Deep frequency-recurrent priors for inverse imaging reconstruction

•A multi-profile high-frequency transform-guided denoising autoencoder for attainting deep frequency recurrent prior.•We extract a set of multi-profile high-frequency components via a specific transformation.•The learned high-frequency prior information is incorporated into classical iterative recon...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal processing Jg. 190; S. 108320
Hauptverfasser: He, Zhuonan, Hong, Kai, Zhou, Jinjie, Liang, Dong, Wang, Yuhao, Liu, Qiegen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.01.2022
Schlagworte:
ISSN:0165-1684, 1872-7557
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A multi-profile high-frequency transform-guided denoising autoencoder for attainting deep frequency recurrent prior.•We extract a set of multi-profile high-frequency components via a specific transformation.•The learned high-frequency prior information is incorporated into classical iterative reconstruction. Ill-posed inverse problems in imaging remain an active research topic in several decades, with new approaches constantly emerging. Recognizing that the popular dictionary learning and convolutional sparse coding are both essentially modeling the high-frequency component of an image, which convey most of the semantic information such as texture details, in this work we propose a novel multi-profile high-frequency transform-guided denoising autoencoder for attaining deep frequency-recurrent prior (DFRP). To achieve this goal, we first extract a set of multi-profile high-frequency components via a specific transformation and add artificial Gaussian noise to these high-frequency components as training samples. Then, as the high-frequency prior information is learned, we incorporate it into classical iterative reconstruction by proximal gradient descent. Preliminary results on highly under-sampled magnetic resonance imaging and sparse-view computed tomography reconstruction demonstrated that the proposed method can efficiently reconstruct feature details and presented advantages over state-of-the-arts. The network architecture at the training procedure and one-iteration diagram at the iterative reconstruction of DFRP. (a) The DAE network used in DFRP. (b) The illustration of DFRP at iterative reconstruction phase. The Conv layer is denoted as “C”. Additionally, the Concatenation layer is denoted as “Cat”. Here the example of MRI reconstruction is visualized. [Display omitted]
AbstractList •A multi-profile high-frequency transform-guided denoising autoencoder for attainting deep frequency recurrent prior.•We extract a set of multi-profile high-frequency components via a specific transformation.•The learned high-frequency prior information is incorporated into classical iterative reconstruction. Ill-posed inverse problems in imaging remain an active research topic in several decades, with new approaches constantly emerging. Recognizing that the popular dictionary learning and convolutional sparse coding are both essentially modeling the high-frequency component of an image, which convey most of the semantic information such as texture details, in this work we propose a novel multi-profile high-frequency transform-guided denoising autoencoder for attaining deep frequency-recurrent prior (DFRP). To achieve this goal, we first extract a set of multi-profile high-frequency components via a specific transformation and add artificial Gaussian noise to these high-frequency components as training samples. Then, as the high-frequency prior information is learned, we incorporate it into classical iterative reconstruction by proximal gradient descent. Preliminary results on highly under-sampled magnetic resonance imaging and sparse-view computed tomography reconstruction demonstrated that the proposed method can efficiently reconstruct feature details and presented advantages over state-of-the-arts. The network architecture at the training procedure and one-iteration diagram at the iterative reconstruction of DFRP. (a) The DAE network used in DFRP. (b) The illustration of DFRP at iterative reconstruction phase. The Conv layer is denoted as “C”. Additionally, the Concatenation layer is denoted as “Cat”. Here the example of MRI reconstruction is visualized. [Display omitted]
ArticleNumber 108320
Author He, Zhuonan
Hong, Kai
Liu, Qiegen
Liang, Dong
Wang, Yuhao
Zhou, Jinjie
Author_xml – sequence: 1
  givenname: Zhuonan
  surname: He
  fullname: He, Zhuonan
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
– sequence: 2
  givenname: Kai
  surname: Hong
  fullname: Hong, Kai
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
– sequence: 3
  givenname: Jinjie
  surname: Zhou
  fullname: Zhou, Jinjie
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
– sequence: 4
  givenname: Dong
  surname: Liang
  fullname: Liang, Dong
  organization: Paul C. Lauterbur Research Center for Biomedical Imaging, SIAT, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 5
