha, J., 2012. Application of adaptive resonance theory neural network for MR brain tumor image classification. – year: 2016 ident: b0085 article-title: Deep Learning – year: 2017 ident: b0040 article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images publication-title: NeuroImage – volume: 10 start-page: e47 year: 2014 end-page: e92 ident: b0070 article-title: Alzheimer’s Association Report: 2014 Alzheimers disease facts and figures publication-title: Alzheimer’s Dement – year: 2018 ident: b0180 article-title: New level set approach based on Parzen estimation for stroke segmentation in skull CT images publication-title: Soft Computing – reference: Hon, M. & Khan, N. (2017). Towards Alzheimer’s disease classification through transfer learning. – start-page: 1097 year: 2012 end-page: 1105 ident: b0150 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – reference: Payan, A. & Montana, G. (2015). Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. pp. 1–9. – year: 2018 ident: b0020 article-title: K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor publication-title: Soft Computing – volume: 15 start-page: 115 year: 2017 ident: b0045 article-title: Multi-domain transfer learning for early diagnosis of Alzheimer’s disease publication-title: Neuroinformatics – year: 2015 ident: b0035 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge publication-title: NeuroImage – volume: 35 start-page: 1299 year: 2016 end-page: 1312 ident: b0215 article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning? publication-title: IEEE Transactions on Medical Imaging – volume: 59 start-page: 2217 year: 2012 end-page: 2230 ident: b0050 article-title: Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data publication-title: NeuroImage – volume: 115 start-page: 211 issue: 3 year: 2015 ident: 10.1016/j.cogsys.2018.12.015_b0190 article-title: ImageNet large scale visual recognition challenge publication-title: International Journal of Computer Vision doi: 10.1007/s11263-015-0816-y – year: 2016 ident: 10.1016/j.cogsys.2018.12.015_b0085 – ident: 10.1016/j.cogsys.2018.12.015_b0075 – ident: 10.1016/j.cogsys.2018.12.015_b0010 – volume: 35 start-page: 1182 issue: 5 year: 2016 ident: 10.1016/j.cogsys.2018.12.015_b0065 article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2528129 – volume: 86 start-page: 2278 issue: 11 year: 1998 ident: 10.1016/j.cogsys.2018.12.015_b0155 article-title: Gradient-based learning applied to document recognition publication-title: Proceedings of IEEE doi: 10.1109/5.726791 – start-page: 1097 year: 2012 ident: 10.1016/j.cogsys.2018.12.015_b0150 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in Neural Information Processing Systems – volume: 16 start-page: 95 issue: 1 year: 2011 ident: 10.1016/j.cogsys.2018.12.015_b0115 article-title: Application of Neuro-fuzzy model for MR brain tumor image classification publication-title: International Journal of Biomedical Soft Computing and Human Sciences: the official journal of the Biomedical Fuzzy Systems Association – ident: 10.1016/j.cogsys.2018.12.015_b0130 – volume: 59 start-page: 2217 issue: 3 year: 2012 ident: 10.1016/j.cogsys.2018.12.015_b0050 article-title: Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data publication-title: NeuroImage doi: 10.1016/j.neuroimage.2011.09.085 – year: 2017 ident: 10.1016/j.cogsys.2018.12.015_b0040 article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images publication-title: NeuroImage – volume: 130 start-page: 98 year: 2014 ident: 10.1016/j.cogsys.2018.12.015_b0120 article-title: Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.12.066 – year: 2015 ident: 10.1016/j.cogsys.2018.12.015_b0035 article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge publication-title: NeuroImage doi: 10.1016/j.neuroimage.2015.01.048 – volume: 15 start-page: 598 issue: 5 year: 1996 ident: 10.1016/j.cogsys.2018.12.015_b0195 article-title: Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/42.538937 – ident: 10.1016/j.cogsys.2018.12.015_b0205 – ident: 10.1016/j.cogsys.2018.12.015_b0125 doi: 10.1109/BIBM.2017.8217822 – volume: 52 start-page: 36 year: 2018 ident: 10.1016/j.cogsys.2018.12.015_b0090 article-title: Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease publication-title: Cognitive Systems Research doi: 10.1016/j.cogsys.2018.06.006 – volume: 26 start-page: 188 issue: 3 year: 2016 ident: 10.1016/j.cogsys.2018.12.015_b0105 article-title: Fast and accurate fuzzy C-means algorithm for MR brain image segmentation publication-title: International Journal of Imaging Systems and Technology doi: 10.1002/ima.22176 – ident: 10.1016/j.cogsys.2018.12.015_b0170 – ident: 10.1016/j.cogsys.2018.12.015_b0200 – ident: 10.1016/j.cogsys.2018.12.015_b0055 – ident: 10.1016/j.cogsys.2018.12.015_b0080 – ident: 10.1016/j.cogsys.2018.12.015_b0030 doi: 10.1109/TENCON.2016.7848755 – ident: 10.1016/j.cogsys.2018.12.015_b0225 – volume: 10 start-page: e47 issue: 2 year: 2014 ident: 10.1016/j.cogsys.2018.12.015_b0070 article-title: Alzheimer’s Association Report: 2014 Alzheimers disease facts and figures publication-title: Alzheimer’s Dement – year: 2018 ident: 10.1016/j.cogsys.2018.12.015_b0025 article-title: Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks publication-title: Concurrency and Computation: Practice and Experience – start-page: 4278 year: 2017 ident: 10.1016/j.cogsys.2018.12.015_b0210 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: AAAI – year: 2018 ident: 10.1016/j.cogsys.2018.12.015_b0020 article-title: K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor publication-title: Soft Computing – start-page: 27 year: 2014 ident: 10.1016/j.cogsys.2018.12.015_b0220 article-title: How transferable are features in deep neural networks? publication-title: Advances in Neural Information Processing Systems – volume: 15 start-page: 115 issue: 2 year: 2017 ident: 10.1016/j.cogsys.2018.12.015_b0045 article-title: Multi-domain transfer learning for early diagnosis of Alzheimer’s disease publication-title: Neuroinformatics doi: 10.1007/s12021-016-9318-5 – ident: 10.1016/j.cogsys.2018.12.015_b0185 – ident: 10.1016/j.cogsys.2018.12.015_b0015 – volume: 131 start-page: 681 issue: 3 year: 2008 ident: 10.1016/j.cogsys.2018.12.015_b0140 article-title: Automatic classification of MR scans in Alzheimer’s disease publication-title: Brain doi: 10.1093/brain/awm319 – volume: 35 start-page: 1299 issue: 5 year: 2016 ident: 10.1016/j.cogsys.2018.12.015_b0215 article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning? publication-title: IEEE Transactions on Medical Imaging doi: 10.1109/TMI.2016.2535302 – ident: 10.1016/j.cogsys.2018.12.015_b0175 – ident: 10.1016/j.cogsys.2018.12.015_b0110 doi: 10.4018/978-1-4666-1755-1.ch010 – ident: 10.1016/j.cogsys.2018.12.015_b0100 – ident: 10.1016/j.cogsys.2018.12.015_b0095 – year: 2018 ident: 10.1016/j.cogsys.2018.12.015_b0180 article-title: New level set approach based on Parzen estimation for stroke segmentation in skull CT images publication-title: Soft Computing – ident: 10.1016/j.cogsys.2018.12.015_b0060 – volume: 29 start-page: 23 issue: 1 year: 2008 ident: 10.1016/j.cogsys.2018.12.015_b0160 article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2006.09.013 – volume: 694 issue: 1 year: 2016 ident: 10.1016/j.cogsys.2018.12.015_b0135 article-title: Computer-aided classification of Alzheimer’s disease based on support vector machine with combination of cerebral image features in MRI publication-title: Journal of Physics: Conference Series – volume: 104 start-page: 398 year: 2015 ident: 10.1016/j.cogsys.2018.12.015_b0165 article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects publication-title: Neuroimage doi: 10.1016/j.neuroimage.2014.10.002 – ident: 10.1016/j.cogsys.2018.12.015_b0005 – ident: 10.1016/j.cogsys.2018.12.015_b0145 doi: 10.1109/ISBI.2017.7950647 |
| SSID | ssj0016952 |
| Score | 2.591208 |
| Snippet | Alzheimer’s disease, the most common form of dementia is a neurodegenerative brain order that has currently no cure for it. Hence, early diagnosis of such... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 147 |
| SubjectTerms | Accuracy Alzheimer Brain images Convolutional Neural Network |
| Title | Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images |
| URI | https://dx.doi.org/10.1016/j.cogsys.2018.12.015 |
| Volume | 57 |
| WOSCitedRecordID | wos000470116200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1389-0417 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0016952 issn: 1389-0417 databaseCode: AIEXJ dateStart: 19991201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELailkMvqOVHlFLkA7doqzj7Zx-jUlQ4RAiKlNvK67WTbdNtlYRQOPEaPAKvxZMwY3vdtKn4k7hsImc3jma-eMbjb2YIeRHLOJOG45mhrKJE9HoRT7SJ-tLkiukyTVVpm03kwyEfjcTbTud7mwuznOZNw6-uxOV_VTWMgbIxdfYv1B2-FAbgPSgdrqB2uP6R4g8vmqWfAMSP9Srti2V7d9FoVd3B9MtE19g3xVMdxLw9qekqdKeRP-RZiJh-ci7HjXbFntFzx7WgxNYS3Ro-8STEttpBoCO5GtF4KrESMLNZ_a5swTupJo28PTqsz-pFGB2Mx3L2SToiwdl8cs34OdbngAkbE3p5gLklejV-wURgwvmg2lpijV2HY2RyJS6t80DfMeYXb1fd2q--LMlXDDlzpcbXbIQLV5yCiscgCWT3cRsRdmmlt6pvv8dZcVJY-rBmI1j7zX6eCrABm4PXR6M34cgqE7a9U_iVbZ6mJROuz3W3H7Ti25xsk_t-U0IHDkw7pKObB2Qr2MbPD8n0BqqoQxX1qKIWVTSg6sfXb3Pq8URv4okinmiLJxrwRC2eqMPTI_Lh1dHJ4XHkG3VECnaci0gInfNEgaetRFxmOkl1yhXsPeMEN8TcmJ5hfWZSbbC7ge4lFThOGa9EUoHFYPFjstFcNPoJoSLlUpasNLBThruMlCY2QmYSts5Ih90lcSu2Qvkq9thMZVq0dMXTwgm7QGEXrF-AsHdJFJ66dFVcfnN_3mqk8J6o8zALANEvn3z6z0_uka3rv8czsrGYfdT75J5aLur57LlH2085t7RK |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+based+Alzheimer%E2%80%99s+disease+classification+from+magnetic+resonance+brain+images&rft.jtitle=Cognitive+systems+research&rft.au=Jain%2C+Rachna&rft.au=Jain%2C+Nikita&rft.au=Aggarwal%2C+Akshay&rft.au=Hemanth%2C+D.+Jude&rft.date=2019-10-01&rft.pub=Elsevier+B.V&rft.issn=1389-0417&rft.eissn=1389-0417&rft.volume=57&rft.spage=147&rft.epage=159&rft_id=info:doi/10.1016%2Fj.cogsys.2018.12.015&rft.externalDocID=S1389041718309562 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-0417&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-0417&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-0417&client=summon |