Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm
Wind power forecasting has high application value in power systems. However, due to the intermittence and fluctuation of wind power, it is difficult to predict wind power effectively using a single forecasting model. Therefore, to improve the accuracy and stability of wind power forecasting, an ense...
Saved in:
| Published in: | Neurocomputing (Amsterdam) Vol. 462; pp. 169 - 184 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
28.10.2021
|
| Subjects: | |
| ISSN: | 0925-2312 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Wind power forecasting has high application value in power systems. However, due to the intermittence and fluctuation of wind power, it is difficult to predict wind power effectively using a single forecasting model. Therefore, to improve the accuracy and stability of wind power forecasting, an ensemble learning model based on stacking framework is proposed in this paper. First, several decomposition techniques are used to pre-process the original wind power data and an optimal decomposition method is selected through experiments. Then, a quadratic interpolation based on state transition algorithm is proposed to optimize the parameters of the Bernstein polynomial model and the weights of the Hermite neural network (HNN) to obtain two base learners. Finally, the Spearman correlation coefficient is used to analyze the correlation of several base learners. The base learners with low correlation and strong prediction ability are selected as the first-layer forecasting model of the stacking model, and the HNN is used as the second-layer prediction model to obtain the stacking ensemble model. To verify the effectiveness of the proposed model, a large number of comprehensive experiments are carried out with wind power data from a wind farm in Xinjiang, China. Experimental results show that the proposed model has higher prediction accuracy and stability than other single forecasting models. |
|---|---|
| AbstractList | Wind power forecasting has high application value in power systems. However, due to the intermittence and fluctuation of wind power, it is difficult to predict wind power effectively using a single forecasting model. Therefore, to improve the accuracy and stability of wind power forecasting, an ensemble learning model based on stacking framework is proposed in this paper. First, several decomposition techniques are used to pre-process the original wind power data and an optimal decomposition method is selected through experiments. Then, a quadratic interpolation based on state transition algorithm is proposed to optimize the parameters of the Bernstein polynomial model and the weights of the Hermite neural network (HNN) to obtain two base learners. Finally, the Spearman correlation coefficient is used to analyze the correlation of several base learners. The base learners with low correlation and strong prediction ability are selected as the first-layer forecasting model of the stacking model, and the HNN is used as the second-layer prediction model to obtain the stacking ensemble model. To verify the effectiveness of the proposed model, a large number of comprehensive experiments are carried out with wind power data from a wind farm in Xinjiang, China. Experimental results show that the proposed model has higher prediction accuracy and stability than other single forecasting models. |
| Author | Dong, Yingchao Wang, Cong Zhou, Xiaojun Zhang, Hongli |
| Author_xml | – sequence: 1 givenname: Yingchao surname: Dong fullname: Dong, Yingchao organization: School of Electrical Engineering, Xinjiang University, Urumqi, Xinjiang 830047, China – sequence: 2 givenname: Hongli surname: Zhang fullname: Zhang, Hongli email: zhlxju@163.com organization: School of Electrical Engineering, Xinjiang University, Urumqi, Xinjiang 830047, China – sequence: 3 givenname: Cong surname: Wang fullname: Wang, Cong organization: School of Electrical Engineering, Xinjiang University, Urumqi, Xinjiang 830047, China – sequence: 4 givenname: Xiaojun surname: Zhou fullname: Zhou, Xiaojun organization: School of Automation, Central South University, Changsha 410083, China |
| BookMark | eNqFkMtOwzAQRb0oEm3hD1j4A0gYO28WSKjiJVViA2JpOfakuCR2ZRsQfD0pYcUCVpbGc-7MnAWZWWeRkBMGKQNWnm1Ti6_KDSkHzlKoUqjzGZlDw4uEZ4wfkkUIWwBWMd7MyfBkrKY7946eds6jkiEau6GtDKipszREqV72FbQBh7ZHOjiN_SnVOE7ZuWCiGdvkmGJsxL43G7SRul00g_mU02e_cd7E5-GIHHSyD3j88y7J4_XVw-o2Wd_f3K0u14nKoIxJ0xRQSewaVCrLscjaEiS0ueZ1wblWqKBqQLGylpnSrFAaJe_KEhtVsxZltiTnU67yLgSPnVAmfu8SvTS9YCD2ssRWTLLEXpaASoyyRjj_Be-8GaT_-A-7mDAcD3sz6EVQBq1CbUatUWhn_g74Akxjjo8 |
