On maximizing a monotone k-submodular function subject to a matroid constraint

A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative k-submodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent w...

Full description

Saved in:
Bibliographic Details
Published in:Discrete optimization Vol. 23; pp. 105 - 113
Main Author: Sakaue, Shinsaku
Format: Journal Article
Language:English
Published: Elsevier B.V 01.02.2017
Subjects:
ISSN:1572-5286, 1873-636X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative k-submodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also provided a k/(2k−1)-approximation algorithm for nonnegative monotone k-submodular maximization and proved that its approximation ratio is asymptotically tight. More recently, Ohsaka and Yoshida proposed constant-factor algorithms for nonnegative monotone k-submodular maximization with several size constraints. However, while submodular maximization with various constraints has been extensively studied, no approximation algorithm has been developed for constrained k-submodular maximization, except for the case of size constraints. In this paper, we prove that a greedy algorithm outputs a 1/2-approximate solution for nonnegative monotone k-submodular maximization with a matroid constraint. The algorithm runs in O(M|E|(IO+kEO)) time, where M is the size of a maximal optimal solution, |E| is the size of the ground set, and IO,EO represent the time for the independence oracle of the matroid and the evaluation oracle of the k-submodular function, respectively.
AbstractList A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained nonnegative k-submodular maximization, Ward and Živný proposed a constant-factor approximation algorithm, which was improved by the recent work of Iwata, Tanigawa and Yoshida presenting a 1/2-approximation algorithm. Iwata et al. also provided a k/(2k−1)-approximation algorithm for nonnegative monotone k-submodular maximization and proved that its approximation ratio is asymptotically tight. More recently, Ohsaka and Yoshida proposed constant-factor algorithms for nonnegative monotone k-submodular maximization with several size constraints. However, while submodular maximization with various constraints has been extensively studied, no approximation algorithm has been developed for constrained k-submodular maximization, except for the case of size constraints. In this paper, we prove that a greedy algorithm outputs a 1/2-approximate solution for nonnegative monotone k-submodular maximization with a matroid constraint. The algorithm runs in O(M|E|(IO+kEO)) time, where M is the size of a maximal optimal solution, |E| is the size of the ground set, and IO,EO represent the time for the independence oracle of the matroid and the evaluation oracle of the k-submodular function, respectively.
Author Sakaue, Shinsaku
Author_xml – sequence: 1
  givenname: Shinsaku
  surname: Sakaue
  fullname: Sakaue, Shinsaku
  email: sakaue.shinsaku@lab.ntt.co.jp
  organization: NTT Communication Science Laboratories, 2-4 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0237, Japan
BookMark eNqFkEtLAzEUhYNUsK3-Axf5AzMmk8k8XAhSfEGxmy7chTwlYycpSSrqrzdDXbnQ1b1czjnc8y3AzHmnAbjEqMQIN1dDqWz0-1RWCLclwiVC5ATMcdeSoiHNyyzvtK0KWnXNGVjEOGRB3RM6B88bB0f-YUf7Zd0r5HD0zqccD9-KeBCjV4cdD9AcnEzWO5hvg5YJJj9peQreKii9iylw69I5ODV8F_XFz1yC7f3ddvVYrDcPT6vbdSEJalLR95S3NaqFMXXLe6IEbWRXV4g3VCnZKtGRTvdIdtpU1LSaN4ZUoqVCYCF7sgTXx1gZfIxBGyZt4tOD0xs7hhGbwLCBHcGwCQxDmOXe2Vz_Mu-DHXn4_M92c7Tp3Ovd6sCitNpJrWzIRJjy9u-Ab6dqg_g
CitedBy_id crossref_primary_10_1007_s10878_025_01299_y
crossref_primary_10_1007_s10878_023_01021_w
crossref_primary_10_1142_S1793830924500617
crossref_primary_10_1016_j_tcs_2022_04_003
crossref_primary_10_1007_s10878_024_01240_9
crossref_primary_10_1007_s40305_024_00539_y
crossref_primary_10_1016_j_disopt_2021_100670
crossref_primary_10_1016_j_orl_2021_11_010
crossref_primary_10_26599_TST_2023_9010121
crossref_primary_10_1007_s10287_025_00541_6
crossref_primary_10_1016_j_tcs_2023_114320
crossref_primary_10_26599_TST_2022_9010039
crossref_primary_10_1109_ACCESS_2021_3072212
crossref_primary_10_1007_s40305_024_00544_1
crossref_primary_10_1016_j_cor_2023_106452
crossref_primary_10_1007_s10878_022_00858_x
Cites_doi 10.1287/opre.43.4.684
10.1016/S0167-6377(03)00062-2
10.1137/15M101926X
10.1137/130929205
10.1137/090750020
10.1145/2850419
10.1137/080733991
10.1007/BF01588971
10.1109/ICCV.2013.288
10.1137/130920277
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.disopt.2017.01.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-636X
EndPage 113
ExternalDocumentID 10_1016_j_disopt_2017_01_003
S1572528617300063
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
AAAKF
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AAXUO
ABAOU
ABMAC
ABUCO
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
APLSM
ARUGR
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HAMUX
HVGLF
HZ~
IHE
IXB
J1W
J9A
KOM
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SSB
SSD
SSW
SSZ
T5K
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-995a7404bff47a93db56c8420a65ddc7db838e90c8ef25f7ea6f32b75bb1bc93
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000395849900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1572-5286
IngestDate Tue Nov 18 21:00:26 EST 2025
Sat Nov 29 05:16:25 EST 2025
Fri Feb 23 02:29:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Greedy algorithm
k-submodular function
Matroid constraint
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-995a7404bff47a93db56c8420a65ddc7db838e90c8ef25f7ea6f32b75bb1bc93
PageCount 9
ParticipantIDs crossref_citationtrail_10_1016_j_disopt_2017_01_003
crossref_primary_10_1016_j_disopt_2017_01_003
elsevier_sciencedirect_doi_10_1016_j_disopt_2017_01_003
PublicationCentury 2000
PublicationDate February 2017
2017-02-00
PublicationDateYYYYMMDD 2017-02-01
PublicationDate_xml – month: 02
  year: 2017
  text: February 2017
PublicationDecade 2010
PublicationTitle Discrete optimization
PublicationYear 2017
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Hirai, Iwamasa (br000055) 2016; 30
Korte, Vygen (br000100) 2012
Fisher, Nemhauser, Wolsey (br000085) 1978
2011.
Huber, Kolmogorov (br000045) 2012
Sviridenko (br000040) 2004; 32
Iwata, Tanigawa, Yoshida (br000070) 2016
Iwata, Tanigawa, Yoshida (br000060) 2013
Nemhauser, Wolsey, Fisher (br000035) 1978; 14
Ko, Lee, Queyranne (br000015) 1995; 43
Lee, Mirrokni, Nagarajan, Sviridenko (br000095) 2010; 23
I. Gridchyn, V. Kolmogorov, Potts model, parametric maxflow and
Ward, Živný (br000065) 2016; 12
N. Ohsaka, Y. Yoshida, Monotone
Calinescu, Chekuri, Pál, Vondrák (br000030) 2011; 40
submodular functions, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2320–2327.
Krause, McMahan, Guestrin, Gupta (br000005) 2008; 9
Buchbinder, Feldman, Seffi, Schwartz (br000025) 2015; 44
Filmus, Ward (br000080) 2014; 43
submodular function maximization with size constraints, in: Advances in Neural Information Processing Systems, 2015, pp. 694–702.
Lin, Bilmes (br000020) 2010
D. Golovin, A. Krause, Adaptive submodular optimization under matroid constraints. arXiv preprint
Krause, Singh, Guestrin (br000010) 2008; 9
Nemhauser (10.1016/j.disopt.2017.01.003_br000035) 1978; 14
Calinescu (10.1016/j.disopt.2017.01.003_br000030) 2011; 40
10.1016/j.disopt.2017.01.003_br000090
Buchbinder (10.1016/j.disopt.2017.01.003_br000025) 2015; 44
Ko (10.1016/j.disopt.2017.01.003_br000015) 1995; 43
Krause (10.1016/j.disopt.2017.01.003_br000010) 2008; 9
Iwata (10.1016/j.disopt.2017.01.003_br000060) 2013
Korte (10.1016/j.disopt.2017.01.003_br000100) 2012
Sviridenko (10.1016/j.disopt.2017.01.003_br000040) 2004; 32
Iwata (10.1016/j.disopt.2017.01.003_br000070) 2016
Hirai (10.1016/j.disopt.2017.01.003_br000055) 2016; 30
Ward (10.1016/j.disopt.2017.01.003_br000065) 2016; 12
Filmus (10.1016/j.disopt.2017.01.003_br000080) 2014; 43
Lin (10.1016/j.disopt.2017.01.003_br000020) 2010
Krause (10.1016/j.disopt.2017.01.003_br000005) 2008; 9
Huber (10.1016/j.disopt.2017.01.003_br000045) 2012
10.1016/j.disopt.2017.01.003_br000075
Lee (10.1016/j.disopt.2017.01.003_br000095) 2010; 23
Fisher (10.1016/j.disopt.2017.01.003_br000085) 1978
10.1016/j.disopt.2017.01.003_br000050
References_xml – volume: 40
  start-page: 1740
  year: 2011
  end-page: 1766
  ident: br000030
  article-title: Maximizing a submodular set function subject to a matroid constraint
  publication-title: SIAM J. Comput.
– volume: 12
  start-page: 47:1
  year: 2016
  end-page: 47:26
  ident: br000065
  article-title: Maximizing
  publication-title: ACM Trans. Algorithms
– reference: I. Gridchyn, V. Kolmogorov, Potts model, parametric maxflow and
– reference: -submodular functions, in: Proceedings of the IEEE International Conference on Computer Vision, 2013, pp. 2320–2327.
– year: 2013
  ident: br000060
  article-title: Bisubmodular function maximization and extensions. Technical report, Technical Report METR 2013-16
– volume: 44
  start-page: 1384
  year: 2015
  end-page: 1402
  ident: br000025
  article-title: A tight linear time (1/2)-approximation for unconstrained submodular maximization
  publication-title: SIAM J. Comput.
– reference: , 2011.
– volume: 32
  start-page: 41
  year: 2004
  end-page: 43
  ident: br000040
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper. Res. Lett.
– volume: 30
  start-page: 1726
  year: 2016
  end-page: 1736
  ident: br000055
  article-title: On
  publication-title: SIAM J. Discrete Math.
– start-page: 73
  year: 1978
  end-page: 87
  ident: br000085
  article-title: An analysis of approximations for maximizing submodular set functions-II
  publication-title: Polyhedral combinatorics
– start-page: 404
  year: 2016
  end-page: 413
  ident: br000070
  article-title: Improved approximation algorithms for
  publication-title: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms
– start-page: 912
  year: 2010
  end-page: 920
  ident: br000020
  article-title: Multi-document summarization via budgeted maximization of submodular functions
  publication-title: Human Language Technologies: The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics
– reference: N. Ohsaka, Y. Yoshida, Monotone
– reference: D. Golovin, A. Krause, Adaptive submodular optimization under matroid constraints. arXiv preprint
– reference: -submodular function maximization with size constraints, in: Advances in Neural Information Processing Systems, 2015, pp. 694–702.
– volume: 14
  start-page: 265
  year: 1978
  end-page: 294
  ident: br000035
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math. Program.
– volume: 43
  start-page: 684
  year: 1995
  end-page: 691
  ident: br000015
  article-title: An exact algorithm for maximum entropy sampling
  publication-title: Oper. Res.
– volume: 9
  start-page: 2761
  year: 2008
  end-page: 2801
  ident: br000005
  article-title: Robust submodular observation selection
  publication-title: J. Mach. Learn. Res.
– volume: 43
  start-page: 514
  year: 2014
  end-page: 542
  ident: br000080
  article-title: Monotone submodular maximization over a matroid via non-oblivious local search
  publication-title: SIAM J. Comput.
– start-page: 451
  year: 2012
  end-page: 462
  ident: br000045
  article-title: Towards minimizing
  publication-title: Proceedings of 2nd International Symposium on Combinatorial Optimization
– volume: 23
  start-page: 2053
  year: 2010
  end-page: 2078
  ident: br000095
  article-title: Maximizing nonmonotone submodular functions under matroid or knapsack constraints
  publication-title: SIAM J. Discrete Math.
– volume: 9
  start-page: 235
  year: 2008
  end-page: 284
  ident: br000010
  article-title: Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies
  publication-title: J. Mach. Learn. Res.
– year: 2012
  ident: br000100
  article-title: Combinatorial Optimization, Vol. 2
– volume: 43
  start-page: 684
  issue: 4
  year: 1995
  ident: 10.1016/j.disopt.2017.01.003_br000015
  article-title: An exact algorithm for maximum entropy sampling
  publication-title: Oper. Res.
  doi: 10.1287/opre.43.4.684
– volume: 32
  start-page: 41
  issue: 1
  year: 2004
  ident: 10.1016/j.disopt.2017.01.003_br000040
  article-title: A note on maximizing a submodular set function subject to a knapsack constraint
  publication-title: Oper. Res. Lett.
  doi: 10.1016/S0167-6377(03)00062-2
– volume: 30
  start-page: 1726
  issue: 3
  year: 2016
  ident: 10.1016/j.disopt.2017.01.003_br000055
  article-title: On k-submodular relaxation
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/15M101926X
– start-page: 404
  year: 2016
  ident: 10.1016/j.disopt.2017.01.003_br000070
  article-title: Improved approximation algorithms for k-submodular function maximization
– ident: 10.1016/j.disopt.2017.01.003_br000075
– volume: 44
  start-page: 1384
  issue: 5
  year: 2015
  ident: 10.1016/j.disopt.2017.01.003_br000025
  article-title: A tight linear time (1/2)-approximation for unconstrained submodular maximization
  publication-title: SIAM J. Comput.
  doi: 10.1137/130929205
– start-page: 451
  year: 2012
  ident: 10.1016/j.disopt.2017.01.003_br000045
  article-title: Towards minimizing k-submodular functions
– volume: 23
  start-page: 2053
  issue: 4
  year: 2010
  ident: 10.1016/j.disopt.2017.01.003_br000095
  article-title: Maximizing nonmonotone submodular functions under matroid or knapsack constraints
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/090750020
– year: 2012
  ident: 10.1016/j.disopt.2017.01.003_br000100
– volume: 12
  start-page: 47:1
  issue: 4
  year: 2016
  ident: 10.1016/j.disopt.2017.01.003_br000065
  article-title: Maximizing k-submodular functions and beyond
  publication-title: ACM Trans. Algorithms
  doi: 10.1145/2850419
– ident: 10.1016/j.disopt.2017.01.003_br000090
– volume: 9
  start-page: 235
  issue: Feb
  year: 2008
  ident: 10.1016/j.disopt.2017.01.003_br000010
  article-title: Near-optimal sensor placements in gaussian processes: Theory, efficient algorithms and empirical studies
  publication-title: J. Mach. Learn. Res.
– volume: 40
  start-page: 1740
  issue: 6
  year: 2011
  ident: 10.1016/j.disopt.2017.01.003_br000030
  article-title: Maximizing a submodular set function subject to a matroid constraint
  publication-title: SIAM J. Comput.
  doi: 10.1137/080733991
– volume: 14
  start-page: 265
  issue: 1
  year: 1978
  ident: 10.1016/j.disopt.2017.01.003_br000035
  article-title: An analysis of approximations for maximizing submodular set functions-I
  publication-title: Math. Program.
  doi: 10.1007/BF01588971
– start-page: 73
  year: 1978
  ident: 10.1016/j.disopt.2017.01.003_br000085
  article-title: An analysis of approximations for maximizing submodular set functions-II
– ident: 10.1016/j.disopt.2017.01.003_br000050
  doi: 10.1109/ICCV.2013.288
– volume: 9
  start-page: 2761
  issue: Dec
  year: 2008
  ident: 10.1016/j.disopt.2017.01.003_br000005
  article-title: Robust submodular observation selection
  publication-title: J. Mach. Learn. Res.
– volume: 43
  start-page: 514
  issue: 2
  year: 2014
  ident: 10.1016/j.disopt.2017.01.003_br000080
  article-title: Monotone submodular maximization over a matroid via non-oblivious local search
  publication-title: SIAM J. Comput.
  doi: 10.1137/130920277
– start-page: 912
  year: 2010
  ident: 10.1016/j.disopt.2017.01.003_br000020
  article-title: Multi-document summarization via budgeted maximization of submodular functions
– year: 2013
  ident: 10.1016/j.disopt.2017.01.003_br000060
SSID ssj0034935
Score 2.329928
Snippet A k-submodular function is an extension of a submodular function in that its input is given by k disjoint subsets instead of a single subset. For unconstrained...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105
SubjectTerms [formula omitted]-submodular function
Greedy algorithm
Matroid constraint
Title On maximizing a monotone k-submodular function subject to a matroid constraint
URI https://dx.doi.org/10.1016/j.disopt.2017.01.003
Volume 23
WOSCitedRecordID wos000395849900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-636X
  dateEnd: 20171130
  omitProxy: false
  ssIdentifier: ssj0034935
  issn: 1572-5286
  databaseCode: AIEXJ
  dateStart: 20040615
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELdg4wEeJj7FNkB-4K0ycmInth-nbQh46JDoQ98iO05EVppWa4sq_vrdxUmaqYgviZeosuzk5F9yd77e_Y6QtxE33rpSM-FFzpACnTmpPBPSSZkUKf6z1DSbUOOxnk7N57Yl_KppJ6DqWm-3ZvlfoYYxABtLZ_8C7v6mMAC_AXS4Auxw_SPgr-rR3G6refWjqT8cwYMXyLg9mrEVGL-FbxJP0Z410MMYhmLQB4W5GBmvsNANiWVtVd-J3F9UoGMKzCsAPTNvCzj7EI2d2U2IZ3-t6pWdbYYBBTBS_E5yxn6lS1CMCg-tHW11GNNKsFQ0nQh7bRqLgTqMeDKwrFGoOt1T2iF-cP0O86eWmN8aqYZKlYudkepTB7-gJChIhEz74GDdJ4exSgxotMOzj5fTT50dFtI07VV7ybvCySa7b_9ZP3dMBs7G5DE5ak8J9Cyg-4TcK-qn5NGAO_IZGV_VdIcztbTDmQ5xph3OtMWZrhc4N-BMdzg_J5P3l5PzD6xtjsFyOOWtmTGJVZJLV5ZSWSO8S9Jcy5jbNPE-V95poQvDc12UcVKqwqaliJ1KnItcbsQLclCDTC8JlbzUkYy09iXSR1rHi1gobzTsXJF7e0xEtzFZ3hLHo2jfsi5D8DoL25nhdmY8QsLZY8L6VctAnPKb-arb86x1_oJTl8Fr8suVJ_-88pQ83H0Ar8jB-mZTvCYP8u_ranXzpn2fbgFghYJx
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+maximizing+a+monotone+k-submodular+function+subject+to+a+matroid+constraint&rft.jtitle=Discrete+optimization&rft.au=Sakaue%2C+Shinsaku&rft.date=2017-02-01&rft.pub=Elsevier+B.V&rft.issn=1572-5286&rft.eissn=1873-636X&rft.volume=23&rft.spage=105&rft.epage=113&rft_id=info:doi/10.1016%2Fj.disopt.2017.01.003&rft.externalDocID=S1572528617300063
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1572-5286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1572-5286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1572-5286&client=summon