  givenname: Yuhao
  surname: Wang
  fullname: Wang, Yuhao
  email: wangyuhao@ncu.edu.cn
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
– sequence: 6
  givenname: Qiegen
  surname: Liu
  fullname: Liu, Qiegen
  email: liuqiegen@ncu.edu.cn
  organization: Department of Electronic Information Engineering, Nanchang University, Nanchang 330031, China
BookMark eNqFkM1OwzAQhC1UJNrCG3DIC6SskzhxOSBB-ZUqcYGzlTrrylVrl7VbqW-Po3DiAKddrWZGO9-EjZx3yNg1hxkHXt9sZsGu9-RnBRQ8nWRZwBkbc9kUeSNEM2LjJBM5r2V1wSYhbACAlzWM2cMj4j4zhF8HdPqUE-oDEbqY7cl6CpnxlFl3RAqY2V27tm6dJZF3IdJBR-vdJTs37Tbg1c-css_np4_Fa758f3lb3C9zXUId87msUIpWCqnLlZAdlqbqOlMXhkOl5_0iikqA5oWBxuBKNChWIEVt-NxoXU7Z7ZCryYdAaJS2se0_iNTareKgehpqowYaqqehBhrJXP0yp367lk7_2e4GG6ZiR4ukgrYJFHY2QYiq8_bvgG8m9H9J
CitedBy_id crossref_primary_10_1088_1361_6501_ad11cd
crossref_primary_10_1002_mp_16550
crossref_primary_10_1016_j_sigpro_2024_109746
crossref_primary_10_1109_TIM_2025_3529044
crossref_primary_10_1016_j_jmr_2022_107354
crossref_primary_10_1002_mp_16702
Cites_doi 10.1109/TIP.2017.2713099
10.1109/42.993128
10.1364/OE.24.014564
10.1002/mrm.21757
10.1109/TIP.2020.2995048
10.1109/TMI.2018.2823768
10.1109/TMI.2019.2906853
10.1109/TCI.2015.2479555
10.1109/TMI.2018.2863670
10.1109/TIP.2015.2495260
10.1056/NEJMra072149
10.1088/0031-9155/58/16/5803
10.1109/TMI.2011.2140121
10.1137/040605412
10.1118/1.595715
10.1109/TSP.2006.881199
10.1109/TNS.2004.834824
10.1109/TMI.2018.2887072
10.1109/TCI.2016.2609414
10.1109/TIP.2012.2235847
10.1002/mp.12344
10.1002/ima.22171
10.1109/TMI.2010.2090538
10.1002/mrm.27921
10.1109/TIP.2011.2108306
10.1016/j.media.2013.09.007
10.1109/TMI.2006.882141
10.1109/TIP.2019.2931240
10.1088/0031-9155/56/18/011
10.1109/TIP.2017.2662206
10.1038/nature25988
10.1109/TMI.2012.2195669
10.1109/TIP.2013.2277798
10.1109/TMI.2017.2715284
10.1002/mrm.22736
10.1088/0031-9155/53/17/021
10.1002/mrm.21391
10.1002/mrm.26977
10.1109/TIP.2014.2329449
10.1109/TBME.2015.2503756
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.sigpro.2021.108320
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1872-7557
ExternalDocumentID 10_1016_j_sigpro_2021_108320
S0165168421003571
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
WUQ
XPP
ZMT
~02
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-984e85a858c3b58de3f4ddf62f104c9f62f52450c12f07feb57e5b0856f19fcc3
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000704396500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0165-1684
IngestDate Sat Nov 29 07:23:41 EST 2025
Tue Nov 18 21:39:28 EST 2025
Fri Feb 23 02:47:09 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Sparse-view CT
Denoising autoencoder network
Imaging reconstruction
Proximal gradient descent
High-frequency component
MRI reconstruction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-984e85a858c3b58de3f4ddf62f104c9f62f52450c12f07feb57e5b0856f19fcc3
ParticipantIDs crossref_citationtrail_10_1016_j_sigpro_2021_108320
crossref_primary_10_1016_j_sigpro_2021_108320
elsevier_sciencedirect_doi_10_1016_j_sigpro_2021_108320
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Signal processing
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zeiler, Krishnan, Taylor, Fergus (bib0016) 2010; 10
Hammernik, Klatzer, Kobler, Recht, Sodickson, Pock, Knoll (bib0024) 2018; 79
Liu, Wang, Ying, Peng, Zhu, Liang (bib0021) 2013; 22
Wohlberg (bib0047) 2016; 25
Zhang, Dai, Li, Koniusz (bib0052) 2019
Tihonov (bib0013) 1963; 4
Guerquin-Kern, Haberlin, Pruessmann, Unser (bib0004) 2011; 30
Alain, Bengio (bib0043) 2014; 15
Li, Li, Wang, Wen, Lu, Hsieh, Liang (bib0055) 2004; 51
Wu, Du, Mei (bib0048) 2016; 26
Parikh, Boyd (bib0054) 2014; 1
Brenner, Hall (bib0063) 2007; 357
Aharon, Elad, Bruckstein (bib0020) 2006; 54
(bib0027) 2018; 5
Dong, Zhang, Shi, Wu (bib0044) 2011; 20
Osher (bib0014) 1992; 60
Nah, Kim, Lee (bib0049) 2017
Han, Ye (bib0025) 2018; 37
Mao, Shen, Yang (bib0053) 2016; 29
Tao, Gao, Shen, Wang, Jia (bib0050) 2018
Elbakri, Fessler (bib0058) 2002; 21
Lu, Hsiao, Li, Liang (bib0056) 2001; 3
Zoran, Weiss (bib0012) 2011
Liu, Yang, Cheng, Wang, Zhang, Liang (bib0030) 2020; 83
Li, Qin, Xiao, Liu, Wang, Liang (bib0029) 2020; 29
Huang, Shao, Frangi (bib0038) 2017
Zhan, Cai, Guo, Liu, Chen, Qu (bib0046) 2016; 63
Tian, Jia, Yuan, Pan, Jiang (bib0033) 2011; 56
Vincent, Larochelle, Lajoie, Bengio, Manzagol (bib0042) 2010; 11
Lustig, Donoho, Pauly (bib0001) 2007; 58
Qin, Schlemper, Caballero, Price, Hajnal, Rueckert (bib0040) 2018; 38
Bao, Xia, Yang, Chen, Chen, Xi, Wang (bib0041) 2019; 38
Chen, Zhang, K.a, Lin, Chen, Liao, Wang (bib0039) 2017; 36
Jung, Sung, Nayak, Kim, Ye (bib0003) 2009; 61
Quan, Jeong (bib0037) 2016
Chen, Yin, Shi, Shu, Luo, Coatrieux, Toumoulin (bib0036) 2013; 58
Schlemper, Caballero, Hajnal, Price, Rueckert (bib0062) 2017
Ravishankar, Bresler (bib0034) 2011; 30
McGaffin, Fessler (bib0005) 2015; l
Sun (bib0006) 2016; 29
Buades, Coll, Morel (bib0018) 2005; 2
Timofte, Agustsson (bib0059) 2017
Siddon (bib0064) 1985; 12
Dong, Zhang, Shi, Li (bib0019) 2013; 22
Ying, Xu, Liang (bib0031) 2004
Zhang, Zuo, Chen, Meng, Zhang (bib0026) 2017; 26
Tezcan, Baumgartner, Konukoglu (bib0028) 2019; 38
Zhang, Patel (bib0017) 2016
Dong, Shi, Li, Ma, Huang (bib0061) 2014; 23
Wohlberg (bib0022) 2016
Zhu, Liu, Cauley, Rosen, Rosen (bib0010) 2018; 555
Xu, Yu, Mou, Zhang, Hsieh, Wang (bib0035) 2012; 31
(bib0051) 2020; 29
Kang, Min, Ye (bib0009) 2017; 44
Carrera, Boracchi, Foi, Wohlberg (bib0045) 2015
Jin, McCann, Froustey, Unser (bib0023) 2017; 26
Zhang, Xi, Yang, Cong, Zhou, Wang (bib0007) 2016; 2
Sidky, Pan (bib0002) 2008; 53
Wang, Li, Lu, Liang (bib0057) 2006; 25
Osher, Burger, Goldfarb, Xu, Yin (bib0015) 2005; 4
Qu, Hou, Lam, Guo, Zhong, Chen (bib0060) 2014; 18
Roth, Black (bib0011) 2005
Liang, Wang, Chang, Ying (bib0032) 2011; 65
Tan, Le (bib0065) 2019
McCann, Nilchian, Stampanoni, Unser (bib0008) 2016; 24
Qu (10.1016/j.sigpro.2021.108320_bib0060) 2014; 18
Tezcan (10.1016/j.sigpro.2021.108320_bib0028) 2019; 38
Wohlberg (10.1016/j.sigpro.2021.108320_bib0047) 2016; 25
Siddon (10.1016/j.sigpro.2021.108320_bib0064) 1985; 12
Zhan (10.1016/j.sigpro.2021.108320_bib0046) 2016; 63
Qin (10.1016/j.sigpro.2021.108320_bib0040) 2018; 38
Zhang (10.1016/j.sigpro.2021.108320_bib0007) 2016; 2
Osher (10.1016/j.sigpro.2021.108320_bib0014) 1992; 60
(10.1016/j.sigpro.2021.108320_bib0027) 2018; 5
Quan (10.1016/j.sigpro.2021.108320_bib0037) 2016
Timofte (10.1016/j.sigpro.2021.108320_bib0059) 2017
Zeiler (10.1016/j.sigpro.2021.108320_bib0016) 2010; 10
Liu (10.1016/j.sigpro.2021.108320_bib0030) 2020; 83
Brenner (10.1016/j.sigpro.2021.108320_bib0063) 2007; 357
Schlemper (10.1016/j.sigpro.2021.108320_bib0062) 2017
Li (10.1016/j.sigpro.2021.108320_bib0029) 2020; 29
Guerquin-Kern (10.1016/j.sigpro.2021.108320_bib0004) 2011; 30
Hammernik (10.1016/j.sigpro.2021.108320_bib0024) 2018; 79
Sun (10.1016/j.sigpro.2021.108320_bib0006) 2016; 29
Tihonov (10.1016/j.sigpro.2021.108320_bib0013) 1963; 4
(10.1016/j.sigpro.2021.108320_bib0051) 2020; 29
Zhu (10.1016/j.sigpro.2021.108320_bib0010) 2018; 555
Mao (10.1016/j.sigpro.2021.108320_bib0053) 2016; 29
Wang (10.1016/j.sigpro.2021.108320_bib0057) 2006; 25
Kang (10.1016/j.sigpro.2021.108320_bib0009) 2017; 44
Dong (10.1016/j.sigpro.2021.108320_bib0044) 2011; 20
Zhang (10.1016/j.sigpro.2021.108320_bib0052) 2019
McGaffin (10.1016/j.sigpro.2021.108320_bib0005) 2015; l
Elbakri (10.1016/j.sigpro.2021.108320_bib0058) 2002; 21
Aharon (10.1016/j.sigpro.2021.108320_bib0020) 2006; 54
Tian (10.1016/j.sigpro.2021.108320_bib0033) 2011; 56
Alain (10.1016/j.sigpro.2021.108320_bib0043) 2014; 15
Osher (10.1016/j.sigpro.2021.108320_bib0015) 2005; 4
Vincent (10.1016/j.sigpro.2021.108320_bib0042) 2010; 11
Buades (10.1016/j.sigpro.2021.108320_bib0018) 2005; 2
Ravishankar (10.1016/j.sigpro.2021.108320_bib0034) 2011; 30
Sidky (10.1016/j.sigpro.2021.108320_bib0002) 2008; 53
Tao (10.1016/j.sigpro.2021.108320_bib0050) 2018
Liu (10.1016/j.sigpro.2021.108320_bib0021) 2013; 22
Jung (10.1016/j.sigpro.2021.108320_bib0003) 2009; 61
Xu (10.1016/j.sigpro.2021.108320_bib0035) 2012; 31
Dong (10.1016/j.sigpro.2021.108320_bib0061) 2014; 23
Li (10.1016/j.sigpro.2021.108320_bib0055) 2004; 51
Ying (10.1016/j.sigpro.2021.108320_bib0031) 2004
Lu (10.1016/j.sigpro.2021.108320_bib0056) 2001; 3
Chen (10.1016/j.sigpro.2021.108320_bib0039) 2017; 36
Tan (10.1016/j.sigpro.2021.108320_bib0065) 2019
Liang (10.1016/j.sigpro.2021.108320_bib0032) 2011; 65
Parikh (10.1016/j.sigpro.2021.108320_bib0054) 2014; 1
Chen (10.1016/j.sigpro.2021.108320_bib0036) 2013; 58
Han (10.1016/j.sigpro.2021.108320_bib0025) 2018; 37
Jin (10.1016/j.sigpro.2021.108320_bib0023) 2017; 26
Carrera (10.1016/j.sigpro.2021.108320_bib0045) 2015
Lustig (10.1016/j.sigpro.2021.108320_bib0001) 2007; 58
Zhang (10.1016/j.sigpro.2021.108320_bib0026) 2017; 26
Wohlberg (10.1016/j.sigpro.2021.108320_bib0022) 2016
Bao (10.1016/j.sigpro.2021.108320_bib0041) 2019; 38
Dong (10.1016/j.sigpro.2021.108320_bib0019) 2013; 22
Huang (10.1016/j.sigpro.2021.108320_bib0038) 2017
Zhang (10.1016/j.sigpro.2021.108320_bib0017) 2016
Wu (10.1016/j.sigpro.2021.108320_bib0048) 2016; 26
Zoran (10.1016/j.sigpro.2021.108320_bib0012) 2011
Roth (10.1016/j.sigpro.2021.108320_bib0011) 2005
Nah (10.1016/j.sigpro.2021.108320_bib0049) 2017
McCann (10.1016/j.sigpro.2021.108320_bib0008) 2016; 24
References_xml – year: 2019
  ident: bib0065
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
  publication-title: Proceedings of the International Conference on Machine Learning
– start-page: 1056
  year: 2004
  end-page: 1059
  ident: bib0031
  article-title: On Tikhonov regularization for image reconstruction in parallel MRI
  publication-title: Proceedings of the International Conference of IEEE Engineering in Medicine and Biology Society
– volume: 25
  start-page: 301
  year: 2016
  end-page: 315
  ident: bib0047
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans. Image Process.
– volume: 10
  start-page: 2528
  year: 2010
  end-page: 2535
  ident: bib0016
  article-title: Deconvolutional networks
  publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 58
  start-page: 5803
  year: 2013
  end-page: 5820
  ident: bib0036
  article-title: Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing
  publication-title: Phys. Med. Biol.
– volume: 30
  start-page: 1649
  year: 2011
  end-page: 1660
  ident: bib0004
  article-title: A fast wavelet-based reconstruction method for magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
– volume: 4
  start-page: 1035
  year: 1963
  end-page: 1038
  ident: bib0013
  article-title: Solution of incorrectly formulated problems and the regularization method
  publication-title: Sov. Math. Dokl.
– start-page: 479
  year: 2011
  end-page: 486
  ident: bib0012
  article-title: From learning models of natural image patches to whole image restoration
  publication-title: Proceedings of the International Conference on Computer Vision
– volume: 26
  start-page: 173
  year: 2016
  end-page: 178
  ident: bib0048
  article-title: Filter-based compressed sensing MRI reconstruction
  publication-title: Int. J. Imaging Syst. Technol.
– start-page: 1
  year: 2016
  end-page: 5
  ident: bib0022
  article-title: Convolutional sparse representations as an image model for impulse noise restoration
  publication-title: Proceedings of the Multidimensional Signal Processing Workshop
– start-page: 1110
  year: 2017
  end-page: 1121
  ident: bib0059
  article-title: Ntire 2017 challenge on single image super-resolution: Methods and results
  publication-title: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)
– start-page: 1
  year: 2019
  end-page: 10
  ident: bib0052
  article-title: Deep stacked hierarchical multi-patch network for image deblurring
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 26
  start-page: 3142
  year: 2017
  end-page: 3155
  ident: bib0026
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
– volume: 51
  start-page: 2505
  year: 2004
  end-page: 2513
  ident: bib0055
  article-title: Nonlinear sinogram smoothing for low-dose X-ray CT
  publication-title: IEEE Trans. Nucl. Sci.
– start-page: 860
  year: 2005
  end-page: 867
  ident: bib0011
  article-title: Fields of experts: a framework for learning image priors
  publication-title: Proceedings of the Computer Vision and Pattern Recognition
– start-page: 518
  year: 2016
  end-page: 521
  ident: bib0037
  article-title: Compressed sensing reconstruction of dynamic contrast enhanced MRI using GPU-accelerated convolutional sparse coding
  publication-title: Proceedings of the IEEE 13th International Symposium on Biomedical Imaging
– volume: 25
  start-page: 1272
  year: 2006
  end-page: 1283
  ident: bib0057
  article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 37
  start-page: 1418
  year: 2018
  end-page: 1429
  ident: bib0025
  article-title: Framing u-net via deep convolutional framelets: application to sparse-view CT
  publication-title: IEEE Trans. Med. Imaging
– volume: 2
  start-page: 60
  year: 2005
  end-page: 65
  ident: bib0018
  article-title: A non-local algorithm for image denoising
  publication-title: Proceedings of the Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 647
  year: 2017
  end-page: 658
  ident: bib0062
  article-title: A deep cascade of convolutional neural networks for MR image reconstruction
  publication-title: Proceedings of the International Cconference Information Processing
– start-page: 8174
  year: 2018
  end-page: 8182
  ident: bib0050
  article-title: Scale-recurrent network for deep image deblurring
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 555
  start-page: 487
  year: 2018
  ident: bib0010
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
– volume: 12
  start-page: 252
  year: 1985
  end-page: 255
  ident: bib0064
  article-title: Fast calculation of the exact radiological path for a three-dimensional CT array
  publication-title: Med. Phys.
– volume: 56
  start-page: 5949
  year: 2011
  ident: bib0033
  article-title: Low-dose CT reconstruction via edge-preserving total variation regularization
  publication-title: Phys. Med. Biol.
– volume: 3
  start-page: 1662
  year: 2001
  end-page: 1666
  ident: bib0056
  article-title: Noise properties of low-dose CT projections and noise treatment by scale transformations
  publication-title: IEEE Nucl. Sci. Symp.
– volume: 29
  start-page: 2802
  year: 2016
  end-page: 2810
  ident: bib0053
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: In Neural Inf. Process. Syst.
– volume: 31
  start-page: 1682
  year: 2012
  end-page: 1697
  ident: bib0035
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans. Med. Imaging
– start-page: 257
  year: 2017
  end-page: 265
  ident: bib0049
  article-title: Deep multi-scale convolutional neural network for dynamic scene deblurring
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 24
  start-page: 14564
  year: 2016
  end-page: 14581
  ident: bib0008
  article-title: Fast 3D reconstruction method for differential phase contrast X-ray CT
  publication-title: Opt. Express
– volume: 22
  start-page: 1620
  year: 2013
  end-page: 1630
  ident: bib0019
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 22
  start-page: 4652
  year: 2013
  end-page: 4663
  ident: bib0021
  article-title: Adaptive dictionary learning in sparse gradient domain for image recovery
  publication-title: IEEE Trans. Image Process.
– volume: 38
  start-page: 280
  year: 2018
  end-page: 290
  ident: bib0040
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans. Med. Imaging
– start-page: 6070
  year: 2017
  end-page: 6079
  ident: bib0038
  article-title: Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– volume: 54
  start-page: 4311
  year: 2006
  end-page: 4322
  ident: bib0020
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
– volume: 36
  start-page: 2524
  year: 2017
  end-page: 2535
  ident: bib0039
  article-title: Low-dose CT with a residual encoder-decoder convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
– volume: 44
  start-page: 360
  year: 2017
  end-page: 375
  ident: bib0009
  article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
  publication-title: Med. Phys.
– volume: 1
  start-page: 127
  year: 2014
  end-page: 239
  ident: bib0054
  publication-title: Proximal Algorithms
– volume: 38
  start-page: 1633
  year: 2019
  end-page: 1642
  ident: bib0028
  article-title: MR image reconstruction using deep density priors
  publication-title: IEEE Trans. Med. Imaging
– volume: 2
  start-page: 510
  year: 2016
  end-page: 523
  ident: bib0007
  article-title: Spectral CT reconstruction with image sparsity and spectral mean
  publication-title: IEEE Trans. Comput. Imaging
– volume: 58
  start-page: 1182
  year: 2007
  end-page: 1195
  ident: bib0001
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
– volume: 29
  start-page: 10
  year: 2016
  end-page: 18
  ident: bib0006
  publication-title: Deep ADMM-net for compressive sensing MRI. Neural information processing systems
– volume: 26
  start-page: 4509
  year: 2017
  end-page: 4522
  ident: bib0023
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans. Image Process.
– volume: 53
  start-page: 4777
  year: 2008
  end-page: 4807
  ident: bib0002
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization
  publication-title: Phys. Med. Biol.
– volume: 63
  start-page: 1850
  year: 2016
  end-page: 1861
  ident: bib0046
  article-title: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 29
  start-page: 142
  year: 2020
  end-page: 156
  ident: bib0029
  article-title: Multi-channel and Multi-model based autoencoding prior for grayscale image restoration
  publication-title: IEEE Trans. Image Process.
– volume: 38
  start-page: 2607
  year: 2019
  end-page: 2619
  ident: bib0041
  article-title: Convolutional sparse coding for compressed sensing CT reconstruction
  publication-title: IEEE Trans. Med. Imaging
– volume: 83
  start-page: 322
  year: 2020
  end-page: 336
  ident: bib0030
  article-title: Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors
  publication-title: Magn. Reson. Med.
– volume: 60
  start-page: 259
  year: 1992
  end-page: 268
  ident: bib0014
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Phys. D Nonlinear Phenom.
– volume: 5
  start-page: 1
  year: 2018
  end-page: 10
  ident: bib0027
  article-title: Image restoration using autoencoding priors
  publication-title: VISIGRAPP
– volume: 65
  start-page: 1384
  year: 2011
  end-page: 1392
  ident: bib0032
  article-title: Sensitivity encoding reconstruction with nonlocal total variation regularization
  publication-title: Magn. Reson. Med.
– volume: 21
  start-page: 89
  year: 2002
  end-page: 99
  ident: bib0058
  article-title: Statistical image reconstruction for polyenergetic X-ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
– volume: 4
  start-page: 460
  year: 2005
  end-page: 489
  ident: bib0015
  article-title: An iterative regularization method for total variation-based image restoration
  publication-title: Multiscale Model. Simul.
– year: 2016
  ident: bib0017
  article-title: Convolutional sparse coding-based image decomposition
  publication-title: Proceedings of the British Machine Vision Conference
– volume: 30
  start-page: 1028
  year: 2011
  end-page: 1041
  ident: bib0034
  article-title: MR image reconstruction from highly undersampled k-space data by dictionary learning
  publication-title: IEEE Trans. Med. Imaging
– volume: 18
  start-page: 843
  year: 2014
  end-page: 856
  ident: bib0060
  article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator
  publication-title: Med. Image Anal.
– volume: 15
  start-page: 3743
  year: 2014
  end-page: 3773
  ident: bib0043
  article-title: What regularized auto-encoders learn from the data-generating distribution
  publication-title: J. Mach. Learn. Res.
– volume: 61
  start-page: 103
  year: 2009
  end-page: 116
  ident: bib0003
  article-title: k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI
  publication-title: Magn. Reson. Med.
– volume: 11
  start-page: 3371
  year: 2010
  end-page: 3408
  ident: bib0042
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 79
  start-page: 3055
  year: 2018
  end-page: 3071
  ident: bib0024
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn. Reson. Med.
– volume: 357
  start-page: 2277
  year: 2007
  end-page: 2284
  ident: bib0063
  article-title: Computed tomography-an increasing source of radiation exposure
  publication-title: N. Engl. J. Med.
– volume: 23
  start-page: 3618
  year: 2014
  end-page: 3632
  ident: bib0061
  article-title: Compressive sensing via nonlocal low-rank regularization
  publication-title: IEEE Trans. Image Process.
– volume: 29
  start-page: 6885
  year: 2020
  end-page: 6897
  ident: bib0051
  article-title: Dark and bright channel prior embedded network for dynamic scene deblurring
  publication-title: IEEE Trans. Image Process.
– volume: l
  start-page: 186
  year: 2015
  end-page: 199
  ident: bib0005
  article-title: Alternating dual updates algorithm for X-ray CT reconstruction on the GPU
  publication-title: IEEE Trans. Comput. Imaging
– start-page: 1
  year: 2015
  end-page: 8
  ident: bib0045
  article-title: Detecting anomalous structures by convolutional sparse models
  publication-title: Proceedings of the International Joint Conference on Neural Network
– volume: 20
  start-page: 1838
  year: 2011
  end-page: 1857
  ident: bib0044
  article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
– volume: 26
  start-page: 4509
  issue: 9
  year: 2017
  ident: 10.1016/j.sigpro.2021.108320_bib0023
  article-title: Deep convolutional neural network for inverse problems in imaging
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2713099
– volume: 21
  start-page: 89
  issue: 2
  year: 2002
  ident: 10.1016/j.sigpro.2021.108320_bib0058
  article-title: Statistical image reconstruction for polyenergetic X-ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.993128
– volume: 24
  start-page: 14564
  issue: 13
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0008
  article-title: Fast 3D reconstruction method for differential phase contrast X-ray CT
  publication-title: Opt. Express
  doi: 10.1364/OE.24.014564
– year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0017
  article-title: Convolutional sparse coding-based image decomposition
– volume: 61
  start-page: 103
  issue: 1
  year: 2009
  ident: 10.1016/j.sigpro.2021.108320_bib0003
  article-title: k-t FOCUSS: a general compressed sensing framework for high resolution dynamic MRI
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21757
– volume: 29
  start-page: 6885
  year: 2020
  ident: 10.1016/j.sigpro.2021.108320_bib0051
  article-title: Dark and bright channel prior embedded network for dynamic scene deblurring
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2020.2995048
– volume: 3
  start-page: 1662
  year: 2001
  ident: 10.1016/j.sigpro.2021.108320_bib0056
  article-title: Noise properties of low-dose CT projections and noise treatment by scale transformations
  publication-title: IEEE Nucl. Sci. Symp.
– start-page: 1
  year: 2015
  ident: 10.1016/j.sigpro.2021.108320_bib0045
  article-title: Detecting anomalous structures by convolutional sparse models
– volume: 37
  start-page: 1418
  issue: 6
  year: 2018
  ident: 10.1016/j.sigpro.2021.108320_bib0025
  article-title: Framing u-net via deep convolutional framelets: application to sparse-view CT
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2823768
– volume: 38
  start-page: 2607
  issue: 11
  year: 2019
  ident: 10.1016/j.sigpro.2021.108320_bib0041
  article-title: Convolutional sparse coding for compressed sensing CT reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2906853
– start-page: 518
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0037
  article-title: Compressed sensing reconstruction of dynamic contrast enhanced MRI using GPU-accelerated convolutional sparse coding
– start-page: 1056
  year: 2004
  ident: 10.1016/j.sigpro.2021.108320_bib0031
  article-title: On Tikhonov regularization for image reconstruction in parallel MRI
– start-page: 860
  year: 2005
  ident: 10.1016/j.sigpro.2021.108320_bib0011
  article-title: Fields of experts: a framework for learning image priors
– volume: l
  start-page: 186
  issue: 3
  year: 2015
  ident: 10.1016/j.sigpro.2021.108320_bib0005
  article-title: Alternating dual updates algorithm for X-ray CT reconstruction on the GPU
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2015.2479555
– volume: 38
  start-page: 280
  issue: 1
  year: 2018
  ident: 10.1016/j.sigpro.2021.108320_bib0040
  article-title: Convolutional recurrent neural networks for dynamic MR image reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2863670
– volume: 25
  start-page: 301
  issue: 1
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0047
  article-title: Efficient algorithms for convolutional sparse representations
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2015.2495260
– volume: 357
  start-page: 2277
  issue: 22
  year: 2007
  ident: 10.1016/j.sigpro.2021.108320_bib0063
  article-title: Computed tomography-an increasing source of radiation exposure
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMra072149
– volume: 58
  start-page: 5803
  issue: 16
  year: 2013
  ident: 10.1016/j.sigpro.2021.108320_bib0036
  article-title: Improving abdomen tumor low-dose CT images using a fast dictionary learning based processing
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/58/16/5803
– volume: 30
  start-page: 1649
  issue: 9
  year: 2011
  ident: 10.1016/j.sigpro.2021.108320_bib0004
  article-title: A fast wavelet-based reconstruction method for magnetic resonance imaging
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2011.2140121
– year: 2019
  ident: 10.1016/j.sigpro.2021.108320_bib0065
  article-title: Efficientnet: Rethinking model scaling for convolutional neural networks
– volume: 4
  start-page: 460
  issue: 2
  year: 2005
  ident: 10.1016/j.sigpro.2021.108320_bib0015
  article-title: An iterative regularization method for total variation-based image restoration
  publication-title: Multiscale Model. Simul.
  doi: 10.1137/040605412
– start-page: 6070
  year: 2017
  ident: 10.1016/j.sigpro.2021.108320_bib0038
  article-title: Simultaneous super-resolution and cross-modality synthesis of 3D medical images using weakly-supervised joint convolutional sparse coding
– volume: 12
  start-page: 252
  issue: 2
  year: 1985
  ident: 10.1016/j.sigpro.2021.108320_bib0064
  article-title: Fast calculation of the exact radiological path for a three-dimensional CT array
  publication-title: Med. Phys.
  doi: 10.1118/1.595715
– volume: 54
  start-page: 4311
  issue: 11
  year: 2006
  ident: 10.1016/j.sigpro.2021.108320_bib0020
  article-title: K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation
  publication-title: IEEE Trans. Signal Process.
  doi: 10.1109/TSP.2006.881199
– volume: 4
  start-page: 1035
  year: 1963
  ident: 10.1016/j.sigpro.2021.108320_bib0013
  article-title: Solution of incorrectly formulated problems and the regularization method
  publication-title: Sov. Math. Dokl.
– volume: 51
  start-page: 2505
  issue: 5
  year: 2004
  ident: 10.1016/j.sigpro.2021.108320_bib0055
  article-title: Nonlinear sinogram smoothing for low-dose X-ray CT
  publication-title: IEEE Trans. Nucl. Sci.
  doi: 10.1109/TNS.2004.834824
– start-page: 1
  year: 2019
  ident: 10.1016/j.sigpro.2021.108320_bib0052
  article-title: Deep stacked hierarchical multi-patch network for image deblurring
– volume: 10
  start-page: 2528
  year: 2010
  ident: 10.1016/j.sigpro.2021.108320_bib0016
  article-title: Deconvolutional networks
– start-page: 257
  year: 2017
  ident: 10.1016/j.sigpro.2021.108320_bib0049
  article-title: Deep multi-scale convolutional neural network for dynamic scene deblurring
– volume: 38
  start-page: 1633
  issue: 99
  year: 2019
  ident: 10.1016/j.sigpro.2021.108320_bib0028
  article-title: MR image reconstruction using deep density priors
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2887072
– volume: 2
  start-page: 510
  issue: 4
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0007
  article-title: Spectral CT reconstruction with image sparsity and spectral mean
  publication-title: IEEE Trans. Comput. Imaging
  doi: 10.1109/TCI.2016.2609414
– volume: 22
  start-page: 1620
  issue: 4
  year: 2013
  ident: 10.1016/j.sigpro.2021.108320_bib0019
  article-title: Nonlocally centralized sparse representation for image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2235847
– volume: 44
  start-page: 360
  issue: 10
  year: 2017
  ident: 10.1016/j.sigpro.2021.108320_bib0009
  article-title: A deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction
  publication-title: Med. Phys.
  doi: 10.1002/mp.12344
– volume: 26
  start-page: 173
  issue: 3
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0048
  article-title: Filter-based compressed sensing MRI reconstruction
  publication-title: Int. J. Imaging Syst. Technol.
  doi: 10.1002/ima.22171
– volume: 30
  start-page: 1028
  issue: 5
  year: 2011
  ident: 10.1016/j.sigpro.2021.108320_bib0034
  article-title: MR image reconstruction from highly undersampled k-space data by dictionary learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2010.2090538
– start-page: 1
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0022
  article-title: Convolutional sparse representations as an image model for impulse noise restoration
– volume: 83
  start-page: 322
  issue: 1
  year: 2020
  ident: 10.1016/j.sigpro.2021.108320_bib0030
  article-title: Highly undersampled magnetic resonance imaging reconstruction using autoencoding priors
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.27921
– volume: 20
  start-page: 1838
  issue: 7
  year: 2011
  ident: 10.1016/j.sigpro.2021.108320_bib0044
  article-title: Image deblurring and super-resolution by adaptive sparse domain selection and adaptive regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2108306
– volume: 15
  start-page: 3743
  issue: 1
  year: 2014
  ident: 10.1016/j.sigpro.2021.108320_bib0043
  article-title: What regularized auto-encoders learn from the data-generating distribution
  publication-title: J. Mach. Learn. Res.
– volume: 18
  start-page: 843
  issue: 6
  year: 2014
  ident: 10.1016/j.sigpro.2021.108320_bib0060
  article-title: Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2013.09.007
– volume: 25
  start-page: 1272
  issue: 10
  year: 2006
  ident: 10.1016/j.sigpro.2021.108320_bib0057
  article-title: Penalized weighted least-squares approach to sinogram noise reduction and image reconstruction for low-dose X-ray computed tomography
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2006.882141
– start-page: 647
  year: 2017
  ident: 10.1016/j.sigpro.2021.108320_bib0062
  article-title: A deep cascade of convolutional neural networks for MR image reconstruction
– volume: 29
  start-page: 142
  year: 2020
  ident: 10.1016/j.sigpro.2021.108320_bib0029
  article-title: Multi-channel and Multi-model based autoencoding prior for grayscale image restoration
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2931240
– volume: 56
  start-page: 5949
  issue: 18
  year: 2011
  ident: 10.1016/j.sigpro.2021.108320_bib0033
  article-title: Low-dose CT reconstruction via edge-preserving total variation regularization
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/56/18/011
– volume: 26
  start-page: 3142
  issue: 7
  year: 2017
  ident: 10.1016/j.sigpro.2021.108320_bib0026
  article-title: Beyond a Gaussian denoiser: residual learning of deep CNN for image denoising
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2017.2662206
– volume: 29
  start-page: 2802
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0053
  article-title: Image restoration using very deep convolutional encoder-decoder networks with symmetric skip connections
  publication-title: In Neural Inf. Process. Syst.
– volume: 555
  start-page: 487
  issue: 7697
  year: 2018
  ident: 10.1016/j.sigpro.2021.108320_bib0010
  article-title: Image reconstruction by domain-transform manifold learning
  publication-title: Nature
  doi: 10.1038/nature25988
– volume: 5
  start-page: 1
  year: 2018
  ident: 10.1016/j.sigpro.2021.108320_bib0027
  article-title: Image restoration using autoencoding priors
  publication-title: VISIGRAPP
– volume: 31
  start-page: 1682
  issue: 9
  year: 2012
  ident: 10.1016/j.sigpro.2021.108320_bib0035
  article-title: Low-dose X-ray CT reconstruction via dictionary learning
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2012.2195669
– volume: 22
  start-page: 4652
  issue: 12
  year: 2013
  ident: 10.1016/j.sigpro.2021.108320_bib0021
  article-title: Adaptive dictionary learning in sparse gradient domain for image recovery
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2013.2277798
– volume: 1
  start-page: 127
  year: 2014
  ident: 10.1016/j.sigpro.2021.108320_bib0054
– volume: 36
  start-page: 2524
  issue: 12
  year: 2017
  ident: 10.1016/j.sigpro.2021.108320_bib0039
  article-title: Low-dose CT with a residual encoder-decoder convolutional neural network
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2017.2715284
– volume: 60
  start-page: 259
  issue: 1–4
  year: 1992
  ident: 10.1016/j.sigpro.2021.108320_bib0014
  article-title: Nonlinear total variation based noise removal algorithms
  publication-title: Phys. D Nonlinear Phenom.
– volume: 65
  start-page: 1384
  issue: 5
  year: 2011
  ident: 10.1016/j.sigpro.2021.108320_bib0032
  article-title: Sensitivity encoding reconstruction with nonlocal total variation regularization
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.22736
– volume: 53
  start-page: 4777
  issue: 17
  year: 2008
  ident: 10.1016/j.sigpro.2021.108320_bib0002
  article-title: Image reconstruction in circular cone-beam computed tomography by constrained, total-variation minimization
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/53/17/021
– volume: 29
  start-page: 10
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0006
  publication-title: Deep ADMM-net for compressive sensing MRI. Neural information processing systems
– start-page: 1110
  year: 2017
  ident: 10.1016/j.sigpro.2021.108320_bib0059
  article-title: Ntire 2017 challenge on single image super-resolution: Methods and results
– volume: 58
  start-page: 1182
  issue: 6
  year: 2007
  ident: 10.1016/j.sigpro.2021.108320_bib0001
  article-title: Sparse MRI: the application of compressed sensing for rapid MR imaging
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.21391
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: 10.1016/j.sigpro.2021.108320_bib0042
  article-title: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion
  publication-title: J. Mach. Learn. Res.
– volume: 79
  start-page: 3055
  issue: 6
  year: 2018
  ident: 10.1016/j.sigpro.2021.108320_bib0024
  article-title: Learning a variational network for reconstruction of accelerated MRI data
  publication-title: Magn. Reson. Med.
  doi: 10.1002/mrm.26977
– start-page: 479
  year: 2011
  ident: 10.1016/j.sigpro.2021.108320_bib0012
  article-title: From learning models of natural image patches to whole image restoration
– volume: 23
  start-page: 3618
  issue: 8
  year: 2014
  ident: 10.1016/j.sigpro.2021.108320_bib0061
  article-title: Compressive sensing via nonlocal low-rank regularization
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2014.2329449
– volume: 2
  start-page: 60
  year: 2005
  ident: 10.1016/j.sigpro.2021.108320_bib0018
  article-title: A non-local algorithm for image denoising
– volume: 63
  start-page: 1850
  issue: 9
  year: 2016
  ident: 10.1016/j.sigpro.2021.108320_bib0046
  article-title: Fast multiclass dictionaries learning with geometrical directions in MRI reconstruction
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2503756
– start-page: 8174
  year: 2018
  ident: 10.1016/j.sigpro.2021.108320_bib0050
  article-title: Scale-recurrent network for deep image deblurring
SSID ssj0001360
Score 2.390224
Snippet •A multi-profile high-frequency transform-guided denoising autoencoder for attainting deep frequency recurrent prior.•We extract a set of multi-profile...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108320
SubjectTerms Denoising autoencoder network
High-frequency component
Imaging reconstruction
MRI reconstruction
Proximal gradient descent
Sparse-view CT
Title Deep frequency-recurrent priors for inverse imaging reconstruction
URI https://dx.doi.org/10.1016/j.sigpro.2021.108320
Volume 190
WOSCitedRecordID wos000704396500012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7557
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001360
  issn: 0165-1684
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELZQywEOiKcoBZQDt8pVYseJfSy0qEBVIbWgvUWJH8Wrko12W9T-e8aPeBe24iVxiaIojpP5RvY3k3kg9EpVTBGlCwx7Y45LJRTm1LSYdKJrRclL4l0Dn4_q42M-mYiPsdvowrcTqPueX12J4b9CDdcAbJc6-xdwp4fCBTgH0OEIsMPxj4Df13rYMfMQIn2N586h7kswDXPrOusYH4HuojH0jv0amhR5sziVkl0lrCf2zPHVIeQTjPucd576_xpfLoHKJwU7jAG-H1q79EjPLr2q2H5qkxYd2ein3p_FR0bPAyE_eR7WU2KCh7JiuKhC37ddHVZVXgONZ6ESdVp2Q5vQtSU8eBOmuwt7Bt8GFjwpXCAkJflyy0qBhCduOjcbWK45Za6YwCapmYD1bXPv3cHkfdqVC-ozxtPrjWmUPtZvfa6bacoK9Ti9j-5FmyHbC1g_QLd0_xDdXakk-Qi9dqhnN6CeBdQzQD2LqGcR9exH1B-jT28PTt8c4tgeA0uw8y6w4KXmrOWMS9oxrjQ1pVKmIgZMbCncCSMly2VBTF4b3bFasw4odmUKYaSkT9BGP-v1U5RJwIaqDshMYUrRko5pQVqmS6M6xdpiC9FRGo2MteNdC5PzZgwSnDZBho2TYRNkuIVwGjWE2im_ub8eBd1E_hd4XQO68cuRz_555Da6s1Tt52gDZK5foNvy24VdzF9GJfoOQ6OCNQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+frequency-recurrent+priors+for+inverse+imaging+reconstruction&rft.jtitle=Signal+processing&rft.au=He%2C+Zhuonan&rft.au=Hong%2C+Kai&rft.au=Zhou%2C+Jinjie&rft.au=Liang%2C+Dong&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0165-1684&rft.eissn=1872-7557&rft.volume=190&rft_id=info:doi/10.1016%2Fj.sigpro.2021.108320&rft.externalDocID=S0165168421003571
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0165-1684&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0165-1684&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0165-1684&client=summon