| CitedBy_id | crossref_primary_10_1016_j_neucom_2025_131075 crossref_primary_10_3390_electronics12040994 crossref_primary_10_1111_coin_12617 crossref_primary_10_1016_j_asoc_2025_113870 crossref_primary_10_3390_s22197414 crossref_primary_10_3390_rs16214084 crossref_primary_10_1007_s00477_025_03074_1 crossref_primary_10_3389_fpls_2022_1047479 crossref_primary_10_1016_j_energy_2025_135031 crossref_primary_10_1016_j_energy_2025_137130 crossref_primary_10_3390_en16031370 crossref_primary_10_3390_electronics12071744 crossref_primary_10_1016_j_neucom_2025_131062 crossref_primary_10_1080_15435075_2025_2490560 crossref_primary_10_1007_s40200_023_01350_x crossref_primary_10_1016_j_ijepes_2022_108726 crossref_primary_10_1007_s11356_022_22957_2 crossref_primary_10_1016_j_energy_2024_131134 crossref_primary_10_1177_0309524X221088612 crossref_primary_10_1016_j_energy_2023_128289 crossref_primary_10_1016_j_rser_2022_112652 crossref_primary_10_1016_j_solener_2023_112241 crossref_primary_10_1016_j_energy_2024_130402 crossref_primary_10_1016_j_energy_2022_124384 crossref_primary_10_1016_j_energy_2024_133911 crossref_primary_10_1007_s10115_024_02106_6 crossref_primary_10_1016_j_enconman_2023_116935 crossref_primary_10_1016_j_fcr_2023_108821 crossref_primary_10_1016_j_enconman_2022_115433 crossref_primary_10_1016_j_apenergy_2023_121587 crossref_primary_10_1016_j_energy_2022_124212 crossref_primary_10_1016_j_asoc_2022_109247 crossref_primary_10_1109_ACCESS_2025_3543594 crossref_primary_10_1016_j_energy_2023_129724 crossref_primary_10_1016_j_ijhydene_2022_10_031 crossref_primary_10_1016_j_jksuci_2023_101873 crossref_primary_10_1016_j_ijforecast_2023_04_006 crossref_primary_10_1007_s40864_023_00205_1 crossref_primary_10_1016_j_energy_2023_129409 crossref_primary_10_1186_s44147_025_00714_9 crossref_primary_10_1016_j_neucom_2025_129491 crossref_primary_10_1016_j_jenvman_2024_120503 crossref_primary_10_3390_jcm11216460 crossref_primary_10_1002_ente_202301188 crossref_primary_10_1016_j_energy_2023_130078 crossref_primary_10_3390_rs16224224 crossref_primary_10_1016_j_renene_2025_123217 crossref_primary_10_1016_j_energy_2024_131963 crossref_primary_10_1063_5_0268894 crossref_primary_10_1109_ACCESS_2023_3336694 crossref_primary_10_3390_electronics12051187 crossref_primary_10_1007_s11071_025_10949_z crossref_primary_10_1016_j_knosys_2022_108271 crossref_primary_10_1109_ACCESS_2022_3228441 crossref_primary_10_1007_s11042_024_18916_3 crossref_primary_10_3390_su151713146 crossref_primary_10_1016_j_fuel_2024_131421 crossref_primary_10_1016_j_epsr_2022_107886 crossref_primary_10_1016_j_ijepes_2024_110229 crossref_primary_10_1016_j_segan_2024_101293 crossref_primary_10_1016_j_energy_2022_123857 crossref_primary_10_3390_app12010023 crossref_primary_10_1186_s12879_024_09138_x crossref_primary_10_1371_journal_pone_0302944 crossref_primary_10_3390_electronics11244125 crossref_primary_10_1016_j_energy_2023_127695 crossref_primary_10_1016_j_egyr_2022_07_005 crossref_primary_10_1016_j_energy_2025_138327 crossref_primary_10_1016_j_rser_2023_113229 crossref_primary_10_1007_s11227_021_04142_3 crossref_primary_10_1007_s12145_024_01544_8 crossref_primary_10_1177_03091333221088018 crossref_primary_10_1016_j_apenergy_2024_122671 crossref_primary_10_1049_rpg2_12914 crossref_primary_10_1057_s41300_024_00222_7 crossref_primary_10_3390_jmse10111769 crossref_primary_10_1016_j_neucom_2024_127764 crossref_primary_10_1016_j_apenergy_2024_122759 crossref_primary_10_32604_cmc_2024_048656 crossref_primary_10_1016_j_asoc_2022_108733 |
| Cites_doi | 10.1016/j.seta.2013.12.001 10.1016/j.sigpro.2013.01.023 10.1016/j.apenergy.2019.114137 10.1016/j.apenergy.2021.116545 10.1016/j.cagd.2012.03.001 10.1016/j.neucom.2017.08.010 10.5120/3358-4633 10.1016/j.measurement.2007.07.007 10.1016/j.renene.2019.04.157 10.1016/j.apenergy.2017.01.063 10.1016/j.enconman.2019.112188 10.1109/ICNN.1995.488968 10.3934/jimo.2012.8.1039 10.1109/TSP.2013.2288675 10.1109/TIE.2017.2694401 10.1016/j.mineng.2020.106201 10.1016/S0893-6080(05)80023-1 10.1016/j.asoc.2019.03.035 10.1016/j.enconman.2015.05.065 10.1142/S1793536910000422 10.1016/j.apenergy.2020.115098 10.1109/TCYB.2018.2850350 10.1109/UWBST.2002.1006316 10.1016/j.renene.2019.07.166 10.1016/j.renene.2017.03.064 10.1504/IJBIC.2010.032124 10.1007/s00521-016-2703-z 10.1016/j.jenvman.2019.109855 10.1016/j.ymssp.2018.05.019 10.1016/j.enconman.2014.10.001 10.1016/j.energy.2019.116316 10.1016/j.apenergy.2015.10.145 10.1016/j.jclepro.2018.07.164 10.1016/0167-2789(92)90103-T 10.1016/j.neunet.2017.02.013 10.1016/j.cviu.2019.102805 10.1016/j.neucom.2015.08.041 10.1016/j.neucom.2005.12.126 10.1016/j.energy.2017.07.112 10.1016/j.advengsoft.2013.12.007 10.1016/j.advengsoft.2016.01.008 10.1016/j.epsr.2017.01.035 10.1016/j.apenergy.2019.03.097 10.1016/j.asoc.2019.105744 10.1016/j.enconman.2019.112418 10.1016/j.neucom.2019.01.009 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2021.07.084 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 184 |
| ExternalDocumentID | 10_1016_j_neucom_2021_07_084 S0925231221011668 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXLA AAXUO AAYFN AAYWO ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACLOT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE AEBSH AEIPS AEKER AENEX AEUPX AFPUW AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SSN SSV SSZ T5K ZMT ~G- ~HD 29N 9DU AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AFJKZ AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC SEW WUQ XPP |
| ID | FETCH-LOGICAL-c306t-99507aef9ecc34e53b60a0b4d28522dcec0790c168a3cd15cdea2f66e9c81bea3 |
| ISICitedReferencesCount | 87 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702015400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:40:38 EST 2025 Tue Nov 18 22:30:01 EST 2025 Sat Sep 27 17:13:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Hermite polynomial Decomposition State transition algorithm Wind power forecasting Stacking ensemble learning Bernstein polynomial |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-99507aef9ecc34e53b60a0b4d28522dcec0790c168a3cd15cdea2f66e9c81bea3 |
| PageCount | 16 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_neucom_2021_07_084 crossref_primary_10_1016_j_neucom_2021_07_084 elsevier_sciencedirect_doi_10_1016_j_neucom_2021_07_084 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-28 |
| PublicationDateYYYYMMDD | 2021-10-28 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Akçay, Filik (b0255) 2017; 191 Wolpert (b0230) 1992; 5 Shahid, Zameer, Mehmood, Raja (b0010) 2020; 269 P. Du, J. Wang, W. Yang, T. Niu, A novel hybrid fine particulate matter (pm2. 5) forecasting and its further application system: case studies in china, Journal of Forecasting. A. Fellhauer, Approximation of smooth functions using Bernstein polynomials in multiple variables, arXiv preprint arXiv:1609.01940. Yang (b0115) 2010; 2 Pan, Yang, Li, Zheng, Cheng (b0100) 2019; 114 Wang, Lei, Liu, Peng, Liu (b0155) 2019; 201 Afshari-Igder, Niknam, Khooban (b0125) 2018; 30 Guo, Zhang (b0055) 2019; 189 Zhou, Zhang, Yang (b0185) 2020; 153 Zendehboudi, Baseer, Saidur (b0030) 2018; 199 Morales-Mendoza, Gamboa-Rosales, Shmaliy (b0225) 2013; 93 Ting, Guo-Zheng, Bang-Hua, Hong (b0095) 2008; 41 Niu, Wang (b0145) 2019; 241 L.B. Michael, M. Ghavami, R. Kohno, Multiple pulse generator for ultra-wideband communication using Hermite polynomial based orthogonal pulses, in: 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580), 2002, pp. 47–51. Huang, Zhu, Siew (b0235) 2006; 70 Yuan, Chen, Yuan, Huang, Tan (b0035) 2015; 101 Olaofe (b0070) 2014; 6 Zhou, Yang, Gui (b0170) 2012; 8 Zhou, Yang, Xie, Yang, Huang (b0200) 2019; 334 Dragomiretskiy, Zosso (b0090) 2013; 62 Zhou, Gao, Yang, Gui (b0180) 2016; 173 Fayek, Lech, Cavedon (b0050) 2017; 92 Dalal, Zaveri (b0060) 2011; 28 Wang, Du, Hao, Ma, Niu, Yang (b0075) 2020; 255 Wang, Zhang, Fan, Ma (b0135) 2017; 138 Wu, Wang, Chen, Du, Yang (b0045) 2020; 146 Zhou, Shi, Lim, Yang, Gui (b0195) 2018; 273 Yeh, Shieh, Huang (b0085) 2010; 2 X. Zhou, X. Wang, T. Huang, C. Yang, Hybrid intelligence assisted sample average approximation method for chance constrained dynamic optimization, IEEE Transactions on Industrial Informatics. Mirjalili, Mirjalili, Lewis (b0120) 2014; 69 Dong, Zhang, Wang, Zhou (b0150) 2021; 286 Gazafroudi (b0005) 2015; 5 J. Kennedy, E. Russell, Particle swarm optimization, in: Proceedings, IEEE International Conference on Neural Networks, 1995, 1995, pp. 1942–1948. Du, Wang, Yang, Niu (b0015) 2019; 80 Liu, Jiang, Zhang, Niu (b0140) 2020; 259 Lahouar, Slama (b0240) 2017; 109 Yin, Ou, Huang, Meng (b0065) 2019; 189 Zhang, Wang, Zhang (b0130) 2017; 146 Su, Zheng, Mercorelli (b0025) 2017; 64 Chitsaz, Amjady, Zareipour (b0245) 2015; 89 Zhou, Yang, Gui (b0175) 2019; 49 Vautard, Yiou, Ghil (b0105) 1992; 58 Zhao, Guo, Su, Zhao, Xiao, Liu (b0020) 2016; 162 Wang, Jia, Liu, Zhang (b0165) 2020; 145 Farouki (b0215) 2012; 29 Jiajun, Chuanjin, Yongle, Huoyue (b0160) 2020; 205 Mirjalili, Lewis (b0250) 2016; 95 Yatiyana, Rajakaruna, Ghosh (b0040) 2017 Sun, Yang, Liu (b0205) 2019; 85 Yuan (10.1016/j.neucom.2021.07.084_b0035) 2015; 101 Yang (10.1016/j.neucom.2021.07.084_b0115) 2010; 2 Shahid (10.1016/j.neucom.2021.07.084_b0010) 2020; 269 Zendehboudi (10.1016/j.neucom.2021.07.084_b0030) 2018; 199 Zhou (10.1016/j.neucom.2021.07.084_b0180) 2016; 173 Wang (10.1016/j.neucom.2021.07.084_b0155) 2019; 201 Wang (10.1016/j.neucom.2021.07.084_b0165) 2020; 145 Zhou (10.1016/j.neucom.2021.07.084_b0185) 2020; 153 Fayek (10.1016/j.neucom.2021.07.084_b0050) 2017; 92 Mirjalili (10.1016/j.neucom.2021.07.084_b0120) 2014; 69 10.1016/j.neucom.2021.07.084_b0210 Zhao (10.1016/j.neucom.2021.07.084_b0020) 2016; 162 Su (10.1016/j.neucom.2021.07.084_b0025) 2017; 64 Dong (10.1016/j.neucom.2021.07.084_b0150) 2021; 286 Zhou (10.1016/j.neucom.2021.07.084_b0175) 2019; 49 10.1016/j.neucom.2021.07.084_b0080 Morales-Mendoza (10.1016/j.neucom.2021.07.084_b0225) 2013; 93 Zhou (10.1016/j.neucom.2021.07.084_b0170) 2012; 8 Huang (10.1016/j.neucom.2021.07.084_b0235) 2006; 70 Akçay (10.1016/j.neucom.2021.07.084_b0255) 2017; 191 Dalal (10.1016/j.neucom.2021.07.084_b0060) 2011; 28 Sun (10.1016/j.neucom.2021.07.084_b0205) 2019; 85 Guo (10.1016/j.neucom.2021.07.084_b0055) 2019; 189 Vautard (10.1016/j.neucom.2021.07.084_b0105) 1992; 58 Yin (10.1016/j.neucom.2021.07.084_b0065) 2019; 189 Dragomiretskiy (10.1016/j.neucom.2021.07.084_b0090) 2013; 62 10.1016/j.neucom.2021.07.084_b0190 Niu (10.1016/j.neucom.2021.07.084_b0145) 2019; 241 Ting (10.1016/j.neucom.2021.07.084_b0095) 2008; 41 10.1016/j.neucom.2021.07.084_b0110 Farouki (10.1016/j.neucom.2021.07.084_b0215) 2012; 29 Liu (10.1016/j.neucom.2021.07.084_b0140) 2020; 259 Afshari-Igder (10.1016/j.neucom.2021.07.084_b0125) 2018; 30 Zhou (10.1016/j.neucom.2021.07.084_b0195) 2018; 273 Yeh (10.1016/j.neucom.2021.07.084_b0085) 2010; 2 Mirjalili (10.1016/j.neucom.2021.07.084_b0250) 2016; 95 Gazafroudi (10.1016/j.neucom.2021.07.084_b0005) 2015; 5 Wolpert (10.1016/j.neucom.2021.07.084_b0230) 1992; 5 Wang (10.1016/j.neucom.2021.07.084_b0135) 2017; 138 Jiajun (10.1016/j.neucom.2021.07.084_b0160) 2020; 205 Chitsaz (10.1016/j.neucom.2021.07.084_b0245) 2015; 89 Zhang (10.1016/j.neucom.2021.07.084_b0130) 2017; 146 Lahouar (10.1016/j.neucom.2021.07.084_b0240) 2017; 109 Du (10.1016/j.neucom.2021.07.084_b0015) 2019; 80 Zhou (10.1016/j.neucom.2021.07.084_b0200) 2019; 334 10.1016/j.neucom.2021.07.084_b0220 Yatiyana (10.1016/j.neucom.2021.07.084_b0040) 2017 Wang (10.1016/j.neucom.2021.07.084_b0075) 2020; 255 Olaofe (10.1016/j.neucom.2021.07.084_b0070) 2014; 6 Wu (10.1016/j.neucom.2021.07.084_b0045) 2020; 146 Pan (10.1016/j.neucom.2021.07.084_b0100) 2019; 114 |
| References_xml | – volume: 28 start-page: 37 year: 2011 end-page: 40 ident: b0060 article-title: Automatic text classification: a technical review publication-title: International Journal of Computer Applications – volume: 286 year: 2021 ident: b0150 article-title: A novel hybrid model based on bernstein polynomial with mixture of Gaussians for wind power forecasting publication-title: Applied Energy – volume: 199 start-page: 272 year: 2018 end-page: 285 ident: b0030 article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review publication-title: Journal of Cleaner Production – volume: 30 start-page: 473 year: 2018 end-page: 485 ident: b0125 article-title: Probabilistic wind power forecasting using a novel hybrid intelligent method publication-title: Neural Computing and Applications – volume: 8 start-page: 1039 year: 2012 end-page: 1056 ident: b0170 article-title: State transition algorithm publication-title: Journal of Industrial and Management Optimization – volume: 29 start-page: 379 year: 2012 end-page: 419 ident: b0215 article-title: The Bernstein polynomial basis: A centennial retrospective publication-title: Computer Aided Geometric Design – volume: 89 start-page: 588 year: 2015 end-page: 598 ident: b0245 article-title: Wind power forecast using wavelet neural network trained by improved clonal selection algorithm publication-title: Energy Conversion and Management – reference: L.B. Michael, M. Ghavami, R. Kohno, Multiple pulse generator for ultra-wideband communication using Hermite polynomial based orthogonal pulses, in: 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580), 2002, pp. 47–51. – volume: 191 start-page: 653 year: 2017 end-page: 662 ident: b0255 article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values publication-title: Applied Energy – reference: A. Fellhauer, Approximation of smooth functions using Bernstein polynomials in multiple variables, arXiv preprint arXiv:1609.01940. – volume: 5 start-page: 1 year: 2015 end-page: 8 ident: b0005 article-title: Assessing the impact of load and renewable energies’ uncertainty on a hybrid system publication-title: International Journal of Energy and Power Engineering – volume: 49 start-page: 3722 year: 2019 end-page: 3730 ident: b0175 article-title: A statistical study on parameter selection of operators in continuous state transition algorithm publication-title: IEEE Transactions on Cybernetics – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: b0250 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software – volume: 64 start-page: 8187 year: 2017 end-page: 8189 ident: b0025 article-title: Comments on “tracking control of robotic manipulators with uncertain kinematics and dynamics” publication-title: IEEE Transactions on Industrial Electronics – volume: 146 start-page: 270 year: 2017 end-page: 285 ident: b0130 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm publication-title: Electric Power Systems Research – volume: 162 start-page: 808 year: 2016 end-page: 826 ident: b0020 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Applied Energy – volume: 69 start-page: 46 year: 2014 end-page: 61 ident: b0120 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software – volume: 62 start-page: 531 year: 2013 end-page: 544 ident: b0090 article-title: Variational mode decomposition publication-title: IEEE Transactions on Signal Processing – reference: J. Kennedy, E. Russell, Particle swarm optimization, in: Proceedings, IEEE International Conference on Neural Networks, 1995, 1995, pp. 1942–1948. – volume: 273 start-page: 237 year: 2018 end-page: 250 ident: b0195 article-title: A dynamic state transition algorithm with application to sensor network localization publication-title: Neurocomputing – volume: 205 year: 2020 ident: b0160 article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning publication-title: Energy Conversion and Management – volume: 146 start-page: 149 year: 2020 end-page: 165 ident: b0045 article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting publication-title: Renewable Energy – volume: 255 year: 2020 ident: b0075 article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting publication-title: Journal of Environmental Management – volume: 92 start-page: 60 year: 2017 end-page: 68 ident: b0050 article-title: Evaluating deep learning architectures for speech emotion recognition publication-title: Neural Networks – volume: 153 year: 2020 ident: b0185 article-title: A hybrid feature selection method for production condition recognition in froth flotation with noisy labels publication-title: Minerals Engineering – volume: 173 start-page: 864 year: 2016 end-page: 874 ident: b0180 article-title: Discrete state transition algorithm for unconstrained integer optimization problems publication-title: Neurocomputing – volume: 2 start-page: 135 year: 2010 end-page: 156 ident: b0085 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Advances in Adaptive Data Analysis – volume: 269 year: 2020 ident: b0010 article-title: A novel wavenets long short term memory paradigm for wind power prediction publication-title: Applied Energy – volume: 259 year: 2020 ident: b0140 article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting publication-title: Applied Energy – volume: 189 year: 2019 ident: b0055 article-title: A survey on deep learning based face recognition publication-title: Computer Vision and Image Understanding – volume: 189 year: 2019 ident: b0065 article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition publication-title: Energy – volume: 201 year: 2019 ident: b0155 article-title: Echo state network based ensemble approach for wind power forecasting publication-title: Energy Conversion and Management – volume: 334 start-page: 89 year: 2019 end-page: 99 ident: b0200 article-title: A novel modularity-based discrete state transition algorithm for community detection in networks publication-title: Neurocomputing – start-page: 1 year: 2017 end-page: 6 ident: b0040 article-title: Wind speed and direction forecasting for wind power generation using ARIMA model publication-title: 2017 Australasian Universities Power Engineering Conference (AUPEC) – volume: 70 start-page: 489 year: 2006 end-page: 501 ident: b0235 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing – volume: 109 start-page: 529 year: 2017 end-page: 541 ident: b0240 article-title: Hour-ahead wind power forecast based on random forests publication-title: Renewable Energy – volume: 145 start-page: 2426 year: 2020 end-page: 2434 ident: b0165 article-title: A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning publication-title: Renewable Energy – volume: 241 start-page: 519 year: 2019 end-page: 539 ident: b0145 article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting publication-title: Applied Energy – volume: 85 year: 2019 ident: b0205 article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems publication-title: Applied Soft Computing – volume: 101 start-page: 393 year: 2015 end-page: 401 ident: b0035 article-title: Short-term wind power prediction based on LSSVM–GSA model publication-title: Energy Conversion and Management – volume: 6 start-page: 1 year: 2014 end-page: 24 ident: b0070 article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (lrnn) publication-title: Sustainable Energy Technologies and Assessments – reference: P. Du, J. Wang, W. Yang, T. Niu, A novel hybrid fine particulate matter (pm2. 5) forecasting and its further application system: case studies in china, Journal of Forecasting. – volume: 93 start-page: 1785 year: 2013 end-page: 1793 ident: b0225 article-title: A new class of discrete orthogonal polynomials for blind fitting of finite data publication-title: Signal Processing – volume: 114 start-page: 189 year: 2019 end-page: 211 ident: b0100 article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis publication-title: Mechanical Systems and Signal Processing – reference: X. Zhou, X. Wang, T. Huang, C. Yang, Hybrid intelligence assisted sample average approximation method for chance constrained dynamic optimization, IEEE Transactions on Industrial Informatics. – volume: 41 start-page: 618 year: 2008 end-page: 625 ident: b0095 article-title: Eeg feature extraction based on wavelet packet decomposition for brain computer interface publication-title: Measurement – volume: 138 start-page: 977 year: 2017 end-page: 990 ident: b0135 article-title: A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction publication-title: Energy – volume: 58 start-page: 95 year: 1992 end-page: 126 ident: b0105 article-title: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals publication-title: Physica D: Nonlinear Phenomena – volume: 5 start-page: 241 year: 1992 end-page: 259 ident: b0230 article-title: Stacked generalization publication-title: Neural Networks – volume: 80 start-page: 93 year: 2019 end-page: 106 ident: b0015 article-title: A novel hybrid model for short-term wind power forecasting publication-title: Applied Soft Computing – volume: 2 start-page: 78 year: 2010 end-page: 84 ident: b0115 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: International Journal of Bio-inspired Computation – volume: 6 start-page: 1 year: 2014 ident: 10.1016/j.neucom.2021.07.084_b0070 article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (lrnn) publication-title: Sustainable Energy Technologies and Assessments doi: 10.1016/j.seta.2013.12.001 – volume: 93 start-page: 1785 issue: 7 year: 2013 ident: 10.1016/j.neucom.2021.07.084_b0225 article-title: A new class of discrete orthogonal polynomials for blind fitting of finite data publication-title: Signal Processing doi: 10.1016/j.sigpro.2013.01.023 – volume: 259 year: 2020 ident: 10.1016/j.neucom.2021.07.084_b0140 article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.114137 – ident: 10.1016/j.neucom.2021.07.084_b0210 – volume: 286 year: 2021 ident: 10.1016/j.neucom.2021.07.084_b0150 article-title: A novel hybrid model based on bernstein polynomial with mixture of Gaussians for wind power forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2021.116545 – volume: 29 start-page: 379 issue: 6 year: 2012 ident: 10.1016/j.neucom.2021.07.084_b0215 article-title: The Bernstein polynomial basis: A centennial retrospective publication-title: Computer Aided Geometric Design doi: 10.1016/j.cagd.2012.03.001 – volume: 273 start-page: 237 year: 2018 ident: 10.1016/j.neucom.2021.07.084_b0195 article-title: A dynamic state transition algorithm with application to sensor network localization publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.08.010 – volume: 28 start-page: 37 issue: 2 year: 2011 ident: 10.1016/j.neucom.2021.07.084_b0060 article-title: Automatic text classification: a technical review publication-title: International Journal of Computer Applications doi: 10.5120/3358-4633 – volume: 41 start-page: 618 issue: 6 year: 2008 ident: 10.1016/j.neucom.2021.07.084_b0095 article-title: Eeg feature extraction based on wavelet packet decomposition for brain computer interface publication-title: Measurement doi: 10.1016/j.measurement.2007.07.007 – volume: 146 start-page: 149 year: 2020 ident: 10.1016/j.neucom.2021.07.084_b0045 article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting publication-title: Renewable Energy doi: 10.1016/j.renene.2019.04.157 – volume: 191 start-page: 653 year: 2017 ident: 10.1016/j.neucom.2021.07.084_b0255 article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values publication-title: Applied Energy doi: 10.1016/j.apenergy.2017.01.063 – volume: 201 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0155 article-title: Echo state network based ensemble approach for wind power forecasting publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.112188 – ident: 10.1016/j.neucom.2021.07.084_b0110 doi: 10.1109/ICNN.1995.488968 – volume: 5 start-page: 1 issue: 2–2 year: 2015 ident: 10.1016/j.neucom.2021.07.084_b0005 article-title: Assessing the impact of load and renewable energies’ uncertainty on a hybrid system publication-title: International Journal of Energy and Power Engineering – volume: 8 start-page: 1039 issue: 4 year: 2012 ident: 10.1016/j.neucom.2021.07.084_b0170 article-title: State transition algorithm publication-title: Journal of Industrial and Management Optimization doi: 10.3934/jimo.2012.8.1039 – volume: 62 start-page: 531 issue: 3 year: 2013 ident: 10.1016/j.neucom.2021.07.084_b0090 article-title: Variational mode decomposition publication-title: IEEE Transactions on Signal Processing doi: 10.1109/TSP.2013.2288675 – volume: 64 start-page: 8187 issue: 10 year: 2017 ident: 10.1016/j.neucom.2021.07.084_b0025 article-title: Comments on “tracking control of robotic manipulators with uncertain kinematics and dynamics” publication-title: IEEE Transactions on Industrial Electronics doi: 10.1109/TIE.2017.2694401 – volume: 153 year: 2020 ident: 10.1016/j.neucom.2021.07.084_b0185 article-title: A hybrid feature selection method for production condition recognition in froth flotation with noisy labels publication-title: Minerals Engineering doi: 10.1016/j.mineng.2020.106201 – volume: 5 start-page: 241 issue: 2 year: 1992 ident: 10.1016/j.neucom.2021.07.084_b0230 article-title: Stacked generalization publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80023-1 – volume: 80 start-page: 93 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0015 article-title: A novel hybrid model for short-term wind power forecasting publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.03.035 – volume: 101 start-page: 393 year: 2015 ident: 10.1016/j.neucom.2021.07.084_b0035 article-title: Short-term wind power prediction based on LSSVM–GSA model publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2015.05.065 – volume: 2 start-page: 135 issue: 2 year: 2010 ident: 10.1016/j.neucom.2021.07.084_b0085 article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method publication-title: Advances in Adaptive Data Analysis doi: 10.1142/S1793536910000422 – volume: 269 year: 2020 ident: 10.1016/j.neucom.2021.07.084_b0010 article-title: A novel wavenets long short term memory paradigm for wind power prediction publication-title: Applied Energy doi: 10.1016/j.apenergy.2020.115098 – volume: 49 start-page: 3722 issue: 10 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0175 article-title: A statistical study on parameter selection of operators in continuous state transition algorithm publication-title: IEEE Transactions on Cybernetics doi: 10.1109/TCYB.2018.2850350 – ident: 10.1016/j.neucom.2021.07.084_b0220 doi: 10.1109/UWBST.2002.1006316 – volume: 145 start-page: 2426 year: 2020 ident: 10.1016/j.neucom.2021.07.084_b0165 article-title: A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning publication-title: Renewable Energy doi: 10.1016/j.renene.2019.07.166 – volume: 109 start-page: 529 year: 2017 ident: 10.1016/j.neucom.2021.07.084_b0240 article-title: Hour-ahead wind power forecast based on random forests publication-title: Renewable Energy doi: 10.1016/j.renene.2017.03.064 – volume: 2 start-page: 78 issue: 2 year: 2010 ident: 10.1016/j.neucom.2021.07.084_b0115 article-title: Firefly algorithm, stochastic test functions and design optimisation publication-title: International Journal of Bio-inspired Computation doi: 10.1504/IJBIC.2010.032124 – ident: 10.1016/j.neucom.2021.07.084_b0190 – volume: 30 start-page: 473 issue: 2 year: 2018 ident: 10.1016/j.neucom.2021.07.084_b0125 article-title: Probabilistic wind power forecasting using a novel hybrid intelligent method publication-title: Neural Computing and Applications doi: 10.1007/s00521-016-2703-z – volume: 255 year: 2020 ident: 10.1016/j.neucom.2021.07.084_b0075 article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting publication-title: Journal of Environmental Management doi: 10.1016/j.jenvman.2019.109855 – volume: 114 start-page: 189 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0100 article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2018.05.019 – volume: 89 start-page: 588 year: 2015 ident: 10.1016/j.neucom.2021.07.084_b0245 article-title: Wind power forecast using wavelet neural network trained by improved clonal selection algorithm publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2014.10.001 – volume: 189 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0065 article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition publication-title: Energy doi: 10.1016/j.energy.2019.116316 – volume: 162 start-page: 808 year: 2016 ident: 10.1016/j.neucom.2021.07.084_b0020 article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed publication-title: Applied Energy doi: 10.1016/j.apenergy.2015.10.145 – volume: 199 start-page: 272 year: 2018 ident: 10.1016/j.neucom.2021.07.084_b0030 article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review publication-title: Journal of Cleaner Production doi: 10.1016/j.jclepro.2018.07.164 – volume: 58 start-page: 95 issue: 1–4 year: 1992 ident: 10.1016/j.neucom.2021.07.084_b0105 article-title: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals publication-title: Physica D: Nonlinear Phenomena doi: 10.1016/0167-2789(92)90103-T – volume: 92 start-page: 60 year: 2017 ident: 10.1016/j.neucom.2021.07.084_b0050 article-title: Evaluating deep learning architectures for speech emotion recognition publication-title: Neural Networks doi: 10.1016/j.neunet.2017.02.013 – volume: 189 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0055 article-title: A survey on deep learning based face recognition publication-title: Computer Vision and Image Understanding doi: 10.1016/j.cviu.2019.102805 – volume: 173 start-page: 864 year: 2016 ident: 10.1016/j.neucom.2021.07.084_b0180 article-title: Discrete state transition algorithm for unconstrained integer optimization problems publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.041 – volume: 70 start-page: 489 issue: 1 year: 2006 ident: 10.1016/j.neucom.2021.07.084_b0235 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: 10.1016/j.neucom.2021.07.084_b0080 – volume: 138 start-page: 977 year: 2017 ident: 10.1016/j.neucom.2021.07.084_b0135 article-title: A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction publication-title: Energy doi: 10.1016/j.energy.2017.07.112 – volume: 69 start-page: 46 year: 2014 ident: 10.1016/j.neucom.2021.07.084_b0120 article-title: Grey wolf optimizer publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2013.12.007 – start-page: 1 year: 2017 ident: 10.1016/j.neucom.2021.07.084_b0040 article-title: Wind speed and direction forecasting for wind power generation using ARIMA model – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.neucom.2021.07.084_b0250 article-title: The whale optimization algorithm publication-title: Advances in Engineering Software doi: 10.1016/j.advengsoft.2016.01.008 – volume: 146 start-page: 270 year: 2017 ident: 10.1016/j.neucom.2021.07.084_b0130 article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2017.01.035 – volume: 241 start-page: 519 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0145 article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting publication-title: Applied Energy doi: 10.1016/j.apenergy.2019.03.097 – volume: 85 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0205 article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems publication-title: Applied Soft Computing doi: 10.1016/j.asoc.2019.105744 – volume: 205 year: 2020 ident: 10.1016/j.neucom.2021.07.084_b0160 article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning publication-title: Energy Conversion and Management doi: 10.1016/j.enconman.2019.112418 – volume: 334 start-page: 89 year: 2019 ident: 10.1016/j.neucom.2021.07.084_b0200 article-title: A novel modularity-based discrete state transition algorithm for community detection in networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.01.009 |
| SSID | ssj0017129 |
| Score | 2.6121848 |
| Snippet | Wind power forecasting has high application value in power systems. However, due to the intermittence and fluctuation of wind power, it is difficult to predict... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 169 |
| SubjectTerms | Bernstein polynomial Decomposition Hermite polynomial Stacking ensemble learning State transition algorithm Wind power forecasting |
| Title | Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm |
| URI | https://dx.doi.org/10.1016/j.neucom.2021.07.084 |
| Volume | 462 |
| WOSCitedRecordID | wos000702015400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017129 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF6FlAMX3ohSQHvgFoz8tvcYlaLCoeJQRDhZ69kNTRTbVepU_TX81s7srl2HoEIPXCxrtV4nns-zM-OZbxh7R6RUqczBU2hOeLHQvifTrPSELhOAGH2SaG6aTWQnJ_lsJr6ORr-6WpjLVVbX-dWVOP-vosYxFDaVzt5B3P2iOIDnKHQ8otjx-E-C_76g0n9qfkYphBrkhclspu1K0acBNAeB4uMTdGB1RYVTphsOPWulKcPcpXE5XqaOsbOdNKhdKle2OZGrn8160Z5VQ-vWMH2A6RPhIhDTiogYFKGujzh8dFnAP3AOnMlmJ3Z93FBt8U2o344eNm6TNVObDY3NFrJZbuph6CI0uXPhQNv6Ikw8NDC31HHstLNVqIFt5OL25sC2k9tR-zYCsfxQ6w3lANG9DCWrnb7Nsv3b7tfnJHbpbsvCrlLQKoWfFbjKPbYXZonIx2xv-vlo9qX_TpUFoWVzdH-kK840GYS7v-bPxs_AoDl9zB46T4RPLYKesJGun7JHXZcP7pT-M1YRoLgBFB8AihtA8abmHaB4ByhuAPWeb8GJI5z4AE58CCfew-k5-_bp6PTw2HNNOjxAb7P1hECPQuq5QF0QxTqJytSXfhmrMEfTXoEGPxM-BGkuI1BBAkrLcJ6mWgB6TFpGL9i4bmr9knEIQSYqikuVQJz5Qs5LAfM0T7QOJfh6n0Xd0yvAMdhTI5VVcZvs9pnXX3VuGVz-Mj_rBFM4K9RalwWi7dYrX93xTgfswc1b8ZqN2_VGv2H34bJdXKzfOqhdA1MVsh4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+power+forecasting+based+on+stacking+ensemble+model%2C+decomposition+and+intelligent+optimization+algorithm&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Dong%2C+Yingchao&rft.au=Zhang%2C+Hongli&rft.au=Wang%2C+Cong&rft.au=Zhou%2C+Xiaojun&rft.date=2021-10-28&rft.issn=0925-2312&rft.volume=462&rft.spage=169&rft.epage=184&rft_id=info:doi/10.1016%2Fj.neucom.2021.07.084&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2021_07_084 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |