Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images

Alzheimer’s disease, the most common form of dementia is a neurodegenerative brain order that has currently no cure for it. Hence, early diagnosis of such disease using computer-aided systems is a subject of great importance and extensive research amongst researchers. Nowadays, deep learning or part...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cognitive systems research Jg. 57; S. 147 - 159
Hauptverfasser: Jain, Rachna, Jain, Nikita, Aggarwal, Akshay, Hemanth, D. Jude
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.10.2019
Schlagworte:
ISSN:1389-0417, 1389-0417
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Alzheimer’s disease, the most common form of dementia is a neurodegenerative brain order that has currently no cure for it. Hence, early diagnosis of such disease using computer-aided systems is a subject of great importance and extensive research amongst researchers. Nowadays, deep learning or particularly convolutional neural network (CNN) is getting more attention due to its state-of-the-art performances in variety of computer vision tasks such as visual object classification, detection and segmentation. Several recent studies, that have used brain MRI scans and deep learning have shown promising results for diagnosis of Alzheimer’s disease. However, most common issue with deep learning architectures such as CNN is that they require large amount of data for training. In this paper, a mathematical model PFSECTL based on transfer learning is used in which a CNN architecture, VGG-16 trained on ImageNet dataset is used as a feature extractor for the classification task. Experimentation is performed on data collected from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The accuracy of the 3-way classification using the described method is 95.73% for the validation set.
AbstractList Alzheimer’s disease, the most common form of dementia is a neurodegenerative brain order that has currently no cure for it. Hence, early diagnosis of such disease using computer-aided systems is a subject of great importance and extensive research amongst researchers. Nowadays, deep learning or particularly convolutional neural network (CNN) is getting more attention due to its state-of-the-art performances in variety of computer vision tasks such as visual object classification, detection and segmentation. Several recent studies, that have used brain MRI scans and deep learning have shown promising results for diagnosis of Alzheimer’s disease. However, most common issue with deep learning architectures such as CNN is that they require large amount of data for training. In this paper, a mathematical model PFSECTL based on transfer learning is used in which a CNN architecture, VGG-16 trained on ImageNet dataset is used as a feature extractor for the classification task. Experimentation is performed on data collected from Alzheimer’s Disease Neuroimaging Initiative (ADNI) database. The accuracy of the 3-way classification using the described method is 95.73% for the validation set.
Author Hemanth, D. Jude
Jain, Rachna
Jain, Nikita
Aggarwal, Akshay
Author_xml – sequence: 1
  givenname: Rachna
  surname: Jain
  fullname: Jain, Rachna
  organization: Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India
– sequence: 2
  givenname: Nikita
  surname: Jain
  fullname: Jain, Nikita
  organization: Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India
– sequence: 3
  givenname: Akshay
  surname: Aggarwal
  fullname: Aggarwal, Akshay
  organization: Computer Science and Engineering, Bharati Vidyapeeth’s College of Engineering, New Delhi, India
– sequence: 4
  givenname: D. Jude
  surname: Hemanth
  fullname: Hemanth, D. Jude
  email: judehemanth@karunya.edu
  organization: Department of ECE, Karunya University, Coimbatore, India
BookMark eNqFkE1OwzAQRi0EEm3hBix8gQQ7cRKbBVJV8SdVYgNrK3XGxSWNkSctKiuuwfU4CW7LArGA1VhjvU_zvSE57HwHhJxxlnLGy_NFavwcN5hmjMuUZynjxQEZ8FyqhAleHf54H5Mh4oJFTBXZgLQT3619u-qd7-qWdrAKu9G_-vBMZzVCQ8ft2xO4JYTP9w-kjUOIa2raGtFZZ-otS23wS7qs5xF1hgbAmNcZoLNQu466-AN4Qo5s3SKcfs8Reby-epjcJtP7m7vJeJqYnJV9ohRUUhiVKaPyWQmigEIaJlQuCiEraS2zPOO2AMsqqYCJhuVlKRslmqKSPB8Rsc81wSMGsPolxAvCRnOmt8b0Qu-N6a0xzTMdjUXs4hdmXL9r18cS7X_w5R6GWGztIGg0DqKBxgUwvW68-zvgCxNOjzQ
CitedBy_id crossref_primary_10_14254_2071_8330_2023_17_3_4
crossref_primary_10_3389_fnins_2021_651920
crossref_primary_10_1007_s10462_021_10016_0
crossref_primary_10_1155_2021_9624269
crossref_primary_10_1109_ACCESS_2024_3351809
crossref_primary_10_1016_j_trci_2019_10_001
crossref_primary_10_1007_s12369_020_00628_x
crossref_primary_10_1007_s41060_024_00651_5
crossref_primary_10_1002_cpe_7696
crossref_primary_10_1016_j_bbe_2021_02_006
crossref_primary_10_1007_s11042_024_20140_y
crossref_primary_10_3390_s21093068
crossref_primary_10_3390_jpm12050815
crossref_primary_10_1016_j_ijleo_2022_170212
crossref_primary_10_1177_13872877241283684
crossref_primary_10_1007_s11042_024_19098_8
crossref_primary_10_1016_j_bspc_2022_103500
crossref_primary_10_1109_JBHI_2024_3412812
crossref_primary_10_1109_ACCESS_2021_3090474
crossref_primary_10_1016_j_jksuci_2021_09_003
crossref_primary_10_1007_s11265_022_01757_4
crossref_primary_10_1109_ACCESS_2023_3285115
crossref_primary_10_1016_j_imed_2025_07_001
crossref_primary_10_3233_IDT_240988
crossref_primary_10_3390_s23146330
crossref_primary_10_3390_a16080377
crossref_primary_10_1007_s13198_023_02180_z
crossref_primary_10_3390_bioengineering10060714
crossref_primary_10_1016_j_cmpb_2025_108703
crossref_primary_10_1007_s11042_022_13506_7
crossref_primary_10_1016_j_arr_2023_102072
crossref_primary_10_1007_s40031_021_00571_z
crossref_primary_10_1007_s11831_025_10246_3
crossref_primary_10_61882_jiaeee_22_2_129
crossref_primary_10_1145_3450447
crossref_primary_10_3390_diagnostics11061071
crossref_primary_10_1007_s00521_021_06003_9
crossref_primary_10_3390_a17050207
crossref_primary_10_3390_brainsci10030181
crossref_primary_10_1111_exsy_13569
crossref_primary_10_1109_ACCESS_2020_3032164
crossref_primary_10_1088_1757_899X_1084_1_012017
crossref_primary_10_32604_cmc_2023_033860
crossref_primary_10_1002_mp_15871
crossref_primary_10_1109_ACCESS_2024_3454709
crossref_primary_10_1007_s11042_023_14815_1
crossref_primary_10_1109_JBHI_2021_3130028
crossref_primary_10_1016_j_measen_2022_100506
crossref_primary_10_1016_j_compmedimag_2020_101713
crossref_primary_10_1007_s11277_023_10346_y
crossref_primary_10_1038_s41598_025_05568_y
crossref_primary_10_1007_s11042_025_20597_5
crossref_primary_10_1007_s11042_022_11925_0
crossref_primary_10_1155_2020_9673724
crossref_primary_10_1007_s13042_021_01501_7
crossref_primary_10_1016_j_compeleceng_2024_109796
crossref_primary_10_1007_s40998_023_00622_9
crossref_primary_10_1007_s13735_023_00271_y
crossref_primary_10_3390_electronics12020469
crossref_primary_10_1117_1_JMI_10_2_024501
crossref_primary_10_3389_fninf_2021_805669
crossref_primary_10_3389_frai_2022_780405
crossref_primary_10_1007_s10044_024_01280_1
crossref_primary_10_3389_fnins_2022_867664
crossref_primary_10_32628_IJSRST52310248
crossref_primary_10_1109_ACCESS_2021_3060171
crossref_primary_10_1016_j_compbiomed_2025_109790
crossref_primary_10_1109_ACCESS_2022_3183185
crossref_primary_10_3389_fneur_2024_1490829
crossref_primary_10_1016_j_health_2023_100223
crossref_primary_10_1007_s11265_021_01714_7
crossref_primary_10_3389_fpsyt_2024_1395563
crossref_primary_10_1016_j_bspc_2024_106117
crossref_primary_10_1109_ACCESS_2021_3062484
crossref_primary_10_1016_j_bspc_2023_104571
crossref_primary_10_1038_s41598_021_01681_w
crossref_primary_10_1093_gigascience_giaa095
crossref_primary_10_1038_s41598_024_66874_5
crossref_primary_10_1038_s41598_024_52185_2
crossref_primary_10_1007_s42979_023_01688_2
crossref_primary_10_1007_s11042_021_10928_7
crossref_primary_10_1155_2021_4186666
crossref_primary_10_1186_s40708_025_00252_3
crossref_primary_10_1016_j_compmedimag_2019_101673
crossref_primary_10_3390_electronics11162601
crossref_primary_10_3390_su15075930
crossref_primary_10_1016_j_cmpb_2019_105242
crossref_primary_10_1007_s11042_024_19677_9
crossref_primary_10_1016_j_arr_2022_101614
crossref_primary_10_1007_s11042_024_20141_x
crossref_primary_10_1007_s10479_022_04961_4
crossref_primary_10_1177_13872877251360394
crossref_primary_10_1016_j_cmpb_2021_106282
crossref_primary_10_1016_j_compbiomed_2022_105634
crossref_primary_10_3233_JIFS_211247
crossref_primary_10_3233_IDT_220256
crossref_primary_10_1155_2022_6474515
crossref_primary_10_1007_s11042_023_17288_4
crossref_primary_10_1007_s42979_024_02868_4
crossref_primary_10_3390_make6010024
crossref_primary_10_1109_ACCESS_2025_3542458
crossref_primary_10_1002_brb3_70788
crossref_primary_10_3390_app13031464
crossref_primary_10_1109_JTEHM_2019_2959331
crossref_primary_10_4103_1673_5374_367840
crossref_primary_10_1007_s00521_022_07501_0
crossref_primary_10_1016_j_bspc_2025_107545
crossref_primary_10_1002_ima_22813
crossref_primary_10_1007_s11042_023_16858_w
crossref_primary_10_1109_JBHI_2021_3083274
crossref_primary_10_1016_j_arr_2023_102013
crossref_primary_10_3390_bioengineering11111076
crossref_primary_10_1007_s11042_022_12362_9
crossref_primary_10_1007_s13735_021_00210_9
crossref_primary_10_1007_s00521_024_10399_5
crossref_primary_10_1007_s11042_022_13509_4
crossref_primary_10_1007_s12539_021_00470_3
crossref_primary_10_1259_bjr_20211253
crossref_primary_10_1016_j_compbiomed_2019_103345
crossref_primary_10_1016_j_bspc_2021_103293
crossref_primary_10_1016_j_cmpbup_2022_100058
crossref_primary_10_2147_NDT_S496307
crossref_primary_10_1007_s42979_023_02431_7
crossref_primary_10_1016_j_matpr_2021_07_255
crossref_primary_10_1016_j_eswa_2022_118776
crossref_primary_10_1007_s00521_021_05799_w
crossref_primary_10_32604_cmc_2023_046872
crossref_primary_10_1007_s10489_023_04702_5
crossref_primary_10_1109_TCDS_2023_3254209
crossref_primary_10_1186_s12859_023_05394_x
crossref_primary_10_1007_s12021_023_09625_7
crossref_primary_10_3389_fnins_2022_1050777
crossref_primary_10_1016_j_heliyon_2024_e39037
crossref_primary_10_1007_s12559_021_09946_2
crossref_primary_10_1016_j_bspc_2024_106398
crossref_primary_10_1007_s00521_025_11249_8
crossref_primary_10_1016_j_compmedimag_2022_102171
crossref_primary_10_1007_s41870_022_01010_y
crossref_primary_10_3389_fnhum_2023_1150120
crossref_primary_10_1007_s42044_025_00243_x
crossref_primary_10_1007_s11042_023_16605_1
crossref_primary_10_1038_s43856_023_00313_w
crossref_primary_10_1080_0954898X_2024_2406946
crossref_primary_10_1109_JBHI_2024_3495835
crossref_primary_10_1007_s11227_023_05655_9
crossref_primary_10_1007_s11277_022_09989_0
crossref_primary_10_1007_s40846_025_00973_0
crossref_primary_10_3390_app13137833
crossref_primary_10_3390_diagnostics13010167
crossref_primary_10_1016_j_procs_2022_12_412
crossref_primary_10_1145_3344998
crossref_primary_10_26599_TST_2024_9010080
crossref_primary_10_1155_2022_8739960
crossref_primary_10_1016_j_bbe_2021_11_004
crossref_primary_10_3389_fpubh_2022_1076472
crossref_primary_10_1002_alz_13412
crossref_primary_10_3390_app13148298
crossref_primary_10_4108_eetpht_10_6435
crossref_primary_10_1049_ipr2_12910
crossref_primary_10_1016_j_bspc_2024_107067
crossref_primary_10_3389_fcomp_2024_1404494
crossref_primary_10_1016_j_compbiomed_2021_104537
crossref_primary_10_1080_23311916_2024_2314872
crossref_primary_10_1016_j_compbiomed_2024_108869
crossref_primary_10_1016_j_gep_2022_119259
crossref_primary_10_1038_s41598_024_76445_3
crossref_primary_10_1007_s40031_025_01259_4
crossref_primary_10_3390_s22030740
crossref_primary_10_1016_j_bspc_2020_101926
crossref_primary_10_1049_ccs2_12072
crossref_primary_10_3390_jpm11040280
crossref_primary_10_3390_diagnostics13152489
crossref_primary_10_1007_s11042_022_12228_0
crossref_primary_10_1007_s11517_020_02256_z
crossref_primary_10_1016_j_bspc_2022_104400
crossref_primary_10_38124_ijisrt_25may303
crossref_primary_10_1007_s00521_023_09301_6
crossref_primary_10_1016_j_ecoinf_2023_102295
crossref_primary_10_1109_ACCESS_2022_3180073
crossref_primary_10_3390_app12136507
crossref_primary_10_1016_j_bspc_2025_108330
crossref_primary_10_3233_KES_220007
crossref_primary_10_1007_s12021_023_09646_2
crossref_primary_10_1002_ima_22553
crossref_primary_10_1007_s11042_022_13935_4
crossref_primary_10_1016_j_compbiomed_2021_104879
crossref_primary_10_1016_j_simpa_2025_100771
crossref_primary_10_1111_coin_12594
crossref_primary_10_1016_j_medntd_2024_100343
crossref_primary_10_1016_j_neuroscience_2025_08_062
crossref_primary_10_3389_fncom_2023_1038636
crossref_primary_10_3390_app12062900
crossref_primary_10_1002_ima_23079
crossref_primary_10_1109_TAI_2021_3064901
crossref_primary_10_7717_peerj_cs_2897
crossref_primary_10_1016_j_brainres_2025_149549
crossref_primary_10_1016_j_artmed_2022_102332
Cites_doi 10.1007/s11263-015-0816-y
10.1109/TMI.2016.2528129
10.1109/5.726791
10.1016/j.neuroimage.2011.09.085
10.1016/j.neucom.2011.12.066
10.1016/j.neuroimage.2015.01.048
10.1109/42.538937
10.1109/BIBM.2017.8217822
10.1016/j.cogsys.2018.06.006
10.1002/ima.22176
10.1109/TENCON.2016.7848755
10.1007/s12021-016-9318-5
10.1093/brain/awm319
10.1109/TMI.2016.2535302
10.4018/978-1-4666-1755-1.ch010
10.1016/j.neurobiolaging.2006.09.013
10.1016/j.neuroimage.2014.10.002
10.1109/ISBI.2017.7950647
ContentType Journal Article
Copyright 2018 Elsevier B.V.
Copyright_xml – notice: 2018 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.cogsys.2018.12.015
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Psychology
EISSN 1389-0417
EndPage 159
ExternalDocumentID 10_1016_j_cogsys_2018_12_015
S1389041718309562
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5VS
6J9
7-5
71M
8P~
AACTN
AADFP
AADPK
AAEDT
AAEDW
AAGJA
AAGUQ
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFRF
ABIVO
ABJNI
ABMAC
ABOYX
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACHQT
ACNNM
ACRLP
ACXNI
ACZNC
ADEZE
ADJOM
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFYLN
AGHFR
AGUBO
AGWIK
AGYEJ
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
KOM
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OKEIE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSN
SST
SSV
SSY
SSZ
T5K
UHS
UNMZH
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
AEIPS
AFJKZ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-99e784c929c93b6e45e58c0493454878ff0f121f5ef0789e04d03668d94d57813
ISICitedReferencesCount 221
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000470116200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1389-0417
IngestDate Tue Nov 18 22:11:16 EST 2025
Sat Nov 29 06:58:11 EST 2025
Fri Feb 23 02:38:05 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Convolutional Neural Network
Accuracy
Alzheimer
Brain images
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-99e784c929c93b6e45e58c0493454878ff0f121f5ef0789e04d03668d94d57813
PageCount 13
ParticipantIDs crossref_primary_10_1016_j_cogsys_2018_12_015
crossref_citationtrail_10_1016_j_cogsys_2018_12_015
elsevier_sciencedirect_doi_10_1016_j_cogsys_2018_12_015
PublicationCentury 2000
PublicationDate October 2019
2019-10-00
PublicationDateYYYYMMDD 2019-10-01
PublicationDate_xml – month: 10
  year: 2019
  text: October 2019
PublicationDecade 2010
PublicationTitle Cognitive systems research
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cheng, Liu, Shen, Li, Zhang (b0045) 2017; 15
Rmsprop: Divide the gradient by a running average of its recent magnitude – Optimization: How to make the learning go faster | Coursera. [Online]. Available
Hemanth, Vijila, Selvakumar, Anitha (b0120) 2014; 130
Payan, A. & Montana, G. (2015). Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. pp. 1–9.
Hon, M. & Khan, N. (2017). Towards Alzheimer’s disease classification through transfer learning.
Szegedy, Ioffe, Vanhoucke, Alemi (b0210) 2017
Cho, Seong, Jeong, Shin (b0050) 2012; 59
Arunkumar, Mohammed, Ghani, Ibrahim, Abdulhay, Ramirez-Gonzalez, de Albuquerque (b0020) 2018
Chen, Dou, Yu, Qin, Heng (b0040) 2017
Hemanth, D. J., Selvathi, D., & Anitha, J., 2012. Application of adaptive resonance theory neural network for MR brain tumor image classification.
Glozman, T. & Liba, O. (2016). Hidden cues: Deep learning for Alzheimer’s disease classification CS331B project final report. No. 1.
Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In J. Fürnkranz and T. Joachims (Eds.) Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML'10) (pp. 807–814). USA: Omnipress.
Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting.
ADNI|Alzheimer’s Disease Neuroimaging Initiative. [Online]. Available
Tajbakhsh, Shin, Gurudu, Hurst, Kendall, Gotway, Liang (b0215) 2016; 35
Ahmed, O. B, Benois-Pineau, J., Allard, M., Ben-Amar, C., Catheline, G. (2014). Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimedia Tools and Applications, Springer Verlag, pp. 35. <hal-00993379>.
Rebouças, Marques, Braga, Oliveira, de Albuquerque, Rebouças Filho (b0180) 2018
Billones, C. D., Jan, O., Demetria, L. D., Hostallero, D. E. D., Naval, P.C. (2016). DemNet: a convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. p. 3728–3731.
Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … & Devin, M. TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2016.
Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, pp. 1–14.
Dou, Chen, Yu, Zhao, Qin, Wang (b0065) 2016; 35
Gupta, A., Ayhan, M., & Maida, A. (2013). Natural image bases to represent neuroimaging data. In Proceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 987–994, vol. 28, no. 3). JMLR Workshop and Conference Proceedings, May 2013.
Lecun, Bottou, Bengio, Haffner (b0155) 1998; 86
Hemanth, Anitha, Balas (b0105) 2016; 26
Korolev, S., Safiullin, A., Belyaev, M., & Dodonova, Y. (2017). Residual and plain convolutional neural networks for 3D brain MRI classification. In Proceedings of international symposium on biomedical imaging (pp. 835–838).
Yosinski, Clune, Bengio, Lipson (b0220) 2014
Goodfellow, Bengio, Courville (b0085) 2016
Jongkreangkrai, Vichianin, Tocharoenchai, Arimura (b0135) 2016; 694
Chollet, F. (2015). Keras. [Online]. Available
Arunkumar, Mohammed, Mostafa, Ibrahim, Rodrigues, de Albuquerque (b0025) 2018
Klöppel, Stonnington, Chu, Draganski, Scahill, Rohrer, Fox, Jack, Ashburner, Frackowiak (b0140) 2008; 131
He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep residual learning for image recognition, arXiv preprint arXiv: 1512.03385.
Hemanth, Vijila, Anitha (b0115) 2011; 16
Zidan, A., Ghali, N. I., Ella Hassanien, A., Hefny, H., & Hemanth, J. (2012). Level set-based CT liver computer aided diagnosis system.
.
CS231n Convolutional Neural Networks for Visual Recognition. [Online]. Available
Krizhevsky, Sutskever, Hinton (b0150) 2012
Bron, Smits, Van Der Flier, Vrenken, Barkhof, Scheltens, Pinto (b0035) 2015
FreeSurfer. [Online]. Available
Gupta, Julka, Jain, Aggarwal, Khanna, Arunkumar, de Albuquerque (b0090) 2018; 52
Sahiner, Chan, Petrick, Wei, Helvie, Adler (b0195) 1996; 15
Lerch, Pruessner, Zijdenbos, Collins, Teipel, Hampel, Evans (b0160) 2008; 29
Fargo (b0070) 2014; 10
Hosseini-Asl, E., Gimel’farb, G., & El-Baz, A. (2016) Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. No. 502.
Moradi, Pepe, Gaser, Huttunen, Tohka (b0165) 2015; 104
Russakovsky (b0190) 2015; 115
10.1016/j.cogsys.2018.12.015_b0095
10.1016/j.cogsys.2018.12.015_b0170
Russakovsky (10.1016/j.cogsys.2018.12.015_b0190) 2015; 115
10.1016/j.cogsys.2018.12.015_b0055
10.1016/j.cogsys.2018.12.015_b0110
10.1016/j.cogsys.2018.12.015_b0010
Bron (10.1016/j.cogsys.2018.12.015_b0035) 2015
Fargo (10.1016/j.cogsys.2018.12.015_b0070) 2014; 10
Gupta (10.1016/j.cogsys.2018.12.015_b0090) 2018; 52
10.1016/j.cogsys.2018.12.015_b0175
10.1016/j.cogsys.2018.12.015_b0075
10.1016/j.cogsys.2018.12.015_b0130
10.1016/j.cogsys.2018.12.015_b0030
10.1016/j.cogsys.2018.12.015_b0015
Cho (10.1016/j.cogsys.2018.12.015_b0050) 2012; 59
Moradi (10.1016/j.cogsys.2018.12.015_b0165) 2015; 104
Lerch (10.1016/j.cogsys.2018.12.015_b0160) 2008; 29
Szegedy (10.1016/j.cogsys.2018.12.015_b0210) 2017
Dou (10.1016/j.cogsys.2018.12.015_b0065) 2016; 35
Tajbakhsh (10.1016/j.cogsys.2018.12.015_b0215) 2016; 35
Hemanth (10.1016/j.cogsys.2018.12.015_b0105) 2016; 26
10.1016/j.cogsys.2018.12.015_b0060
Goodfellow (10.1016/j.cogsys.2018.12.015_b0085) 2016
Jongkreangkrai (10.1016/j.cogsys.2018.12.015_b0135) 2016; 694
Hemanth (10.1016/j.cogsys.2018.12.015_b0115) 2011; 16
Chen (10.1016/j.cogsys.2018.12.015_b0040) 2017
10.1016/j.cogsys.2018.12.015_b0185
Hemanth (10.1016/j.cogsys.2018.12.015_b0120) 2014; 130
10.1016/j.cogsys.2018.12.015_b0125
Yosinski (10.1016/j.cogsys.2018.12.015_b0220) 2014
10.1016/j.cogsys.2018.12.015_b0145
10.1016/j.cogsys.2018.12.015_b0200
10.1016/j.cogsys.2018.12.015_b0100
Sahiner (10.1016/j.cogsys.2018.12.015_b0195) 1996; 15
10.1016/j.cogsys.2018.12.015_b0205
10.1016/j.cogsys.2018.12.015_b0005
10.1016/j.cogsys.2018.12.015_b0225
Arunkumar (10.1016/j.cogsys.2018.12.015_b0020) 2018
Lecun (10.1016/j.cogsys.2018.12.015_b0155) 1998; 86
Arunkumar (10.1016/j.cogsys.2018.12.015_b0025) 2018
Cheng (10.1016/j.cogsys.2018.12.015_b0045) 2017; 15
10.1016/j.cogsys.2018.12.015_b0080
Klöppel (10.1016/j.cogsys.2018.12.015_b0140) 2008; 131
Rebouças (10.1016/j.cogsys.2018.12.015_b0180) 2018
Krizhevsky (10.1016/j.cogsys.2018.12.015_b0150) 2012
References_xml – reference: Srivastava, N., Hinton, G., Krizhevsky, A. & Salakhutdinov, R. (2014). Dropout: a simple way to prevent neural networks from overfitting.
– volume: 694
  year: 2016
  ident: b0135
  article-title: Computer-aided classification of Alzheimer’s disease based on support vector machine with combination of cerebral image features in MRI
  publication-title: Journal of Physics: Conference Series
– volume: 131
  start-page: 681
  year: 2008
  end-page: 689
  ident: b0140
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
– volume: 130
  start-page: 98
  year: 2014
  end-page: 107
  ident: b0120
  article-title: Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification
  publication-title: Neurocomputing
– reference: Nair, V. & Hinton, G. E. (2010). Rectified linear units improve restricted boltzmann machines. In J. Fürnkranz and T. Joachims (Eds.) Proceedings of the 27th International Conference on International Conference on Machine Learning (ICML'10) (pp. 807–814). USA: Omnipress.
– reference: Chollet, F. (2015). Keras. [Online]. Available: <
– volume: 26
  start-page: 188
  year: 2016
  end-page: 195
  ident: b0105
  article-title: Fast and accurate fuzzy C-means algorithm for MR brain image segmentation
  publication-title: International Journal of Imaging Systems and Technology
– volume: 104
  start-page: 398
  year: 2015
  end-page: 412
  ident: b0165
  article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
– volume: 15
  start-page: 598
  year: 1996
  end-page: 610
  ident: b0195
  article-title: Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
  publication-title: IEEE Transactions on Medical Imaging
– reference: FreeSurfer. [Online]. Available: <
– volume: 16
  start-page: 95
  year: 2011
  end-page: 102
  ident: b0115
  article-title: Application of Neuro-fuzzy model for MR brain tumor image classification
  publication-title: International Journal of Biomedical Soft Computing and Human Sciences: the official journal of the Biomedical Fuzzy Systems Association
– volume: 35
  start-page: 1182
  year: 2016
  end-page: 1195
  ident: b0065
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Transactions on Medical Imaging
– reference: Zidan, A., Ghali, N. I., Ella Hassanien, A., Hefny, H., & Hemanth, J. (2012). Level set-based CT liver computer aided diagnosis system.
– reference: He, K., Zhang, X., Ren, S., Sun, J. (2015). Deep residual learning for image recognition, arXiv preprint arXiv: 1512.03385.
– year: 2018
  ident: b0025
  article-title: Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks
  publication-title: Concurrency and Computation: Practice and Experience
– reference: Ahmed, O. B, Benois-Pineau, J., Allard, M., Ben-Amar, C., Catheline, G. (2014). Classification of Alzheimer’s disease subjects from MRI using hippocampal visual features. Multimedia Tools and Applications, Springer Verlag, pp. 35. <hal-00993379>.
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: b0210
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: AAAI
– start-page: 27
  year: 2014
  ident: b0220
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in Neural Information Processing Systems
– reference: Korolev, S., Safiullin, A., Belyaev, M., & Dodonova, Y. (2017). Residual and plain convolutional neural networks for 3D brain MRI classification. In Proceedings of international symposium on biomedical imaging (pp. 835–838).
– reference: Rmsprop: Divide the gradient by a running average of its recent magnitude – Optimization: How to make the learning go faster | Coursera. [Online]. Available: <
– volume: 29
  start-page: 23
  year: 2008
  end-page: 30
  ident: b0160
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls
  publication-title: Neurobiology of Aging
– reference: Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., … & Devin, M. TensorFlow: large-scale machine learning on heterogeneous distributed systems. 2016.
– reference: CS231n Convolutional Neural Networks for Visual Recognition. [Online]. Available: <
– reference: Simonyan, K. & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition, pp. 1–14.
– reference: Billones, C. D., Jan, O., Demetria, L. D., Hostallero, D. E. D., Naval, P.C. (2016). DemNet: a convolutional neural network for the detection of Alzheimer’s disease and mild cognitive impairment. p. 3728–3731.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: b0190
  article-title: ImageNet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
– reference: ADNI|Alzheimer’s Disease Neuroimaging Initiative. [Online]. Available: <
– reference: Hosseini-Asl, E., Gimel’farb, G., & El-Baz, A. (2016) Alzheimer’s disease diagnostics by a deeply supervised adaptable 3D convolutional network. No. 502.
– reference: Glozman, T. & Liba, O. (2016). Hidden cues: Deep learning for Alzheimer’s disease classification CS331B project final report. No. 1.
– volume: 86
  start-page: 2278
  year: 1998
  end-page: 2324
  ident: b0155
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of IEEE
– volume: 52
  start-page: 36
  year: 2018
  end-page: 48
  ident: b0090
  article-title: Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease
  publication-title: Cognitive Systems Research
– reference: >.
– reference: Gupta, A., Ayhan, M., & Maida, A. (2013). Natural image bases to represent neuroimaging data. In Proceedings of the 30th International Conference on Machine Learning (ICML-13) (pp. 987–994, vol. 28, no. 3). JMLR Workshop and Conference Proceedings, May 2013.
– reference: Hemanth, D. J., Selvathi, D., & Anitha, J., 2012. Application of adaptive resonance theory neural network for MR brain tumor image classification.
– year: 2016
  ident: b0085
  article-title: Deep Learning
– year: 2017
  ident: b0040
  article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images
  publication-title: NeuroImage
– volume: 10
  start-page: e47
  year: 2014
  end-page: e92
  ident: b0070
  article-title: Alzheimer’s Association Report: 2014 Alzheimers disease facts and figures
  publication-title: Alzheimer’s Dement
– year: 2018
  ident: b0180
  article-title: New level set approach based on Parzen estimation for stroke segmentation in skull CT images
  publication-title: Soft Computing
– reference: Hon, M. & Khan, N. (2017). Towards Alzheimer’s disease classification through transfer learning.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: b0150
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– reference: Payan, A. & Montana, G. (2015). Predicting Alzheimer’s disease: a neuroimaging study with 3D convolutional neural networks. pp. 1–9.
– year: 2018
  ident: b0020
  article-title: K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor
  publication-title: Soft Computing
– volume: 15
  start-page: 115
  year: 2017
  ident: b0045
  article-title: Multi-domain transfer learning for early diagnosis of Alzheimer’s disease
  publication-title: Neuroinformatics
– year: 2015
  ident: b0035
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge
  publication-title: NeuroImage
– volume: 35
  start-page: 1299
  year: 2016
  end-page: 1312
  ident: b0215
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Transactions on Medical Imaging
– volume: 59
  start-page: 2217
  year: 2012
  end-page: 2230
  ident: b0050
  article-title: Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data
  publication-title: NeuroImage
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.cogsys.2018.12.015_b0190
  article-title: ImageNet large scale visual recognition challenge
  publication-title: International Journal of Computer Vision
  doi: 10.1007/s11263-015-0816-y
– year: 2016
  ident: 10.1016/j.cogsys.2018.12.015_b0085
– ident: 10.1016/j.cogsys.2018.12.015_b0075
– ident: 10.1016/j.cogsys.2018.12.015_b0010
– volume: 35
  start-page: 1182
  issue: 5
  year: 2016
  ident: 10.1016/j.cogsys.2018.12.015_b0065
  article-title: Automatic detection of cerebral microbleeds from MR images via 3D convolutional neural networks
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2528129
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  ident: 10.1016/j.cogsys.2018.12.015_b0155
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proceedings of IEEE
  doi: 10.1109/5.726791
– start-page: 1097
  year: 2012
  ident: 10.1016/j.cogsys.2018.12.015_b0150
  article-title: Imagenet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 16
  start-page: 95
  issue: 1
  year: 2011
  ident: 10.1016/j.cogsys.2018.12.015_b0115
  article-title: Application of Neuro-fuzzy model for MR brain tumor image classification
  publication-title: International Journal of Biomedical Soft Computing and Human Sciences: the official journal of the Biomedical Fuzzy Systems Association
– ident: 10.1016/j.cogsys.2018.12.015_b0130
– volume: 59
  start-page: 2217
  issue: 3
  year: 2012
  ident: 10.1016/j.cogsys.2018.12.015_b0050
  article-title: Individual subject classification for Alzheimer’s disease based on incremental learning using a spatial frequency representation of cortical thickness data
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2011.09.085
– year: 2017
  ident: 10.1016/j.cogsys.2018.12.015_b0040
  article-title: VoxResNet: deep voxelwise residual networks for brain segmentation from 3D MR images
  publication-title: NeuroImage
– volume: 130
  start-page: 98
  year: 2014
  ident: 10.1016/j.cogsys.2018.12.015_b0120
  article-title: Performance improved iteration-free artificial neural networks for abnormal magnetic resonance brain image classification
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.12.066
– year: 2015
  ident: 10.1016/j.cogsys.2018.12.015_b0035
  article-title: Standardized evaluation of algorithms for computer-aided diagnosis of dementia based on structural MRI: The CADDementia challenge
  publication-title: NeuroImage
  doi: 10.1016/j.neuroimage.2015.01.048
– volume: 15
  start-page: 598
  issue: 5
  year: 1996
  ident: 10.1016/j.cogsys.2018.12.015_b0195
  article-title: Classification of mass and normal breast tissue: A convolution neural network classifier with spatial domain and texture images
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/42.538937
– ident: 10.1016/j.cogsys.2018.12.015_b0205
– ident: 10.1016/j.cogsys.2018.12.015_b0125
  doi: 10.1109/BIBM.2017.8217822
– volume: 52
  start-page: 36
  year: 2018
  ident: 10.1016/j.cogsys.2018.12.015_b0090
  article-title: Optimized cuttlefish algorithm for diagnosis of Parkinson’s disease
  publication-title: Cognitive Systems Research
  doi: 10.1016/j.cogsys.2018.06.006
– volume: 26
  start-page: 188
  issue: 3
  year: 2016
  ident: 10.1016/j.cogsys.2018.12.015_b0105
  article-title: Fast and accurate fuzzy C-means algorithm for MR brain image segmentation
  publication-title: International Journal of Imaging Systems and Technology
  doi: 10.1002/ima.22176
– ident: 10.1016/j.cogsys.2018.12.015_b0170
– ident: 10.1016/j.cogsys.2018.12.015_b0200
– ident: 10.1016/j.cogsys.2018.12.015_b0055
– ident: 10.1016/j.cogsys.2018.12.015_b0080
– ident: 10.1016/j.cogsys.2018.12.015_b0030
  doi: 10.1109/TENCON.2016.7848755
– ident: 10.1016/j.cogsys.2018.12.015_b0225
– volume: 10
  start-page: e47
  issue: 2
  year: 2014
  ident: 10.1016/j.cogsys.2018.12.015_b0070
  article-title: Alzheimer’s Association Report: 2014 Alzheimers disease facts and figures
  publication-title: Alzheimer’s Dement
– year: 2018
  ident: 10.1016/j.cogsys.2018.12.015_b0025
  article-title: Fully automatic model-based segmentation and classification approach for MRI brain tumor using artificial neural networks
  publication-title: Concurrency and Computation: Practice and Experience
– start-page: 4278
  year: 2017
  ident: 10.1016/j.cogsys.2018.12.015_b0210
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: AAAI
– year: 2018
  ident: 10.1016/j.cogsys.2018.12.015_b0020
  article-title: K-Means clustering and neural network for object detecting and identifying abnormality of brain tumor
  publication-title: Soft Computing
– start-page: 27
  year: 2014
  ident: 10.1016/j.cogsys.2018.12.015_b0220
  article-title: How transferable are features in deep neural networks?
  publication-title: Advances in Neural Information Processing Systems
– volume: 15
  start-page: 115
  issue: 2
  year: 2017
  ident: 10.1016/j.cogsys.2018.12.015_b0045
  article-title: Multi-domain transfer learning for early diagnosis of Alzheimer’s disease
  publication-title: Neuroinformatics
  doi: 10.1007/s12021-016-9318-5
– ident: 10.1016/j.cogsys.2018.12.015_b0185
– ident: 10.1016/j.cogsys.2018.12.015_b0015
– volume: 131
  start-page: 681
  issue: 3
  year: 2008
  ident: 10.1016/j.cogsys.2018.12.015_b0140
  article-title: Automatic classification of MR scans in Alzheimer’s disease
  publication-title: Brain
  doi: 10.1093/brain/awm319
– volume: 35
  start-page: 1299
  issue: 5
  year: 2016
  ident: 10.1016/j.cogsys.2018.12.015_b0215
  article-title: Convolutional neural networks for medical image analysis: Full training or fine tuning?
  publication-title: IEEE Transactions on Medical Imaging
  doi: 10.1109/TMI.2016.2535302
– ident: 10.1016/j.cogsys.2018.12.015_b0175
– ident: 10.1016/j.cogsys.2018.12.015_b0110
  doi: 10.4018/978-1-4666-1755-1.ch010
– ident: 10.1016/j.cogsys.2018.12.015_b0100
– ident: 10.1016/j.cogsys.2018.12.015_b0095
– year: 2018
  ident: 10.1016/j.cogsys.2018.12.015_b0180
  article-title: New level set approach based on Parzen estimation for stroke segmentation in skull CT images
  publication-title: Soft Computing
– ident: 10.1016/j.cogsys.2018.12.015_b0060
– volume: 29
  start-page: 23
  issue: 1
  year: 2008
  ident: 10.1016/j.cogsys.2018.12.015_b0160
  article-title: Automated cortical thickness measurements from MRI can accurately separate Alzheimer’s patients from normal elderly controls
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2006.09.013
– volume: 694
  issue: 1
  year: 2016
  ident: 10.1016/j.cogsys.2018.12.015_b0135
  article-title: Computer-aided classification of Alzheimer’s disease based on support vector machine with combination of cerebral image features in MRI
  publication-title: Journal of Physics: Conference Series
– volume: 104
  start-page: 398
  year: 2015
  ident: 10.1016/j.cogsys.2018.12.015_b0165
  article-title: Machine learning framework for early MRI-based Alzheimer’s conversion prediction in MCI subjects
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2014.10.002
– ident: 10.1016/j.cogsys.2018.12.015_b0005
– ident: 10.1016/j.cogsys.2018.12.015_b0145
  doi: 10.1109/ISBI.2017.7950647
SSID ssj0016952
Score 2.591208
Snippet Alzheimer’s disease, the most common form of dementia is a neurodegenerative brain order that has currently no cure for it. Hence, early diagnosis of such...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 147
SubjectTerms Accuracy
Alzheimer
Brain images
Convolutional Neural Network
Title Convolutional neural network based Alzheimer’s disease classification from magnetic resonance brain images
URI https://dx.doi.org/10.1016/j.cogsys.2018.12.015
Volume 57
WOSCitedRecordID wos000470116200019&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1389-0417
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0016952
  issn: 1389-0417
  databaseCode: AIEXJ
  dateStart: 19991201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbhMxELailkMvqOVHlFLkA7doqzj7Zx-jUlQ4RAiKlNvK67WTbdNtlYRQOPEaPAKvxZMwY3vdtKn4k7hsImc3jma-eMbjb2YIeRHLOJOG45mhrKJE9HoRT7SJ-tLkiukyTVVpm03kwyEfjcTbTud7mwuznOZNw6-uxOV_VTWMgbIxdfYv1B2-FAbgPSgdrqB2uP6R4g8vmqWfAMSP9Srti2V7d9FoVd3B9MtE19g3xVMdxLw9qekqdKeRP-RZiJh-ci7HjXbFntFzx7WgxNYS3Ro-8STEttpBoCO5GtF4KrESMLNZ_a5swTupJo28PTqsz-pFGB2Mx3L2SToiwdl8cs34OdbngAkbE3p5gLklejV-wURgwvmg2lpijV2HY2RyJS6t80DfMeYXb1fd2q--LMlXDDlzpcbXbIQLV5yCiscgCWT3cRsRdmmlt6pvv8dZcVJY-rBmI1j7zX6eCrABm4PXR6M34cgqE7a9U_iVbZ6mJROuz3W3H7Ti25xsk_t-U0IHDkw7pKObB2Qr2MbPD8n0BqqoQxX1qKIWVTSg6sfXb3Pq8URv4okinmiLJxrwRC2eqMPTI_Lh1dHJ4XHkG3VECnaci0gInfNEgaetRFxmOkl1yhXsPeMEN8TcmJ5hfWZSbbC7ge4lFThOGa9EUoHFYPFjstFcNPoJoSLlUpasNLBThruMlCY2QmYSts5Ih90lcSu2Qvkq9thMZVq0dMXTwgm7QGEXrF-AsHdJFJ66dFVcfnN_3mqk8J6o8zALANEvn3z6z0_uka3rv8czsrGYfdT75J5aLur57LlH2085t7RK
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural+network+based+Alzheimer%E2%80%99s+disease+classification+from+magnetic+resonance+brain+images&rft.jtitle=Cognitive+systems+research&rft.au=Jain%2C+Rachna&rft.au=Jain%2C+Nikita&rft.au=Aggarwal%2C+Akshay&rft.au=Hemanth%2C+D.+Jude&rft.date=2019-10-01&rft.pub=Elsevier+B.V&rft.issn=1389-0417&rft.eissn=1389-0417&rft.volume=57&rft.spage=147&rft.epage=159&rft_id=info:doi/10.1016%2Fj.cogsys.2018.12.015&rft.externalDocID=S1389041718309562
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1389-0417&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1389-0417&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1389-0417&client=summon