Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm

Wind power forecasting has high application value in power systems. However, due to the intermittence and fluctuation of wind power, it is difficult to predict wind power effectively using a single forecasting model. Therefore, to improve the accuracy and stability of wind power forecasting, an ense...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 462; s. 169 - 184
Hlavní autoři: Dong, Yingchao, Zhang, Hongli, Wang, Cong, Zhou, Xiaojun
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 28.10.2021
Témata:
ISSN:0925-2312
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Wind power forecasting has high application value in power systems. However, due to the intermittence and fluctuation of wind power, it is difficult to predict wind power effectively using a single forecasting model. Therefore, to improve the accuracy and stability of wind power forecasting, an ensemble learning model based on stacking framework is proposed in this paper. First, several decomposition techniques are used to pre-process the original wind power data and an optimal decomposition method is selected through experiments. Then, a quadratic interpolation based on state transition algorithm is proposed to optimize the parameters of the Bernstein polynomial model and the weights of the Hermite neural network (HNN) to obtain two base learners. Finally, the Spearman correlation coefficient is used to analyze the correlation of several base learners. The base learners with low correlation and strong prediction ability are selected as the first-layer forecasting model of the stacking model, and the HNN is used as the second-layer prediction model to obtain the stacking ensemble model. To verify the effectiveness of the proposed model, a large number of comprehensive experiments are carried out with wind power data from a wind farm in Xinjiang, China. Experimental results show that the proposed model has higher prediction accuracy and stability than other single forecasting models.
AbstractList Wind power forecasting has high application value in power systems. However, due to the intermittence and fluctuation of wind power, it is difficult to predict wind power effectively using a single forecasting model. Therefore, to improve the accuracy and stability of wind power forecasting, an ensemble learning model based on stacking framework is proposed in this paper. First, several decomposition techniques are used to pre-process the original wind power data and an optimal decomposition method is selected through experiments. Then, a quadratic interpolation based on state transition algorithm is proposed to optimize the parameters of the Bernstein polynomial model and the weights of the Hermite neural network (HNN) to obtain two base learners. Finally, the Spearman correlation coefficient is used to analyze the correlation of several base learners. The base learners with low correlation and strong prediction ability are selected as the first-layer forecasting model of the stacking model, and the HNN is used as the second-layer prediction model to obtain the stacking ensemble model. To verify the effectiveness of the proposed model, a large number of comprehensive experiments are carried out with wind power data from a wind farm in Xinjiang, China. Experimental results show that the proposed model has higher prediction accuracy and stability than other single forecasting models.
Author Dong, Yingchao
Wang, Cong
Zhou, Xiaojun
Zhang, Hongli
Author_xml – sequence: 1
  givenname: Yingchao
  surname: Dong
  fullname: Dong, Yingchao
  organization: School of Electrical Engineering, Xinjiang University, Urumqi, Xinjiang 830047, China
– sequence: 2
  givenname: Hongli
  surname: Zhang
  fullname: Zhang, Hongli
  email: zhlxju@163.com
  organization: School of Electrical Engineering, Xinjiang University, Urumqi, Xinjiang 830047, China
– sequence: 3
  givenname: Cong
  surname: Wang
  fullname: Wang, Cong
  organization: School of Electrical Engineering, Xinjiang University, Urumqi, Xinjiang 830047, China
– sequence: 4
  givenname: Xiaojun
  surname: Zhou
  fullname: Zhou, Xiaojun
  organization: School of Automation, Central South University, Changsha 410083, China
