Averaged dependence estimators for DoS attack detection in IoT networks

Wireless sensor networks (WSNs) have evolved to become an integral part of the contemporary Internet of Things (IoT) paradigm. The sensor node activities of both sensing phenomena in their immediate environments and reporting their findings to a centralized base station (BS) have remained a core pla...

Full description

Saved in:
Bibliographic Details
Published in:Future generation computer systems Vol. 102; pp. 198 - 209
Main Authors: Baig, Zubair A., Sanguanpong, Surasak, Firdous, Syed Naeem, Vo, Van Nhan, Nguyen, Tri Gia, So-In, Chakchai
Format: Journal Article
Language:English
Published: Elsevier B.V 01.01.2020
Subjects:
ISSN:0167-739X, 1872-7115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Wireless sensor networks (WSNs) have evolved to become an integral part of the contemporary Internet of Things (IoT) paradigm. The sensor node activities of both sensing phenomena in their immediate environments and reporting their findings to a centralized base station (BS) have remained a core platform to sustain heterogeneous service-centric applications. However, the adversarial threat to the sensors of the IoT paradigm remains significant. Denial of service (DoS) attacks, comprising a large volume of network packets, targeting a given sensor node(s) of the network, may cripple routine operations and cause catastrophic losses to emergency services. This paper presents an intelligent DoS detection framework comprising modules for data generation, feature ranking and generation, and training and testing. The proposed framework is experimentally tested under actual IoT attack scenarios, and the accuracy of the results is greater than that of traditional classification techniques. •DoS attack detection for IoT platforms.•AODE-based classification of network traffic.•Machine learning and applications for network security in IoT on 5G networks.
AbstractList Wireless sensor networks (WSNs) have evolved to become an integral part of the contemporary Internet of Things (IoT) paradigm. The sensor node activities of both sensing phenomena in their immediate environments and reporting their findings to a centralized base station (BS) have remained a core platform to sustain heterogeneous service-centric applications. However, the adversarial threat to the sensors of the IoT paradigm remains significant. Denial of service (DoS) attacks, comprising a large volume of network packets, targeting a given sensor node(s) of the network, may cripple routine operations and cause catastrophic losses to emergency services. This paper presents an intelligent DoS detection framework comprising modules for data generation, feature ranking and generation, and training and testing. The proposed framework is experimentally tested under actual IoT attack scenarios, and the accuracy of the results is greater than that of traditional classification techniques. •DoS attack detection for IoT platforms.•AODE-based classification of network traffic.•Machine learning and applications for network security in IoT on 5G networks.
Author Sanguanpong, Surasak
So-In, Chakchai
Firdous, Syed Naeem
Vo, Van Nhan
Nguyen, Tri Gia
Baig, Zubair A.
Author_xml – sequence: 1
  givenname: Zubair A.
  surname: Baig
  fullname: Baig, Zubair A.
  organization: School of Information Technology, Deakin University, Geelong, Victoria, 3220, Australia
– sequence: 2
  givenname: Surasak
  surname: Sanguanpong
  fullname: Sanguanpong, Surasak
  organization: Department of Computer Engineering, Faculty of Engineering, Kasetsart University, 10900, Thailand
– sequence: 3
  givenname: Syed Naeem
  surname: Firdous
  fullname: Firdous, Syed Naeem
  organization: Edith Cowan University, Perth, 6000, Australia
– sequence: 4
  givenname: Van Nhan
  surname: Vo
  fullname: Vo, Van Nhan
  organization: Applied Network Technology (ANT) Laboratory, Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
– sequence: 5
  givenname: Tri Gia
  surname: Nguyen
  fullname: Nguyen, Tri Gia
  organization: Faculty of Information Technology, Duy Tan University, Da Nang, 550000, Viet Nam
– sequence: 6
  givenname: Chakchai
  surname: So-In
  fullname: So-In, Chakchai
  email: chakso@kku.ac.th
  organization: Applied Network Technology (ANT) Laboratory, Department of Computer Science, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
BookMark eNqFkLFOwzAURS1UJNrCHzD4BxKenTR2GJCqAqVSJQaKxGY5zgtyW-LKdov4exKFiQGmt9xz9e6ZkFHrWiTkmkHKgBU327Q5xqPHlAMrU5ApgDgjYyYFTwRjsxEZdzGRiKx8uyCTELYAwETGxmQ5P6HX71jTGg_Y1tgapBii_dDR-UAb5-m9e6E6Rm12XSiiida11LZ05Ta0xfjp_C5ckvNG7wNe_dwpeX182CyekvXzcrWYrxOTQRGTUnJZlNKYPMsYVlrykjEOouYzNJUEaXieAUcEzQvQpcYageU5E7rKK9TZlORDr_EuBI-NOvjuV_-lGKhehtqqQYbqZSiQqpPRYbe_MGOj7odEr-3-P_hugLEbdrLoVTC2F1Vb39lQtbN_F3wDX2KAQQ
CitedBy_id crossref_primary_10_1016_j_comnet_2020_107784
crossref_primary_10_1016_j_comnet_2022_109526
crossref_primary_10_1080_0954898X_2024_2392786
crossref_primary_10_1155_2020_8890306
crossref_primary_10_3390_s25010010
crossref_primary_10_1007_s13198_021_01115_w
crossref_primary_10_1007_s10586_021_03309_0
crossref_primary_10_1109_JIOT_2021_3139827
crossref_primary_10_31185_wjcms_363
crossref_primary_10_1016_j_iot_2023_101021
crossref_primary_10_1007_s10796_023_10443_0
crossref_primary_10_1155_2022_5724168
crossref_primary_10_1109_ACCESS_2024_3374691
crossref_primary_10_3390_app13137774
crossref_primary_10_1016_j_jksuci_2020_12_005
crossref_primary_10_1080_00207721_2020_1752843
crossref_primary_10_1007_s11042_023_16853_1
crossref_primary_10_3390_electronics11071126
crossref_primary_10_1080_1448837X_2024_2335797
crossref_primary_10_32604_cmes_2024_052112
crossref_primary_10_1007_s11277_021_08277_7
crossref_primary_10_1111_exsy_12972
crossref_primary_10_1080_00207721_2022_2083256
crossref_primary_10_1109_ACCESS_2020_2976624
crossref_primary_10_1155_2021_4989410
crossref_primary_10_1002_dac_70057
crossref_primary_10_1016_j_isatra_2022_01_002
crossref_primary_10_1016_j_future_2020_04_043
crossref_primary_10_1186_s13673_020_0210_9
crossref_primary_10_1002_cpe_6926
crossref_primary_10_1016_j_iot_2020_100227
crossref_primary_10_1080_01969722_2022_2157615
crossref_primary_10_1016_j_iot_2023_100825
crossref_primary_10_1007_s11276_025_03942_2
crossref_primary_10_1080_01969722_2022_2145660
crossref_primary_10_1186_s13638_024_02348_6
crossref_primary_10_3390_s24175581
crossref_primary_10_1016_j_compeleceng_2023_108600
crossref_primary_10_1016_j_future_2023_06_003
crossref_primary_10_1007_s11277_020_08011_9
crossref_primary_10_1080_08839514_2022_2137639
crossref_primary_10_3390_info11050279
crossref_primary_10_1016_j_jisa_2021_102785
crossref_primary_10_1007_s11761_022_00342_8
crossref_primary_10_1007_s40747_023_01000_y
crossref_primary_10_3390_ai3010002
crossref_primary_10_1007_s13198_023_02090_0
crossref_primary_10_1016_j_iot_2023_100780
crossref_primary_10_1109_ACCESS_2024_3443067
crossref_primary_10_3233_JHS_200641
crossref_primary_10_1002_ett_4607
crossref_primary_10_1016_j_energy_2022_124751
crossref_primary_10_1177_18724981251364485
crossref_primary_10_1007_s41870_022_01115_4
crossref_primary_10_1016_j_pmcj_2024_101889
Cites_doi 10.1016/j.future.2019.05.041
10.3390/s18072224
10.1109/GLOCOM.2004.1378370
10.1145/1080091.1080118
10.1109/SMARTCOMP.2017.7946998
10.1162/neco.1990.2.2.239
10.1155/2017/1864847
10.1109/ICPR.2006.147
10.1109/TII.2018.2843169
10.1109/IAW.2006.1652084
10.1109/ISBAST.2014.7013133
10.1016/j.compeleceng.2018.11.004
10.3390/e19090501
10.1109/ACCESS.2019.2905812
10.1109/IJCNN.2003.1223682
10.1016/j.comcom.2010.04.008
10.1016/j.diin.2008.05.012
10.1186/s13677-018-0109-4
10.1007/s10994-005-4258-6
10.1109/JIOT.2017.2767291
10.1016/j.diin.2017.06.015
10.1109/GLOCOM.2006.279
10.1016/j.eswa.2005.05.002
10.1109/WorldCIS17046.2011.5749877
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2019.08.007
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 209
ExternalDocumentID 10_1016_j_future_2019_08_007
S0167739X19300834
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-9828698cc4331eba82911207d25ecb808c24302ee0a260a9aede014417ab4bea3
ISICitedReferencesCount 71
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000501936300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:26:31 EST 2025
Tue Nov 18 21:29:58 EST 2025
Fri Feb 23 02:48:27 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Internet of Things
Communication system security
Machine learning algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-9828698cc4331eba82911207d25ecb808c24302ee0a260a9aede014417ab4bea3
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_future_2019_08_007
crossref_citationtrail_10_1016_j_future_2019_08_007
elsevier_sciencedirect_doi_10_1016_j_future_2019_08_007
PublicationCentury 2000
PublicationDate January 2020
2020-01-00
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: January 2020
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Thonnard, Dacier (b31) 2008
Baig, Khan (b11) 2008
(Accessed on: 1 October, 2018).
Pace, Aloi, Gravina, Caliciuri, Fortino, Liotta (b19) 2019; 15
Yu, Jiang, Wang, Zhang (b10) 2017; 19
Z.A. Baig, A. Shaheen, R. Abdel-Aal, An AODE-based intrusion detection system, in: Proc. of the IEEE World Congress on Information Security, 2011, pp. 28–35.
McGrath, Scanaill (b3) 2014; 7
Barik, Sengupta, Mazumdar (b17) 2017
Jeschke, Brecher, Meisen, Ozdemir, Eschert (b18) 2017; 9
Abusitta, Bellaïche, Dagenais (b36) 2018; 7
Gao, Li, Zhang, Lin, Ma (b33) 2019; 7
M. Barati, A. Abdullah, N. Udzir, R. Mahmod, N. Mustapha, Distributed Denial of Service detection using hybrid machine learning technique. in: Proc. of the International Symposium on Biometrics and Security Technologies, 2014, pp. 268–273.
Bojović, Bašičević, Ocovaj, Popović (b32) 2019; 73
Gelenbe (b26) 1990; 2
Jay (b39) 2007; 8
A. Lakhina, M. Crovella, C. Diot, Mining anomalies using traffic feature distributions, in: Proc. of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, 2005, pp. 217–228.
L. DeLooze, Attack characterization and intrusion detection using an ensemble of self-organizing maps, in: Proc. of the IEEE Information Assurance Workshop, 2006, pp. 108–115.
A. Dainotti, A. Pescape, Ventre. G., NIS04–1: Wavelet-based detection of DoS attacks, in: Proc. of the Global Telecommunications Conference, 2006, pp. 1–6.
Z.A. Baig, M. Baqer, A.I. and Khan, A pattern recognition scheme for distributed denial of service (DDoS) attacks in wireless sensor networks, in: Proc. of the 18th International Conference on Pattern Recognition, ICPR, 2006, pp. 1050–1054.
Faraoun, Boukelif (b16) 2006; 3
Li, Xu, Zhao (b14) 2018; 10
T.C.P. Dump
Koroniotis, Moustafa, Sitnikova, Turnbull (b40) 2019; 100
J. and Cannady, Artificial neural networks for misuse detection, in: Proc. of the National Information Systems Security Conference, 1998, pp. 368–381.
Quilan (b22) 1993
Kim, Park, Kim, Godfrey, Kim (b1) 2017; 2017
Baig, Szewczyk, Valli, Rabadia, Hannay, Chernyshev, Johnstone, Kerai, Ibrahim, Sansurooah, Syed, Peacock (b6) 2017; 22
Song, Fink, Jeschke (b5) 2017
Depren, Topallar, Anarim, Ciliz (b25) 2005; 29
Tiburski, Amaral, Hessel (b13) 2016
Baig (b4) 2011; 34
H. Kayacik, A. Zincir-Heywood, M. Heywood, On the capability of an SOM based intrusion detection system, in: Proc. of the International Joint Conference on Neural Networks, 2003, pp. 1808–1813.
Weka
Zheng, Webb (b15) 2017
Webb, Boughton, Wang (b12) 2005; 58
X. Yuan, C. Li, Li. X., DeepDefense: Identifying DDoS attack via deep learning. in: Proc. of the IEEE International Conference on Smart Computing, 2017, pp. 1–8.
Liu, Chen, Yang, Wu (b2) 2018; 18
(Accessed on: 1st October, 2018).
IoT Smart Cities
J. Haggerty, DiDDeM: a system for early detection of TCP SYN flood attacks, in: Proc. of the Global Telecommunications Conference, 2004, pp. 2037–2042.
Singh, De (b9) 2017
Frustaci, Pace, Aloi, Fortino (b20) 2018; 5
Singh (10.1016/j.future.2019.08.007_b9) 2017
Faraoun (10.1016/j.future.2019.08.007_b16) 2006; 3
Jeschke (10.1016/j.future.2019.08.007_b18) 2017; 9
Frustaci (10.1016/j.future.2019.08.007_b20) 2018; 5
Gelenbe (10.1016/j.future.2019.08.007_b26) 1990; 2
10.1016/j.future.2019.08.007_b7
10.1016/j.future.2019.08.007_b8
Baig (10.1016/j.future.2019.08.007_b11) 2008
10.1016/j.future.2019.08.007_b29
Koroniotis (10.1016/j.future.2019.08.007_b40) 2019; 100
Baig (10.1016/j.future.2019.08.007_b6) 2017; 22
Jay (10.1016/j.future.2019.08.007_b39) 2007; 8
10.1016/j.future.2019.08.007_b21
Kim (10.1016/j.future.2019.08.007_b1) 2017; 2017
Barik (10.1016/j.future.2019.08.007_b17) 2017
10.1016/j.future.2019.08.007_b23
Bojović (10.1016/j.future.2019.08.007_b32) 2019; 73
10.1016/j.future.2019.08.007_b24
Yu (10.1016/j.future.2019.08.007_b10) 2017; 19
10.1016/j.future.2019.08.007_b27
10.1016/j.future.2019.08.007_b28
Abusitta (10.1016/j.future.2019.08.007_b36) 2018; 7
Tiburski (10.1016/j.future.2019.08.007_b13) 2016
Quilan (10.1016/j.future.2019.08.007_b22) 1993
Liu (10.1016/j.future.2019.08.007_b2) 2018; 18
10.1016/j.future.2019.08.007_b30
Webb (10.1016/j.future.2019.08.007_b12) 2005; 58
Baig (10.1016/j.future.2019.08.007_b4) 2011; 34
McGrath (10.1016/j.future.2019.08.007_b3) 2014; 7
Zheng (10.1016/j.future.2019.08.007_b15) 2017
Thonnard (10.1016/j.future.2019.08.007_b31) 2008
Song (10.1016/j.future.2019.08.007_b5) 2017
Gao (10.1016/j.future.2019.08.007_b33) 2019; 7
Pace (10.1016/j.future.2019.08.007_b19) 2019; 15
Depren (10.1016/j.future.2019.08.007_b25) 2005; 29
10.1016/j.future.2019.08.007_b34
10.1016/j.future.2019.08.007_b35
10.1016/j.future.2019.08.007_b37
Li (10.1016/j.future.2019.08.007_b14) 2018; 10
10.1016/j.future.2019.08.007_b38
References_xml – volume: 3
  start-page: 161
  year: 2006
  end-page: 168
  ident: b16
  article-title: Neural networks learning improvement using the k-means clustering algorithm to detect network intrusions
  publication-title: Int. J. Comput. Intell.
– reference: A. Lakhina, M. Crovella, C. Diot, Mining anomalies using traffic feature distributions, in: Proc. of the International Conference on Applications, Technologies, Architectures, and Protocols for Computer Communications, 2005, pp. 217–228.
– reference: A. Dainotti, A. Pescape, Ventre. G., NIS04–1: Wavelet-based detection of DoS attacks, in: Proc. of the Global Telecommunications Conference, 2006, pp. 1–6.
– volume: 100
  start-page: 779
  year: 2019
  end-page: 796
  ident: b40
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-IoT dataset
  publication-title: Future Gener. Comput. Syst.
– volume: 29
  start-page: 713
  year: 2005
  end-page: 722
  ident: b25
  article-title: An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
  publication-title: Expert Syst. Appl.
– reference: X. Yuan, C. Li, Li. X., DeepDefense: Identifying DDoS attack via deep learning. in: Proc. of the IEEE International Conference on Smart Computing, 2017, pp. 1–8.
– reference: M. Barati, A. Abdullah, N. Udzir, R. Mahmod, N. Mustapha, Distributed Denial of Service detection using hybrid machine learning technique. in: Proc. of the International Symposium on Biometrics and Security Technologies, 2014, pp. 268–273.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 9
  ident: b14
  article-title: 5G Internet of Things: A survey
  publication-title: J. Ind. Inf. Integr.
– reference: L. DeLooze, Attack characterization and intrusion detection using an ensemble of self-organizing maps, in: Proc. of the IEEE Information Assurance Workshop, 2006, pp. 108–115.
– volume: 15
  start-page: 481
  year: 2019
  end-page: 489
  ident: b19
  article-title: An edge-based architecture to support efficient applications for healthcare industry 4.0
  publication-title: IEEE Trans. Ind. Inf.
– reference: T.C.P. Dump,
– volume: 5
  start-page: 2483
  year: 2018
  end-page: 2495
  ident: b20
  article-title: Evaluating critical security issues of the IoT world: Present and future challenges
  publication-title: IEEE Internet Things J.
– volume: 22
  start-page: 3
  year: 2017
  end-page: 13
  ident: b6
  article-title: Future challenges for smart cities: Cyber-security and digital forensics
  publication-title: Digit. Investig.
– year: 2017
  ident: b17
  article-title: Managing the cyber security life-cycle of smart cities
  publication-title: Smart Cities
– volume: 2
  start-page: 239
  year: 1990
  end-page: 247
  ident: b26
  article-title: Stability of the random neural network model
  publication-title: Neural Comput.
– reference: H. Kayacik, A. Zincir-Heywood, M. Heywood, On the capability of an SOM based intrusion detection system, in: Proc. of the International Joint Conference on Neural Networks, 2003, pp. 1808–1813.
– reference: J. Haggerty, DiDDeM: a system for early detection of TCP SYN flood attacks, in: Proc. of the Global Telecommunications Conference, 2004, pp. 2037–2042.
– volume: 7
  start-page: 9
  year: 2014
  end-page: 95
  ident: b3
  article-title: Sensor network topologies and design considerations
  publication-title: Sens. Technol.
– start-page: 85
  year: 2017
  end-page: 87
  ident: b15
  article-title: Averaged one-dependence estimators
  publication-title: Encyclopedia of Machine Learning and Data Mining
– volume: 58
  start-page: 524
  year: 2005
  ident: b12
  article-title: Not so naïve bayes: Aggregating one-dependence estimators
  publication-title: Mach. Learn.
– reference: (Accessed on: 1st October, 2018).
– start-page: 3
  year: 2017
  end-page: 4
  ident: b9
  article-title: Mathematical modelling of DDoS attack and detection using correlation
  publication-title: J. Cyber Secur. Technol.
– volume: 18
  start-page: 2224
  year: 2018
  ident: b2
  article-title: IoT hierarchical topology strategy and intelligentize evaluation system of diesel engine in complexity environment
  publication-title: Sensors
– volume: 7
  start-page: 43018
  year: 2019
  end-page: 43030
  ident: b33
  article-title: Research on detection and defense mechanisms of DoS attacks based on BP neural network and game theory
  publication-title: IEEE Access
– reference: (Accessed on: 1 October, 2018).
– reference: Z.A. Baig, A. Shaheen, R. Abdel-Aal, An AODE-based intrusion detection system, in: Proc. of the IEEE World Congress on Information Security, 2011, pp. 28–35.
– volume: 9
  start-page: 3
  year: 2017
  end-page: 19
  ident: b18
  article-title: Industrial Internet of Things and cyber manufacturing systems
  publication-title: Ind. Internet Things
– reference: . IoT Smart Cities,
– volume: 73
  start-page: 84
  year: 2019
  end-page: 96
  ident: b32
  article-title: A practical approach to detection of distributed denial-of-service attacks using a hybrid detection method
  publication-title: Comput. Electr. Eng.
– start-page: 128
  year: 2008
  end-page: 139
  ident: b31
  article-title: A framework for attack patterns’ discovery in honeynet data
  publication-title: Digit. Investig.
– reference: Z.A. Baig, M. Baqer, A.I. and Khan, A pattern recognition scheme for distributed denial of service (DDoS) attacks in wireless sensor networks, in: Proc. of the 18th International Conference on Pattern Recognition, ICPR, 2006, pp. 1050–1054.
– year: 2008
  ident: b11
  article-title: Distributed Denial of Service Attack Detection in Wireless Sensor Networks
– volume: 2017
  year: 2017
  ident: b1
  article-title: A survey on real-time communications in wireless sensor networks
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 8
  start-page: 1395
  year: 2007
  end-page: 1398
  ident: b39
  article-title: The derivation of global estimates from a confusion matrix
  publication-title: Remote Sens. Lett.
– start-page: 399
  year: 2016
  end-page: 418
  ident: b13
  article-title: Security challenges in 5G-based IoT middleware systems
  publication-title: Internet of Things (IoT) in 5G Mobile Technologies
– reference: . (Accessed on: 1st October, 2018).
– reference: . Weka,
– reference: J. and Cannady, Artificial neural networks for misuse detection, in: Proc. of the National Information Systems Security Conference, 1998, pp. 368–381.
– volume: 7
  start-page: 9
  year: 2018
  ident: b36
  article-title: An SVM-based framework for detecting DoS attacks in virtualized clouds under changing environment
  publication-title: J. Cloud Comput.
– volume: 19
  start-page: 501
  year: 2017
  ident: b10
  article-title: Attribute value weighted average of one-dependence estimators
  publication-title: Entropy
– year: 2017
  ident: b5
  article-title: Overview of security and privacy in cyber-physical systems
  publication-title: Security and Privacy in Cyber-Physical Systems: Foundations, Principles, and Applications
– year: 1993
  ident: b22
  article-title: C4.5 Programs for Machine Learning
– volume: 34
  start-page: 468
  year: 2011
  end-page: 484
  ident: b4
  article-title: Pattern recognition for detecting distributed node exhaustion attacks in wireless sensor networks
  publication-title: Comput. Commun.
– volume: 100
  start-page: 779
  year: 2019
  ident: 10.1016/j.future.2019.08.007_b40
  article-title: Towards the development of realistic botnet dataset in the internet of things for network forensic analytics: Bot-IoT dataset
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.05.041
– volume: 18
  start-page: 2224
  issue: 7
  year: 2018
  ident: 10.1016/j.future.2019.08.007_b2
  article-title: IoT hierarchical topology strategy and intelligentize evaluation system of diesel engine in complexity environment
  publication-title: Sensors
  doi: 10.3390/s18072224
– volume: 10
  start-page: 1
  year: 2018
  ident: 10.1016/j.future.2019.08.007_b14
  article-title: 5G Internet of Things: A survey
  publication-title: J. Ind. Inf. Integr.
– year: 1993
  ident: 10.1016/j.future.2019.08.007_b22
– ident: 10.1016/j.future.2019.08.007_b29
  doi: 10.1109/GLOCOM.2004.1378370
– ident: 10.1016/j.future.2019.08.007_b30
  doi: 10.1145/1080091.1080118
– ident: 10.1016/j.future.2019.08.007_b34
  doi: 10.1109/SMARTCOMP.2017.7946998
– start-page: 399
  year: 2016
  ident: 10.1016/j.future.2019.08.007_b13
  article-title: Security challenges in 5G-based IoT middleware systems
– volume: 2
  start-page: 239
  issue: 2
  year: 1990
  ident: 10.1016/j.future.2019.08.007_b26
  article-title: Stability of the random neural network model
  publication-title: Neural Comput.
  doi: 10.1162/neco.1990.2.2.239
– volume: 2017
  year: 2017
  ident: 10.1016/j.future.2019.08.007_b1
  article-title: A survey on real-time communications in wireless sensor networks
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2017/1864847
– volume: 7
  start-page: 9
  year: 2014
  ident: 10.1016/j.future.2019.08.007_b3
  article-title: Sensor network topologies and design considerations
  publication-title: Sens. Technol.
– ident: 10.1016/j.future.2019.08.007_b37
– start-page: 3
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2019.08.007_b9
  article-title: Mathematical modelling of DDoS attack and detection using correlation
  publication-title: J. Cyber Secur. Technol.
– volume: 9
  start-page: 3
  year: 2017
  ident: 10.1016/j.future.2019.08.007_b18
  article-title: Industrial Internet of Things and cyber manufacturing systems
  publication-title: Ind. Internet Things
– year: 2017
  ident: 10.1016/j.future.2019.08.007_b5
  article-title: Overview of security and privacy in cyber-physical systems
– ident: 10.1016/j.future.2019.08.007_b7
– ident: 10.1016/j.future.2019.08.007_b8
  doi: 10.1109/ICPR.2006.147
– volume: 15
  start-page: 481
  issue: 1
  year: 2019
  ident: 10.1016/j.future.2019.08.007_b19
  article-title: An edge-based architecture to support efficient applications for healthcare industry 4.0
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2843169
– ident: 10.1016/j.future.2019.08.007_b24
  doi: 10.1109/IAW.2006.1652084
– ident: 10.1016/j.future.2019.08.007_b35
  doi: 10.1109/ISBAST.2014.7013133
– ident: 10.1016/j.future.2019.08.007_b21
– volume: 73
  start-page: 84
  year: 2019
  ident: 10.1016/j.future.2019.08.007_b32
  article-title: A practical approach to detection of distributed denial-of-service attacks using a hybrid detection method
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2018.11.004
– volume: 19
  start-page: 501
  issue: 9
  year: 2017
  ident: 10.1016/j.future.2019.08.007_b10
  article-title: Attribute value weighted average of one-dependence estimators
  publication-title: Entropy
  doi: 10.3390/e19090501
– volume: 7
  start-page: 43018
  year: 2019
  ident: 10.1016/j.future.2019.08.007_b33
  article-title: Research on detection and defense mechanisms of DoS attacks based on BP neural network and game theory
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2905812
– year: 2008
  ident: 10.1016/j.future.2019.08.007_b11
– ident: 10.1016/j.future.2019.08.007_b23
  doi: 10.1109/IJCNN.2003.1223682
– volume: 34
  start-page: 468
  issue: 3
  year: 2011
  ident: 10.1016/j.future.2019.08.007_b4
  article-title: Pattern recognition for detecting distributed node exhaustion attacks in wireless sensor networks
  publication-title: Comput. Commun.
  doi: 10.1016/j.comcom.2010.04.008
– start-page: 85
  year: 2017
  ident: 10.1016/j.future.2019.08.007_b15
  article-title: Averaged one-dependence estimators
– year: 2017
  ident: 10.1016/j.future.2019.08.007_b17
  article-title: Managing the cyber security life-cycle of smart cities
– start-page: 128
  year: 2008
  ident: 10.1016/j.future.2019.08.007_b31
  article-title: A framework for attack patterns’ discovery in honeynet data
  publication-title: Digit. Investig.
  doi: 10.1016/j.diin.2008.05.012
– volume: 7
  start-page: 9
  year: 2018
  ident: 10.1016/j.future.2019.08.007_b36
  article-title: An SVM-based framework for detecting DoS attacks in virtualized clouds under changing environment
  publication-title: J. Cloud Comput.
  doi: 10.1186/s13677-018-0109-4
– volume: 58
  start-page: 524
  issue: 1
  year: 2005
  ident: 10.1016/j.future.2019.08.007_b12
  article-title: Not so naïve bayes: Aggregating one-dependence estimators
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-005-4258-6
– volume: 8
  start-page: 1395
  year: 2007
  ident: 10.1016/j.future.2019.08.007_b39
  article-title: The derivation of global estimates from a confusion matrix
  publication-title: Remote Sens. Lett.
– volume: 5
  start-page: 2483
  issue: 4
  year: 2018
  ident: 10.1016/j.future.2019.08.007_b20
  article-title: Evaluating critical security issues of the IoT world: Present and future challenges
  publication-title: IEEE Internet Things J.
  doi: 10.1109/JIOT.2017.2767291
– ident: 10.1016/j.future.2019.08.007_b38
– volume: 22
  start-page: 3
  year: 2017
  ident: 10.1016/j.future.2019.08.007_b6
  article-title: Future challenges for smart cities: Cyber-security and digital forensics
  publication-title: Digit. Investig.
  doi: 10.1016/j.diin.2017.06.015
– ident: 10.1016/j.future.2019.08.007_b28
  doi: 10.1109/GLOCOM.2006.279
– volume: 3
  start-page: 161
  issue: 2
  year: 2006
  ident: 10.1016/j.future.2019.08.007_b16
  article-title: Neural networks learning improvement using the k-means clustering algorithm to detect network intrusions
  publication-title: Int. J. Comput. Intell.
– volume: 29
  start-page: 713
  issue: 4
  year: 2005
  ident: 10.1016/j.future.2019.08.007_b25
  article-title: An intelligent intrusion detection system (IDS) for anomaly and misuse detection in computer networks
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2005.05.002
– ident: 10.1016/j.future.2019.08.007_b27
  doi: 10.1109/WorldCIS17046.2011.5749877
SSID ssj0001731
Score 2.5675914
Snippet Wireless sensor networks (WSNs) have evolved to become an integral part of the contemporary Internet of Things (IoT) paradigm. The sensor node activities of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 198
SubjectTerms Communication system security
Internet of Things
Machine learning algorithms
Title Averaged dependence estimators for DoS attack detection in IoT networks
URI https://dx.doi.org/10.1016/j.future.2019.08.007
Volume 102
WOSCitedRecordID wos000501936300017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection - Elsevier
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZuoe9bO0urOsFPewtuDiSW8mPoW16oYRCshH2YiRZZW47JzhO6X7G_vGObk5oxtoV9mKCsRyh8_ncOOd8CH0Giy1zzmjE8xQCFH0lIkkVjRg94MIMG9G5na5_wQYDPh6nl63Wr9ALc3fLypLf36fT_ypquAfCNq2z_yDu5qVwA36D0OEKYofrkwTfgx2Dksg7gd8WvlwzSuOHsMQ6pqzwaDLsiLoW6gYeqrUKBY9nk1GndHXhs2WvtW8Hjxi2Ze0BozwZhJ8Evci1i8Lqjm9zKYqq09trMjg2L1pOfQXwcF6JmWi6hPpFlU_mFlLDn7D1gdA-pWy4wGw29ysoosF3j2WfpiDxgzTFav-MS2eCmmbUkumCNXIqmDPw-buuybPR0TFZ0rJdR1ztDTax8xVWbYFLS1zvueEspoovtdNaHcvugynbQ7MVsxNwaI1bmrxAa4Ttp7yN1npnx-Pzxrx3mSe59FsP_Zi2aHD1v_7s7yz5MKN19NoHH7jnQLOBWrp8i94EYg_s9fw7dBIwhBcYwgsMYcAQBgxhhyHcYAgXJQYM4YCh9-hL_3h0eBp5xo1IQehYR6kZKpBypUwfnZaCE7CFJGY52ddK8pgrktCYaB0LiIPNYPdc25CcCZlILegH1C4npf6IMITxYIPhNYmW4DQKoRKINHguu4zH9OpgE9FwLpny4-gNK8ptFuoOrzN3mpk5zcyQpcZsE0XNqqkbx_LI8ywceeZdSucqZoCSv6789OyVW-jV4gPYRu26musd9FLd1cWs2vVw-g2gVp3l
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Averaged+dependence+estimators+for+DoS+attack+detection+in+IoT+networks&rft.jtitle=Future+generation+computer+systems&rft.au=Baig%2C+Zubair+A.&rft.au=Sanguanpong%2C+Surasak&rft.au=Firdous%2C+Syed+Naeem&rft.au=Vo%2C+Van+Nhan&rft.date=2020-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=102&rft.spage=198&rft.epage=209&rft_id=info:doi/10.1016%2Fj.future.2019.08.007&rft.externalDocID=S0167739X19300834
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon