On maximizing a monotone k-submodular function subject to a matroid constraint
A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative k-submodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent w...
Saved in:
| Published in: | Discrete optimization Vol. 23; pp. 105 - 113 |
|---|---|
| Main Author: | |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.02.2017
|
| Subjects: | |
| ISSN: | 1572-5286, 1873-636X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative k-submodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also provided a k/(2k−1)-approximation algorithm for nonnegative monotone k-submodular maximization and proved that its approximation ratio is asymptotically tight. More recently, Ohsaka and Yoshida proposed constant-factor algorithms for nonnegative monotone k-submodular maximization with several size constraints. However, while submodular maximization with various constraints has been extensively studied, no approximation algorithm has been developed for constrained k-submodular maximization, except for the case of size constraints.
In this paper, we prove that a greedy algorithm outputs a 1/2-approximate solution for nonnegative monotone k-submodular maximization with a matroid constraint. The algorithm runs in O(M|E|(IO+kEO)) time, where M is the size of a maximal optimal solution, |E| is the size of the ground set, and IO,EO represent the time for the independence oracle of the matroid and the evaluation oracle of the k-submodular function, respectively. |
|---|---|
| AbstractList | A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative k-submodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also provided a k/(2k−1)-approximation algorithm for nonnegative monotone k-submodular maximization and proved that its approximation ratio is asymptotically tight. More recently, Ohsaka and Yoshida proposed constant-factor algorithms for nonnegative monotone k-submodular maximization with several size constraints. However, while submodular maximization with various constraints has been extensively studied, no approximation algorithm has been developed for constrained k-submodular maximization, except for the case of size constraints.
In this paper, we prove that a greedy algorithm outputs a 1/2-approximate solution for nonnegative monotone k-submodular maximization with a matroid constraint. The algorithm runs in O(M|E|(IO+kEO)) time, where M is the size of a maximal optimal solution, |E| is the size of the ground set, and IO,EO represent the time for the independence oracle of the matroid and the evaluation oracle of the k-submodular function, respectively. |
| Author | Sakaue, Shinsaku |
| Author_xml | – sequence: 1 givenname: Shinsaku surname: Sakaue fullname: Sakaue, Shinsaku email: sakaue.shinsaku@lab.ntt.co.jp organization: NTT Communication Science Laboratories, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan |
| BookMark | eNqFkEtLAzEUhYNUsK3-Axf5AzMmk8k8XAhSfEGxmy7chTwlYycpSSrqrzdDXbnQ1b1czjnc8y3AzHmnAbjEqMQIN1dDqWz0-1RWCLclwiVC5ATMcdeSoiHNyyzvtK0KWnXNGVjEOGRB3RM6B88bB0f-YUf7Zd0r5HD0zqccD9-KeBCjV4cdD9AcnEzWO5hvg5YJJj9peQreKii9iylw69I5ODV8F_XFz1yC7f3ddvVYrDcPT6vbdSEJalLR95S3NaqFMXXLe6IEbWRXV4g3VCnZKtGRTvdIdtpU1LSaN4ZUoqVCYCF7sgTXx1gZfIxBGyZt4tOD0xs7hhGbwLCBHcGwCQxDmOXe2Vz_Mu-DHXn4_M92c7Tp3Ovd6sCitNpJrWzIRJjy9u-Ab6dqg_g |
| CitedBy_id | crossref_primary_10_1007_s10878_025_01299_y crossref_primary_10_1007_s10878_023_01021_w crossref_primary_10_1142_S1793830924500617 crossref_primary_10_1016_j_tcs_2022_04_003 crossref_primary_10_1007_s10878_024_01240_9 crossref_primary_10_1007_s40305_024_00539_y crossref_primary_10_1016_j_disopt_2021_100670 crossref_primary_10_1016_j_orl_2021_11_010 crossref_primary_10_26599_TST_2023_9010121 crossref_primary_10_1007_s10287_025_00541_6 crossref_primary_10_1016_j_tcs_2023_114320 crossref_primary_10_26599_TST_2022_9010039 crossref_primary_10_1109_ACCESS_2021_3072212 crossref_primary_10_1007_s40305_024_00544_1 crossref_primary_10_1016_j_cor_2023_106452 crossref_primary_10_1007_s10878_022_00858_x |
| Cites_doi | 10.1287/opre.43.4.684 10.1016/S0167-6377(03)00062-2 10.1137/15M101926X 10.1137/130929205 10.1137/090750020 10.1145/2850419 10.1137/080733991 10.1007/BF01588971 10.1109/ICCV.2013.288 10.1137/130920277 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.disopt.2017.01.003 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-636X |
| EndPage | 113 |
| ExternalDocumentID | 10_1016_j_disopt_2017_01_003 S1572528617300063 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 6I. 7-5 71M 8P~ AAAKF AACTN AAEDT AAEDW AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AAXUO ABAOU ABMAC ABUCO ABVKL ABXDB ABYKQ ACAZW ACDAQ ACGFS ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEXQZ AFKWA AFTJW AGHFR AGUBO AGYEJ AIEXJ AIGVJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ APLSM ARUGR AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HAMUX HVGLF HZ~ IHE IXB J1W J9A KOM M41 MHUIS MO0 N9A NCXOZ O-L O9- OAUVE OK1 OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSB SSD SSW SSZ T5K ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-995a7404bff47a93db56c8420a65ddc7db838e90c8ef25f7ea6f32b75bb1bc93 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395849900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1572-5286 |
| IngestDate | Tue Nov 18 21:00:26 EST 2025 Sat Nov 29 05:16:25 EST 2025 Fri Feb 23 02:29:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Greedy algorithm k-submodular function Matroid constraint |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-995a7404bff47a93db56c8420a65ddc7db838e90c8ef25f7ea6f32b75bb1bc93 |
| PageCount | 9 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_disopt_2017_01_003 crossref_primary_10_1016_j_disopt_2017_01_003 elsevier_sciencedirect_doi_10_1016_j_disopt_2017_01_003 |
| PublicationCentury | 2000 |
| PublicationDate | February 2017 2017-02-00 |
| PublicationDateYYYYMMDD | 2017-02-01 |
| PublicationDate_xml | – month: 02 year: 2017 text: February 2017 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete optimization |
| PublicationYear | 2017 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Hirai, Iwamasa (br000055) 2016; 30 Korte, Vygen (br000100) 2012 Fisher, Nemhauser, Wolsey (br000085) 1978 2011. Huber, Kolmogorov (br000045) 2012 Sviridenko (br000040) 2004; 32 Iwata, Tanigawa, Yoshida (br000070) 2016 Iwata, Tanigawa, Yoshida (br000060) 2013 Nemhauser, Wolsey, Fisher (br000035) 1978; 14 Ko, Lee, Queyranne (br000015) 1995; 43 Lee, Mirrokni, Nagarajan, Sviridenko (br000095) 2010; 23 I. Gridchyn, V. Kolmogorov, Potts model, parametric maxflow and Ward, Živný (br000065) 2016; 12 N. Ohsaka, Y. Yoshida, Monotone Calinescu, Chekuri, Pál, Vondrák (br000030) 2011; 40 submodular functions, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2320–2327. Krause, McMahan, Guestrin, Gupta (br000005) 2008; 9 Buchbinder, Feldman, Seffi, Schwartz (br000025) 2015; 44 Filmus, Ward (br000080) 2014; 43 submodular function maximization with size constraints, in: Advances in Neural Information Processing Systems, 2015, pp. 694–702. Lin, Bilmes (br000020) 2010 D. Golovin, A. Krause, Adaptive submodular optimization under matroid constraints. arXiv preprint Krause, Singh, Guestrin (br000010) 2008; 9 Nemhauser (10.1016/j.disopt.2017.01.003_br000035) 1978; 14 Calinescu (10.1016/j.disopt.2017.01.003_br000030) 2011; 40 10.1016/j.disopt.2017.01.003_br000090 Buchbinder (10.1016/j.disopt.2017.01.003_br000025) 2015; 44 Ko (10.1016/j.disopt.2017.01.003_br000015) 1995; 43 Krause (10.1016/j.disopt.2017.01.003_br000010) 2008; 9 Iwata (10.1016/j.disopt.2017.01.003_br000060) 2013 Korte (10.1016/j.disopt.2017.01.003_br000100) 2012 Sviridenko (10.1016/j.disopt.2017.01.003_br000040) 2004; 32 Iwata (10.1016/j.disopt.2017.01.003_br000070) 2016 Hirai (10.1016/j.disopt.2017.01.003_br000055) 2016; 30 Ward (10.1016/j.disopt.2017.01.003_br000065) 2016; 12 Filmus (10.1016/j.disopt.2017.01.003_br000080) 2014; 43 Lin (10.1016/j.disopt.2017.01.003_br000020) 2010 Krause (10.1016/j.disopt.2017.01.003_br000005) 2008; 9 Huber (10.1016/j.disopt.2017.01.003_br000045) 2012 10.1016/j.disopt.2017.01.003_br000075 Lee (10.1016/j.disopt.2017.01.003_br000095) 2010; 23 Fisher (10.1016/j.disopt.2017.01.003_br000085) 1978 10.1016/j.disopt.2017.01.003_br000050 |
| References_xml | – volume: 40 start-page: 1740 year: 2011 end-page: 1766 ident: br000030 article-title: Maximizing a submodular set function subject to a matroid constraint publication-title: SIAM J. Comput. – volume: 12 start-page: 47:1 year: 2016 end-page: 47:26 ident: br000065 article-title: Maximizing publication-title: ACM Trans. Algorithms – reference: I. Gridchyn, V. Kolmogorov, Potts model, parametric maxflow and – reference: -submodular functions, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2320–2327. – year: 2013 ident: br000060 article-title: Bisubmodular function maximization and extensions. Technical report, Technical Report METR 2013-16 – volume: 44 start-page: 1384 year: 2015 end-page: 1402 ident: br000025 article-title: A tight linear time (1/2)-approximation for unconstrained submodular maximization publication-title: SIAM J. Comput. – reference: , 2011. – volume: 32 start-page: 41 year: 2004 end-page: 43 ident: br000040 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper. Res. Lett. – volume: 30 start-page: 1726 year: 2016 end-page: 1736 ident: br000055 article-title: On publication-title: SIAM J. Discrete Math. – start-page: 73 year: 1978 end-page: 87 ident: br000085 article-title: An analysis of approximations for maximizing submodular set functions-II publication-title: Polyhedral combinatorics – start-page: 404 year: 2016 end-page: 413 ident: br000070 article-title: Improved approximation algorithms for publication-title: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms – start-page: 912 year: 2010 end-page: 920 ident: br000020 article-title: Multi-document summarization via budgeted maximization of submodular functions publication-title: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics – reference: N. Ohsaka, Y. Yoshida, Monotone – reference: D. Golovin, A. Krause, Adaptive submodular optimization under matroid constraints. arXiv preprint – reference: -submodular function maximization with size constraints, in: Advances in Neural Information Processing Systems, 2015, pp. 694–702. – volume: 14 start-page: 265 year: 1978 end-page: 294 ident: br000035 article-title: An analysis of approximations for maximizing submodular set functions-I publication-title: Math. Program. – volume: 43 start-page: 684 year: 1995 end-page: 691 ident: br000015 article-title: An exact algorithm for maximum entropy sampling publication-title: Oper. Res. – volume: 9 start-page: 2761 year: 2008 end-page: 2801 ident: br000005 article-title: Robust submodular observation selection publication-title: J. Mach. Learn. Res. – volume: 43 start-page: 514 year: 2014 end-page: 542 ident: br000080 article-title: Monotone submodular maximization over a matroid via non-oblivious local search publication-title: SIAM J. Comput. – start-page: 451 year: 2012 end-page: 462 ident: br000045 article-title: Towards minimizing publication-title: Proceedings of 2nd International Symposium on Combinatorial Optimization – volume: 23 start-page: 2053 year: 2010 end-page: 2078 ident: br000095 article-title: Maximizing nonmonotone submodular functions under matroid or knapsack constraints publication-title: SIAM J. Discrete Math. – volume: 9 start-page: 235 year: 2008 end-page: 284 ident: br000010 article-title: Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies publication-title: J. Mach. Learn. Res. – year: 2012 ident: br000100 article-title: Combinatorial Optimization, Vol. 2 – volume: 43 start-page: 684 issue: 4 year: 1995 ident: 10.1016/j.disopt.2017.01.003_br000015 article-title: An exact algorithm for maximum entropy sampling publication-title: Oper. Res. doi: 10.1287/opre.43.4.684 – volume: 32 start-page: 41 issue: 1 year: 2004 ident: 10.1016/j.disopt.2017.01.003_br000040 article-title: A note on maximizing a submodular set function subject to a knapsack constraint publication-title: Oper. Res. Lett. doi: 10.1016/S0167-6377(03)00062-2 – volume: 30 start-page: 1726 issue: 3 year: 2016 ident: 10.1016/j.disopt.2017.01.003_br000055 article-title: On k-submodular relaxation publication-title: SIAM J. Discrete Math. doi: 10.1137/15M101926X – start-page: 404 year: 2016 ident: 10.1016/j.disopt.2017.01.003_br000070 article-title: Improved approximation algorithms for k-submodular function maximization – ident: 10.1016/j.disopt.2017.01.003_br000075 – volume: 44 start-page: 1384 issue: 5 year: 2015 ident: 10.1016/j.disopt.2017.01.003_br000025 article-title: A tight linear time (1/2)-approximation for unconstrained submodular maximization publication-title: SIAM J. Comput. doi: 10.1137/130929205 – start-page: 451 year: 2012 ident: 10.1016/j.disopt.2017.01.003_br000045 article-title: Towards minimizing k-submodular functions – volume: 23 start-page: 2053 issue: 4 year: 2010 ident: 10.1016/j.disopt.2017.01.003_br000095 article-title: Maximizing nonmonotone submodular functions under matroid or knapsack constraints publication-title: SIAM J. Discrete Math. doi: 10.1137/090750020 – year: 2012 ident: 10.1016/j.disopt.2017.01.003_br000100 – volume: 12 start-page: 47:1 issue: 4 year: 2016 ident: 10.1016/j.disopt.2017.01.003_br000065 article-title: Maximizing k-submodular functions and beyond publication-title: ACM Trans. Algorithms doi: 10.1145/2850419 – ident: 10.1016/j.disopt.2017.01.003_br000090 – volume: 9 start-page: 235 issue: Feb year: 2008 ident: 10.1016/j.disopt.2017.01.003_br000010 article-title: Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies publication-title: J. Mach. Learn. Res. – volume: 40 start-page: 1740 issue: 6 year: 2011 ident: 10.1016/j.disopt.2017.01.003_br000030 article-title: Maximizing a submodular set function subject to a matroid constraint publication-title: SIAM J. Comput. doi: 10.1137/080733991 – volume: 14 start-page: 265 issue: 1 year: 1978 ident: 10.1016/j.disopt.2017.01.003_br000035 article-title: An analysis of approximations for maximizing submodular set functions-I publication-title: Math. Program. doi: 10.1007/BF01588971 – start-page: 73 year: 1978 ident: 10.1016/j.disopt.2017.01.003_br000085 article-title: An analysis of approximations for maximizing submodular set functions-II – ident: 10.1016/j.disopt.2017.01.003_br000050 doi: 10.1109/ICCV.2013.288 – volume: 9 start-page: 2761 issue: Dec year: 2008 ident: 10.1016/j.disopt.2017.01.003_br000005 article-title: Robust submodular observation selection publication-title: J. Mach. Learn. Res. – volume: 43 start-page: 514 issue: 2 year: 2014 ident: 10.1016/j.disopt.2017.01.003_br000080 article-title: Monotone submodular maximization over a matroid via non-oblivious local search publication-title: SIAM J. Comput. doi: 10.1137/130920277 – start-page: 912 year: 2010 ident: 10.1016/j.disopt.2017.01.003_br000020 article-title: Multi-document summarization via budgeted maximization of submodular functions – year: 2013 ident: 10.1016/j.disopt.2017.01.003_br000060 |
| SSID | ssj0034935 |
| Score | 2.329928 |
| Snippet | A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 105 |
| SubjectTerms | [formula omitted]-submodular function Greedy algorithm Matroid constraint |
| Title | On maximizing a monotone k-submodular function subject to a matroid constraint |
| URI | https://dx.doi.org/10.1016/j.disopt.2017.01.003 |
| Volume | 23 |
| WOSCitedRecordID | wos000395849900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-636X dateEnd: 20171130 omitProxy: false ssIdentifier: ssj0034935 issn: 1572-5286 databaseCode: AIEXJ dateStart: 20040615 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeJj7FNkB-4K0ycmInth-nbQh46JDoQ98iO05EVppWa4sq_vrdxUmaqYgviZeosuzk5F9yd77e_Y6QtxE33rpSM-FFzpACnTmpPBPSSZkUKf6z1DSbUOOxnk7N57Yl_KppJ6DqWm-3ZvlfoYYxABtLZ_8C7v6mMAC_AXS4Auxw_SPgr-rR3G6refWjqT8cwYMXyLg9mrEVGL-FbxJP0Z410MMYhmLQB4W5GBmvsNANiWVtVd-J3F9UoGMKzCsAPTNvCzj7EI2d2U2IZ3-t6pWdbYYBBTBS_E5yxn6lS1CMCg-tHW11GNNKsFQ0nQh7bRqLgTqMeDKwrFGoOt1T2iF-cP0O86eWmN8aqYZKlYudkepTB7-gJChIhEz74GDdJ4exSgxotMOzj5fTT50dFtI07VV7ybvCySa7b_9ZP3dMBs7G5DE5ak8J9Cyg-4TcK-qn5NGAO_IZGV_VdIcztbTDmQ5xph3OtMWZrhc4N-BMdzg_J5P3l5PzD6xtjsFyOOWtmTGJVZJLV5ZSWSO8S9Jcy5jbNPE-V95poQvDc12UcVKqwqaliJ1KnItcbsQLclCDTC8JlbzUkYy09iXSR1rHi1gobzTsXJF7e0xEtzFZ3hLHo2jfsi5D8DoL25nhdmY8QsLZY8L6VctAnPKb-arb86x1_oJTl8Fr8suVJ_-88pQ83H0Ar8jB-mZTvCYP8u_ranXzpn2fbgFghYJx |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+maximizing+a+monotone+k-submodular+function+subject+to+a+matroid+constraint&rft.jtitle=Discrete+optimization&rft.au=Sakaue%2C+Shinsaku&rft.date=2017-02-01&rft.pub=Elsevier+B.V&rft.issn=1572-5286&rft.eissn=1873-636X&rft.volume=23&rft.spage=105&rft.epage=113&rft_id=info:doi/10.1016%2Fj.disopt.2017.01.003&rft.externalDocID=S1572528617300063 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-5286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-5286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-5286&client=summon |