BookMark eNqFkMtOwzAQRb0oEm3hD1j4A0gYO28WSKjiJVViA2JpOfakuCR2ZRsQfD0pYcUCVpbGc-7MnAWZWWeRkBMGKQNWnm1Ti6_KDSkHzlKoUqjzGZlDw4uEZ4wfkkUIWwBWMd7MyfBkrKY7946eds6jkiEau6GtDKipszREqV72FbQBh7ZHOjiN_SnVOE7ZuWCiGdvkmGJsxL43G7SRul00g_mU02e_cd7E5-GIHHSyD3j88y7J4_XVw-o2Wd_f3K0u14nKoIxJ0xRQSewaVCrLscjaEiS0ueZ1wblWqKBqQLGylpnSrFAaJe_KEhtVsxZltiTnU67yLgSPnVAmfu8SvTS9YCD2ssRWTLLEXpaASoyyRjj_Be-8GaT_-A-7mDAcD3sz6EVQBq1CbUatUWhn_g74Akxjjo8
CitedBy_id crossref_primary_10_1016_j_neucom_2025_131075
crossref_primary_10_3390_electronics12040994
crossref_primary_10_1111_coin_12617
crossref_primary_10_1016_j_asoc_2025_113870
crossref_primary_10_3390_s22197414
crossref_primary_10_3390_rs16214084
crossref_primary_10_1007_s00477_025_03074_1
crossref_primary_10_3389_fpls_2022_1047479
crossref_primary_10_1016_j_energy_2025_135031
crossref_primary_10_1016_j_energy_2025_137130
crossref_primary_10_3390_en16031370
crossref_primary_10_3390_electronics12071744
crossref_primary_10_1016_j_neucom_2025_131062
crossref_primary_10_1080_15435075_2025_2490560
crossref_primary_10_1007_s40200_023_01350_x
crossref_primary_10_1016_j_ijepes_2022_108726
crossref_primary_10_1007_s11356_022_22957_2
crossref_primary_10_1016_j_energy_2024_131134
crossref_primary_10_1177_0309524X221088612
crossref_primary_10_1016_j_energy_2023_128289
crossref_primary_10_1016_j_rser_2022_112652
crossref_primary_10_1016_j_solener_2023_112241
crossref_primary_10_1016_j_energy_2024_130402
crossref_primary_10_1016_j_energy_2022_124384
crossref_primary_10_1016_j_energy_2024_133911
crossref_primary_10_1007_s10115_024_02106_6
crossref_primary_10_1016_j_enconman_2023_116935
crossref_primary_10_1016_j_fcr_2023_108821
crossref_primary_10_1016_j_enconman_2022_115433
crossref_primary_10_1016_j_apenergy_2023_121587
crossref_primary_10_1016_j_energy_2022_124212
crossref_primary_10_1016_j_asoc_2022_109247
crossref_primary_10_1109_ACCESS_2025_3543594
crossref_primary_10_1016_j_energy_2023_129724
crossref_primary_10_1016_j_ijhydene_2022_10_031
crossref_primary_10_1016_j_jksuci_2023_101873
crossref_primary_10_1016_j_ijforecast_2023_04_006
crossref_primary_10_1007_s40864_023_00205_1
crossref_primary_10_1016_j_energy_2023_129409
crossref_primary_10_1186_s44147_025_00714_9
crossref_primary_10_1016_j_neucom_2025_129491
crossref_primary_10_1016_j_jenvman_2024_120503
crossref_primary_10_3390_jcm11216460
crossref_primary_10_1002_ente_202301188
crossref_primary_10_1016_j_energy_2023_130078
crossref_primary_10_3390_rs16224224
crossref_primary_10_1016_j_renene_2025_123217
crossref_primary_10_1016_j_energy_2024_131963
crossref_primary_10_1063_5_0268894
crossref_primary_10_1109_ACCESS_2023_3336694
crossref_primary_10_3390_electronics12051187
crossref_primary_10_1007_s11071_025_10949_z
crossref_primary_10_1016_j_knosys_2022_108271
crossref_primary_10_1109_ACCESS_2022_3228441
crossref_primary_10_1007_s11042_024_18916_3
crossref_primary_10_3390_su151713146
crossref_primary_10_1016_j_fuel_2024_131421
crossref_primary_10_1016_j_epsr_2022_107886
crossref_primary_10_1016_j_ijepes_2024_110229
crossref_primary_10_1016_j_segan_2024_101293
crossref_primary_10_1016_j_energy_2022_123857
crossref_primary_10_3390_app12010023
crossref_primary_10_1186_s12879_024_09138_x
crossref_primary_10_1371_journal_pone_0302944
crossref_primary_10_3390_electronics11244125
crossref_primary_10_1016_j_energy_2023_127695
crossref_primary_10_1016_j_egyr_2022_07_005
crossref_primary_10_1016_j_energy_2025_138327
crossref_primary_10_1016_j_rser_2023_113229
crossref_primary_10_1007_s11227_021_04142_3
crossref_primary_10_1007_s12145_024_01544_8
crossref_primary_10_1177_03091333221088018
crossref_primary_10_1016_j_apenergy_2024_122671
crossref_primary_10_1049_rpg2_12914
crossref_primary_10_1057_s41300_024_00222_7
crossref_primary_10_3390_jmse10111769
crossref_primary_10_1016_j_neucom_2024_127764
crossref_primary_10_1016_j_apenergy_2024_122759
crossref_primary_10_32604_cmc_2024_048656
crossref_primary_10_1016_j_asoc_2022_108733
Cites_doi 10.1016/j.seta.2013.12.001
10.1016/j.sigpro.2013.01.023
10.1016/j.apenergy.2019.114137
10.1016/j.apenergy.2021.116545
10.1016/j.cagd.2012.03.001
10.1016/j.neucom.2017.08.010
10.5120/3358-4633
10.1016/j.measurement.2007.07.007
10.1016/j.renene.2019.04.157
10.1016/j.apenergy.2017.01.063
10.1016/j.enconman.2019.112188
10.1109/ICNN.1995.488968
10.3934/jimo.2012.8.1039
10.1109/TSP.2013.2288675
10.1109/TIE.2017.2694401
10.1016/j.mineng.2020.106201
10.1016/S0893-6080(05)80023-1
10.1016/j.asoc.2019.03.035
10.1016/j.enconman.2015.05.065
10.1142/S1793536910000422
10.1016/j.apenergy.2020.115098
10.1109/TCYB.2018.2850350
10.1109/UWBST.2002.1006316
10.1016/j.renene.2019.07.166
10.1016/j.renene.2017.03.064
10.1504/IJBIC.2010.032124
10.1007/s00521-016-2703-z
10.1016/j.jenvman.2019.109855
10.1016/j.ymssp.2018.05.019
10.1016/j.enconman.2014.10.001
10.1016/j.energy.2019.116316
10.1016/j.apenergy.2015.10.145
10.1016/j.jclepro.2018.07.164
10.1016/0167-2789(92)90103-T
10.1016/j.neunet.2017.02.013
10.1016/j.cviu.2019.102805
10.1016/j.neucom.2015.08.041
10.1016/j.neucom.2005.12.126
10.1016/j.energy.2017.07.112
10.1016/j.advengsoft.2013.12.007
10.1016/j.advengsoft.2016.01.008
10.1016/j.epsr.2017.01.035
10.1016/j.apenergy.2019.03.097
10.1016/j.asoc.2019.105744
10.1016/j.enconman.2019.112418
10.1016/j.neucom.2019.01.009
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2021.07.084
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 184
ExternalDocumentID 10_1016_j_neucom_2021_07_084
S0925231221011668
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXLA
AAXUO
AAYFN
AAYWO
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ACDAQ
ACGFS
ACLOT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFPUW
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
~HD
29N
9DU
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AFJKZ
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
ID FETCH-LOGICAL-c306t-99507aef9ecc34e53b60a0b4d28522dcec0790c168a3cd15cdea2f66e9c81bea3
ISICitedReferencesCount 87
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000702015400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 07:40:38 EST 2025
Tue Nov 18 22:30:01 EST 2025
Sat Sep 27 17:13:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Hermite polynomial
Decomposition
State transition algorithm
Wind power forecasting
Stacking ensemble learning
Bernstein polynomial
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-99507aef9ecc34e53b60a0b4d28522dcec0790c168a3cd15cdea2f66e9c81bea3
PageCount 16
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2021_07_084
crossref_primary_10_1016_j_neucom_2021_07_084
elsevier_sciencedirect_doi_10_1016_j_neucom_2021_07_084
PublicationCentury 2000
PublicationDate 2021-10-28
PublicationDateYYYYMMDD 2021-10-28
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-28
  day: 28
PublicationDecade 2020
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Akçay, Filik (b0255) 2017; 191
Wolpert (b0230) 1992; 5
Shahid, Zameer, Mehmood, Raja (b0010) 2020; 269
P. Du, J. Wang, W. Yang, T. Niu, A novel hybrid fine particulate matter (pm2. 5) forecasting and its further application system: case studies in china, Journal of Forecasting.
A. Fellhauer, Approximation of smooth functions using Bernstein polynomials in multiple variables, arXiv preprint arXiv:1609.01940.
Yang (b0115) 2010; 2
Pan, Yang, Li, Zheng, Cheng (b0100) 2019; 114
Wang, Lei, Liu, Peng, Liu (b0155) 2019; 201
Afshari-Igder, Niknam, Khooban (b0125) 2018; 30
Guo, Zhang (b0055) 2019; 189
Zhou, Zhang, Yang (b0185) 2020; 153
Zendehboudi, Baseer, Saidur (b0030) 2018; 199
Morales-Mendoza, Gamboa-Rosales, Shmaliy (b0225) 2013; 93
Ting, Guo-Zheng, Bang-Hua, Hong (b0095) 2008; 41
Niu, Wang (b0145) 2019; 241
L.B. Michael, M. Ghavami, R. Kohno, Multiple pulse generator for ultra-wideband communication using Hermite polynomial based orthogonal pulses, in: 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580), 2002, pp. 47–51.
Huang, Zhu, Siew (b0235) 2006; 70
Yuan, Chen, Yuan, Huang, Tan (b0035) 2015; 101
Olaofe (b0070) 2014; 6
Zhou, Yang, Gui (b0170) 2012; 8
Zhou, Yang, Xie, Yang, Huang (b0200) 2019; 334
Dragomiretskiy, Zosso (b0090) 2013; 62
Zhou, Gao, Yang, Gui (b0180) 2016; 173
Fayek, Lech, Cavedon (b0050) 2017; 92
Dalal, Zaveri (b0060) 2011; 28
Wang, Du, Hao, Ma, Niu, Yang (b0075) 2020; 255
Wang, Zhang, Fan, Ma (b0135) 2017; 138
Wu, Wang, Chen, Du, Yang (b0045) 2020; 146
Zhou, Shi, Lim, Yang, Gui (b0195) 2018; 273
Yeh, Shieh, Huang (b0085) 2010; 2
X. Zhou, X. Wang, T. Huang, C. Yang, Hybrid intelligence assisted sample average approximation method for chance constrained dynamic optimization, IEEE Transactions on Industrial Informatics.
Mirjalili, Mirjalili, Lewis (b0120) 2014; 69
Dong, Zhang, Wang, Zhou (b0150) 2021; 286
Gazafroudi (b0005) 2015; 5
J. Kennedy, E. Russell, Particle swarm optimization, in: Proceedings, IEEE International Conference on Neural Networks, 1995, 1995, pp. 1942–1948.
Du, Wang, Yang, Niu (b0015) 2019; 80
Liu, Jiang, Zhang, Niu (b0140) 2020; 259
Lahouar, Slama (b0240) 2017; 109
Yin, Ou, Huang, Meng (b0065) 2019; 189
Zhang, Wang, Zhang (b0130) 2017; 146
Su, Zheng, Mercorelli (b0025) 2017; 64
Chitsaz, Amjady, Zareipour (b0245) 2015; 89
Zhou, Yang, Gui (b0175) 2019; 49
Vautard, Yiou, Ghil (b0105) 1992; 58
Zhao, Guo, Su, Zhao, Xiao, Liu (b0020) 2016; 162
Wang, Jia, Liu, Zhang (b0165) 2020; 145
Farouki (b0215) 2012; 29
Jiajun, Chuanjin, Yongle, Huoyue (b0160) 2020; 205
Mirjalili, Lewis (b0250) 2016; 95
Yatiyana, Rajakaruna, Ghosh (b0040) 2017
Sun, Yang, Liu (b0205) 2019; 85
Yuan (10.1016/j.neucom.2021.07.084_b0035) 2015; 101
Yang (10.1016/j.neucom.2021.07.084_b0115) 2010; 2
Shahid (10.1016/j.neucom.2021.07.084_b0010) 2020; 269
Zendehboudi (10.1016/j.neucom.2021.07.084_b0030) 2018; 199
Zhou (10.1016/j.neucom.2021.07.084_b0180) 2016; 173
Wang (10.1016/j.neucom.2021.07.084_b0155) 2019; 201
Wang (10.1016/j.neucom.2021.07.084_b0165) 2020; 145
Zhou (10.1016/j.neucom.2021.07.084_b0185) 2020; 153
Fayek (10.1016/j.neucom.2021.07.084_b0050) 2017; 92
Mirjalili (10.1016/j.neucom.2021.07.084_b0120) 2014; 69
10.1016/j.neucom.2021.07.084_b0210
Zhao (10.1016/j.neucom.2021.07.084_b0020) 2016; 162
Su (10.1016/j.neucom.2021.07.084_b0025) 2017; 64
Dong (10.1016/j.neucom.2021.07.084_b0150) 2021; 286
Zhou (10.1016/j.neucom.2021.07.084_b0175) 2019; 49
10.1016/j.neucom.2021.07.084_b0080
Morales-Mendoza (10.1016/j.neucom.2021.07.084_b0225) 2013; 93
Zhou (10.1016/j.neucom.2021.07.084_b0170) 2012; 8
Huang (10.1016/j.neucom.2021.07.084_b0235) 2006; 70
Akçay (10.1016/j.neucom.2021.07.084_b0255) 2017; 191
Dalal (10.1016/j.neucom.2021.07.084_b0060) 2011; 28
Sun (10.1016/j.neucom.2021.07.084_b0205) 2019; 85
Guo (10.1016/j.neucom.2021.07.084_b0055) 2019; 189
Vautard (10.1016/j.neucom.2021.07.084_b0105) 1992; 58
Yin (10.1016/j.neucom.2021.07.084_b0065) 2019; 189
Dragomiretskiy (10.1016/j.neucom.2021.07.084_b0090) 2013; 62
10.1016/j.neucom.2021.07.084_b0190
Niu (10.1016/j.neucom.2021.07.084_b0145) 2019; 241
Ting (10.1016/j.neucom.2021.07.084_b0095) 2008; 41
10.1016/j.neucom.2021.07.084_b0110
Farouki (10.1016/j.neucom.2021.07.084_b0215) 2012; 29
Liu (10.1016/j.neucom.2021.07.084_b0140) 2020; 259
Afshari-Igder (10.1016/j.neucom.2021.07.084_b0125) 2018; 30
Zhou (10.1016/j.neucom.2021.07.084_b0195) 2018; 273
Yeh (10.1016/j.neucom.2021.07.084_b0085) 2010; 2
Mirjalili (10.1016/j.neucom.2021.07.084_b0250) 2016; 95
Gazafroudi (10.1016/j.neucom.2021.07.084_b0005) 2015; 5
Wolpert (10.1016/j.neucom.2021.07.084_b0230) 1992; 5
Wang (10.1016/j.neucom.2021.07.084_b0135) 2017; 138
Jiajun (10.1016/j.neucom.2021.07.084_b0160) 2020; 205
Chitsaz (10.1016/j.neucom.2021.07.084_b0245) 2015; 89
Zhang (10.1016/j.neucom.2021.07.084_b0130) 2017; 146
Lahouar (10.1016/j.neucom.2021.07.084_b0240) 2017; 109
Du (10.1016/j.neucom.2021.07.084_b0015) 2019; 80
Zhou (10.1016/j.neucom.2021.07.084_b0200) 2019; 334
10.1016/j.neucom.2021.07.084_b0220
Yatiyana (10.1016/j.neucom.2021.07.084_b0040) 2017
Wang (10.1016/j.neucom.2021.07.084_b0075) 2020; 255
Olaofe (10.1016/j.neucom.2021.07.084_b0070) 2014; 6
Wu (10.1016/j.neucom.2021.07.084_b0045) 2020; 146
Pan (10.1016/j.neucom.2021.07.084_b0100) 2019; 114
References_xml – volume: 28
  start-page: 37
  year: 2011
  end-page: 40
  ident: b0060
  article-title: Automatic text classification: a technical review
  publication-title: International Journal of Computer Applications
– volume: 286
  year: 2021
  ident: b0150
  article-title: A novel hybrid model based on bernstein polynomial with mixture of Gaussians for wind power forecasting
  publication-title: Applied Energy
– volume: 199
  start-page: 272
  year: 2018
  end-page: 285
  ident: b0030
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: Journal of Cleaner Production
– volume: 30
  start-page: 473
  year: 2018
  end-page: 485
  ident: b0125
  article-title: Probabilistic wind power forecasting using a novel hybrid intelligent method
  publication-title: Neural Computing and Applications
– volume: 8
  start-page: 1039
  year: 2012
  end-page: 1056
  ident: b0170
  article-title: State transition algorithm
  publication-title: Journal of Industrial and Management Optimization
– volume: 29
  start-page: 379
  year: 2012
  end-page: 419
  ident: b0215
  article-title: The Bernstein polynomial basis: A centennial retrospective
  publication-title: Computer Aided Geometric Design
– volume: 89
  start-page: 588
  year: 2015
  end-page: 598
  ident: b0245
  article-title: Wind power forecast using wavelet neural network trained by improved clonal selection algorithm
  publication-title: Energy Conversion and Management
– reference: L.B. Michael, M. Ghavami, R. Kohno, Multiple pulse generator for ultra-wideband communication using Hermite polynomial based orthogonal pulses, in: 2002 IEEE Conference on Ultra Wideband Systems and Technologies (IEEE Cat. No. 02EX580), 2002, pp. 47–51.
– volume: 191
  start-page: 653
  year: 2017
  end-page: 662
  ident: b0255
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Applied Energy
– reference: A. Fellhauer, Approximation of smooth functions using Bernstein polynomials in multiple variables, arXiv preprint arXiv:1609.01940.
– volume: 5
  start-page: 1
  year: 2015
  end-page: 8
  ident: b0005
  article-title: Assessing the impact of load and renewable energies’ uncertainty on a hybrid system
  publication-title: International Journal of Energy and Power Engineering
– volume: 49
  start-page: 3722
  year: 2019
  end-page: 3730
  ident: b0175
  article-title: A statistical study on parameter selection of operators in continuous state transition algorithm
  publication-title: IEEE Transactions on Cybernetics
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b0250
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
– volume: 64
  start-page: 8187
  year: 2017
  end-page: 8189
  ident: b0025
  article-title: Comments on “tracking control of robotic manipulators with uncertain kinematics and dynamics”
  publication-title: IEEE Transactions on Industrial Electronics
– volume: 146
  start-page: 270
  year: 2017
  end-page: 285
  ident: b0130
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm
  publication-title: Electric Power Systems Research
– volume: 162
  start-page: 808
  year: 2016
  end-page: 826
  ident: b0020
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Applied Energy
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b0120
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
– volume: 62
  start-page: 531
  year: 2013
  end-page: 544
  ident: b0090
  article-title: Variational mode decomposition
  publication-title: IEEE Transactions on Signal Processing
– reference: J. Kennedy, E. Russell, Particle swarm optimization, in: Proceedings, IEEE International Conference on Neural Networks, 1995, 1995, pp. 1942–1948.
– volume: 273
  start-page: 237
  year: 2018
  end-page: 250
  ident: b0195
  article-title: A dynamic state transition algorithm with application to sensor network localization
  publication-title: Neurocomputing
– volume: 205
  year: 2020
  ident: b0160
  article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning
  publication-title: Energy Conversion and Management
– volume: 146
  start-page: 149
  year: 2020
  end-page: 165
  ident: b0045
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renewable Energy
– volume: 255
  year: 2020
  ident: b0075
  article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting
  publication-title: Journal of Environmental Management
– volume: 92
  start-page: 60
  year: 2017
  end-page: 68
  ident: b0050
  article-title: Evaluating deep learning architectures for speech emotion recognition
  publication-title: Neural Networks
– volume: 153
  year: 2020
  ident: b0185
  article-title: A hybrid feature selection method for production condition recognition in froth flotation with noisy labels
  publication-title: Minerals Engineering
– volume: 173
  start-page: 864
  year: 2016
  end-page: 874
  ident: b0180
  article-title: Discrete state transition algorithm for unconstrained integer optimization problems
  publication-title: Neurocomputing
– volume: 2
  start-page: 135
  year: 2010
  end-page: 156
  ident: b0085
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Advances in Adaptive Data Analysis
– volume: 269
  year: 2020
  ident: b0010
  article-title: A novel wavenets long short term memory paradigm for wind power prediction
  publication-title: Applied Energy
– volume: 259
  year: 2020
  ident: b0140
  article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting
  publication-title: Applied Energy
– volume: 189
  year: 2019
  ident: b0055
  article-title: A survey on deep learning based face recognition
  publication-title: Computer Vision and Image Understanding
– volume: 189
  year: 2019
  ident: b0065
  article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition
  publication-title: Energy
– volume: 201
  year: 2019
  ident: b0155
  article-title: Echo state network based ensemble approach for wind power forecasting
  publication-title: Energy Conversion and Management
– volume: 334
  start-page: 89
  year: 2019
  end-page: 99
  ident: b0200
  article-title: A novel modularity-based discrete state transition algorithm for community detection in networks
  publication-title: Neurocomputing
– start-page: 1
  year: 2017
  end-page: 6
  ident: b0040
  article-title: Wind speed and direction forecasting for wind power generation using ARIMA model
  publication-title: 2017 Australasian Universities Power Engineering Conference (AUPEC)
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0235
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
– volume: 109
  start-page: 529
  year: 2017
  end-page: 541
  ident: b0240
  article-title: Hour-ahead wind power forecast based on random forests
  publication-title: Renewable Energy
– volume: 145
  start-page: 2426
  year: 2020
  end-page: 2434
  ident: b0165
  article-title: A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning
  publication-title: Renewable Energy
– volume: 241
  start-page: 519
  year: 2019
  end-page: 539
  ident: b0145
  article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
  publication-title: Applied Energy
– volume: 85
  year: 2019
  ident: b0205
  article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems
  publication-title: Applied Soft Computing
– volume: 101
  start-page: 393
  year: 2015
  end-page: 401
  ident: b0035
  article-title: Short-term wind power prediction based on LSSVM–GSA model
  publication-title: Energy Conversion and Management
– volume: 6
  start-page: 1
  year: 2014
  end-page: 24
  ident: b0070
  article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (lrnn)
  publication-title: Sustainable Energy Technologies and Assessments
– reference: P. Du, J. Wang, W. Yang, T. Niu, A novel hybrid fine particulate matter (pm2. 5) forecasting and its further application system: case studies in china, Journal of Forecasting.
– volume: 93
  start-page: 1785
  year: 2013
  end-page: 1793
  ident: b0225
  article-title: A new class of discrete orthogonal polynomials for blind fitting of finite data
  publication-title: Signal Processing
– volume: 114
  start-page: 189
  year: 2019
  end-page: 211
  ident: b0100
  article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
– reference: X. Zhou, X. Wang, T. Huang, C. Yang, Hybrid intelligence assisted sample average approximation method for chance constrained dynamic optimization, IEEE Transactions on Industrial Informatics.
– volume: 41
  start-page: 618
  year: 2008
  end-page: 625
  ident: b0095
  article-title: Eeg feature extraction based on wavelet packet decomposition for brain computer interface
  publication-title: Measurement
– volume: 138
  start-page: 977
  year: 2017
  end-page: 990
  ident: b0135
  article-title: A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction
  publication-title: Energy
– volume: 58
  start-page: 95
  year: 1992
  end-page: 126
  ident: b0105
  article-title: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals
  publication-title: Physica D: Nonlinear Phenomena
– volume: 5
  start-page: 241
  year: 1992
  end-page: 259
  ident: b0230
  article-title: Stacked generalization
  publication-title: Neural Networks
– volume: 80
  start-page: 93
  year: 2019
  end-page: 106
  ident: b0015
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Applied Soft Computing
– volume: 2
  start-page: 78
  year: 2010
  end-page: 84
  ident: b0115
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: International Journal of Bio-inspired Computation
– volume: 6
  start-page: 1
  year: 2014
  ident: 10.1016/j.neucom.2021.07.084_b0070
  article-title: A 5-day wind speed & power forecasts using a layer recurrent neural network (lrnn)
  publication-title: Sustainable Energy Technologies and Assessments
  doi: 10.1016/j.seta.2013.12.001
– volume: 93
  start-page: 1785
  issue: 7
  year: 2013
  ident: 10.1016/j.neucom.2021.07.084_b0225
  article-title: A new class of discrete orthogonal polynomials for blind fitting of finite data
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2013.01.023
– volume: 259
  year: 2020
  ident: 10.1016/j.neucom.2021.07.084_b0140
  article-title: A combined forecasting model for time series: Application to short-term wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.114137
– ident: 10.1016/j.neucom.2021.07.084_b0210
– volume: 286
  year: 2021
  ident: 10.1016/j.neucom.2021.07.084_b0150
  article-title: A novel hybrid model based on bernstein polynomial with mixture of Gaussians for wind power forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2021.116545
– volume: 29
  start-page: 379
  issue: 6
  year: 2012
  ident: 10.1016/j.neucom.2021.07.084_b0215
  article-title: The Bernstein polynomial basis: A centennial retrospective
  publication-title: Computer Aided Geometric Design
  doi: 10.1016/j.cagd.2012.03.001
– volume: 273
  start-page: 237
  year: 2018
  ident: 10.1016/j.neucom.2021.07.084_b0195
  article-title: A dynamic state transition algorithm with application to sensor network localization
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.08.010
– volume: 28
  start-page: 37
  issue: 2
  year: 2011
  ident: 10.1016/j.neucom.2021.07.084_b0060
  article-title: Automatic text classification: a technical review
  publication-title: International Journal of Computer Applications
  doi: 10.5120/3358-4633
– volume: 41
  start-page: 618
  issue: 6
  year: 2008
  ident: 10.1016/j.neucom.2021.07.084_b0095
  article-title: Eeg feature extraction based on wavelet packet decomposition for brain computer interface
  publication-title: Measurement
  doi: 10.1016/j.measurement.2007.07.007
– volume: 146
  start-page: 149
  year: 2020
  ident: 10.1016/j.neucom.2021.07.084_b0045
  article-title: A novel hybrid system based on multi-objective optimization for wind speed forecasting
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.04.157
– volume: 191
  start-page: 653
  year: 2017
  ident: 10.1016/j.neucom.2021.07.084_b0255
  article-title: Short-term wind speed forecasting by spectral analysis from long-term observations with missing values
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2017.01.063
– volume: 201
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0155
  article-title: Echo state network based ensemble approach for wind power forecasting
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.112188
– ident: 10.1016/j.neucom.2021.07.084_b0110
  doi: 10.1109/ICNN.1995.488968
– volume: 5
  start-page: 1
  issue: 2–2
  year: 2015
  ident: 10.1016/j.neucom.2021.07.084_b0005
  article-title: Assessing the impact of load and renewable energies’ uncertainty on a hybrid system
  publication-title: International Journal of Energy and Power Engineering
– volume: 8
  start-page: 1039
  issue: 4
  year: 2012
  ident: 10.1016/j.neucom.2021.07.084_b0170
  article-title: State transition algorithm
  publication-title: Journal of Industrial and Management Optimization
  doi: 10.3934/jimo.2012.8.1039
– volume: 62
  start-page: 531
  issue: 3
  year: 2013
  ident: 10.1016/j.neucom.2021.07.084_b0090
  article-title: Variational mode decomposition
  publication-title: IEEE Transactions on Signal Processing
  doi: 10.1109/TSP.2013.2288675
– volume: 64
  start-page: 8187
  issue: 10
  year: 2017
  ident: 10.1016/j.neucom.2021.07.084_b0025
  article-title: Comments on “tracking control of robotic manipulators with uncertain kinematics and dynamics”
  publication-title: IEEE Transactions on Industrial Electronics
  doi: 10.1109/TIE.2017.2694401
– volume: 153
  year: 2020
  ident: 10.1016/j.neucom.2021.07.084_b0185
  article-title: A hybrid feature selection method for production condition recognition in froth flotation with noisy labels
  publication-title: Minerals Engineering
  doi: 10.1016/j.mineng.2020.106201
– volume: 5
  start-page: 241
  issue: 2
  year: 1992
  ident: 10.1016/j.neucom.2021.07.084_b0230
  article-title: Stacked generalization
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(05)80023-1
– volume: 80
  start-page: 93
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0015
  article-title: A novel hybrid model for short-term wind power forecasting
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.03.035
– volume: 101
  start-page: 393
  year: 2015
  ident: 10.1016/j.neucom.2021.07.084_b0035
  article-title: Short-term wind power prediction based on LSSVM–GSA model
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2015.05.065
– volume: 2
  start-page: 135
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2021.07.084_b0085
  article-title: Complementary ensemble empirical mode decomposition: a novel noise enhanced data analysis method
  publication-title: Advances in Adaptive Data Analysis
  doi: 10.1142/S1793536910000422
– volume: 269
  year: 2020
  ident: 10.1016/j.neucom.2021.07.084_b0010
  article-title: A novel wavenets long short term memory paradigm for wind power prediction
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2020.115098
– volume: 49
  start-page: 3722
  issue: 10
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0175
  article-title: A statistical study on parameter selection of operators in continuous state transition algorithm
  publication-title: IEEE Transactions on Cybernetics
  doi: 10.1109/TCYB.2018.2850350
– ident: 10.1016/j.neucom.2021.07.084_b0220
  doi: 10.1109/UWBST.2002.1006316
– volume: 145
  start-page: 2426
  year: 2020
  ident: 10.1016/j.neucom.2021.07.084_b0165
  article-title: A hybrid wind power forecasting approach based on Bayesian model averaging and ensemble learning
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2019.07.166
– volume: 109
  start-page: 529
  year: 2017
  ident: 10.1016/j.neucom.2021.07.084_b0240
  article-title: Hour-ahead wind power forecast based on random forests
  publication-title: Renewable Energy
  doi: 10.1016/j.renene.2017.03.064
– volume: 2
  start-page: 78
  issue: 2
  year: 2010
  ident: 10.1016/j.neucom.2021.07.084_b0115
  article-title: Firefly algorithm, stochastic test functions and design optimisation
  publication-title: International Journal of Bio-inspired Computation
  doi: 10.1504/IJBIC.2010.032124
– ident: 10.1016/j.neucom.2021.07.084_b0190
– volume: 30
  start-page: 473
  issue: 2
  year: 2018
  ident: 10.1016/j.neucom.2021.07.084_b0125
  article-title: Probabilistic wind power forecasting using a novel hybrid intelligent method
  publication-title: Neural Computing and Applications
  doi: 10.1007/s00521-016-2703-z
– volume: 255
  year: 2020
  ident: 10.1016/j.neucom.2021.07.084_b0075
  article-title: An innovative hybrid model based on outlier detection and correction algorithm and heuristic intelligent optimization algorithm for daily air quality index forecasting
  publication-title: Journal of Environmental Management
  doi: 10.1016/j.jenvman.2019.109855
– volume: 114
  start-page: 189
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0100
  article-title: Symplectic geometry mode decomposition and its application to rotating machinery compound fault diagnosis
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2018.05.019
– volume: 89
  start-page: 588
  year: 2015
  ident: 10.1016/j.neucom.2021.07.084_b0245
  article-title: Wind power forecast using wavelet neural network trained by improved clonal selection algorithm
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2014.10.001
– volume: 189
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0065
  article-title: A cascaded deep learning wind power prediction approach based on a two-layer of mode decomposition
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116316
– volume: 162
  start-page: 808
  year: 2016
  ident: 10.1016/j.neucom.2021.07.084_b0020
  article-title: An improved multi-step forecasting model based on WRF ensembles and creative fuzzy systems for wind speed
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2015.10.145
– volume: 199
  start-page: 272
  year: 2018
  ident: 10.1016/j.neucom.2021.07.084_b0030
  article-title: Application of support vector machine models for forecasting solar and wind energy resources: A review
  publication-title: Journal of Cleaner Production
  doi: 10.1016/j.jclepro.2018.07.164
– volume: 58
  start-page: 95
  issue: 1–4
  year: 1992
  ident: 10.1016/j.neucom.2021.07.084_b0105
  article-title: Singular-spectrum analysis: A toolkit for short, noisy chaotic signals
  publication-title: Physica D: Nonlinear Phenomena
  doi: 10.1016/0167-2789(92)90103-T
– volume: 92
  start-page: 60
  year: 2017
  ident: 10.1016/j.neucom.2021.07.084_b0050
  article-title: Evaluating deep learning architectures for speech emotion recognition
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2017.02.013
– volume: 189
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0055
  article-title: A survey on deep learning based face recognition
  publication-title: Computer Vision and Image Understanding
  doi: 10.1016/j.cviu.2019.102805
– volume: 173
  start-page: 864
  year: 2016
  ident: 10.1016/j.neucom.2021.07.084_b0180
  article-title: Discrete state transition algorithm for unconstrained integer optimization problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.08.041
– volume: 70
  start-page: 489
  issue: 1
  year: 2006
  ident: 10.1016/j.neucom.2021.07.084_b0235
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: 10.1016/j.neucom.2021.07.084_b0080
– volume: 138
  start-page: 977
  year: 2017
  ident: 10.1016/j.neucom.2021.07.084_b0135
  article-title: A new chaotic time series hybrid prediction method of wind power based on EEMD-SE and full-parameters continued fraction
  publication-title: Energy
  doi: 10.1016/j.energy.2017.07.112
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.neucom.2021.07.084_b0120
  article-title: Grey wolf optimizer
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2013.12.007
– start-page: 1
  year: 2017
  ident: 10.1016/j.neucom.2021.07.084_b0040
  article-title: Wind speed and direction forecasting for wind power generation using ARIMA model
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.neucom.2021.07.084_b0250
  article-title: The whale optimization algorithm
  publication-title: Advances in Engineering Software
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 146
  start-page: 270
  year: 2017
  ident: 10.1016/j.neucom.2021.07.084_b0130
  article-title: Short-term electric load forecasting based on singular spectrum analysis and support vector machine optimized by cuckoo search algorithm
  publication-title: Electric Power Systems Research
  doi: 10.1016/j.epsr.2017.01.035
– volume: 241
  start-page: 519
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0145
  article-title: A combined model based on data preprocessing strategy and multi-objective optimization algorithm for short-term wind speed forecasting
  publication-title: Applied Energy
  doi: 10.1016/j.apenergy.2019.03.097
– volume: 85
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0205
  article-title: A whale optimization algorithm based on quadratic interpolation for high-dimensional global optimization problems
  publication-title: Applied Soft Computing
  doi: 10.1016/j.asoc.2019.105744
– volume: 205
  year: 2020
  ident: 10.1016/j.neucom.2021.07.084_b0160
  article-title: Ultra-short term wind prediction with wavelet transform, deep belief network and ensemble learning
  publication-title: Energy Conversion and Management
  doi: 10.1016/j.enconman.2019.112418
– volume: 334
  start-page: 89
  year: 2019
  ident: 10.1016/j.neucom.2021.07.084_b0200
  article-title: A novel modularity-based discrete state transition algorithm for community detection in networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.01.009
SSID ssj0017129
Score 2.6121297
Snippet Wind power forecasting has high application value in power systems. However, due to the intermittence and fluctuation of wind power, it is difficult to predict...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 169
SubjectTerms Bernstein polynomial
Decomposition
Hermite polynomial
Stacking ensemble learning
State transition algorithm
Wind power forecasting
Title Wind power forecasting based on stacking ensemble model, decomposition and intelligent optimization algorithm
URI https://dx.doi.org/10.1016/j.neucom.2021.07.084
Volume 462
WOSCitedRecordID wos000702015400014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017129
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELaWLQcuvBHlJR-4LUF5xz6uSlHhUCFRxHKK_Ard1Sapttmqf4N_zIztpCmLeElcopVlr6OZz-OZyTwIeSkTU8hYhkHGeBakrIoCCcgKUqmzRJpM8UrYZhPF8TFbLPiHyeRbnwtzsS6ahl1e8rP_ymoYA2Zj6uxfsHv4UxiA38B0eALb4flHjP-8xNR_bH6GIYRGiXMb2YzXlcZPA6AOKvSPz8CANTUmTtluOEhrbTDC3Idx-bpMfcXObtaCdKl92uZMrL-2m2V3Wo-1W1vpQ9k-Ed4DMa-xEING1A0ehzc-CvgLzFGnot3xXR-1mFt85ep3owetv2Tt1HaLY4ulaFfbZuy6iG3snE8Ft_60nZwa55iMswC0zmsyOvUi20nZyHV38Rd25HrM7dwFzi2xet2YLQYG4QvYOq1u-g9Vtj_itrgrmMBRlOfsBtmLi4yzKdmbvztcvB8-TRVR7Ao4-tfs8zFt0ODuXj_Xd0Y6zMldctsbH3TuQHOPTExzn9zpG3tQL-cfkBoxRC2G6AhD1GKItg3tMUR7DFGLoVf0GoIoIIiOEETHCKIDgh6ST28PTw6OAt-XI1BgYHYB52BECFNxOP5JauBM56EIZapjBtq8VkaFBQ9VlDORKB1lShsRV3luuAIjyYjkEZk2bWMeE2p4JSO4j1mo81QwCdZIVVRSMqCu5kW8T5KeeqXyReuxd8q67KMTV6WjeYk0L8OiBJrvk2BYdeaKtvxmftEzpvSKp1MoS8DSL1c--eeVT8mtqyPxjEy7zdY8JzfVRbc837zwoPsO0pawXw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wind+power+forecasting+based+on+stacking+ensemble+model%2C+decomposition+and+intelligent+optimization+algorithm&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Dong%2C+Yingchao&rft.au=Zhang%2C+Hongli&rft.au=Wang%2C+Cong&rft.au=Zhou%2C+Xiaojun&rft.date=2021-10-28&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.volume=462&rft.spage=169&rft.epage=184&rft_id=info:doi/10.1016%2Fj.neucom.2021.07.084&rft.externalDocID=S0925231221011668
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon