Exploring microenvironmental configuration effects of Cu-based catalysts on nitrate electrocatalytic reduction selectivity

The reduction of nitrate (NO3−) can mitigate its impact on the environment. The electrochemical NO3− reduction reaction (NO3RR) offers a green and environmentally friendly approach for sustainable ammonia (NH3) synthesis, yet hindered by the complex reaction pathways. Herein, for the first time, we...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Applied catalysis. B, Environmental Ročník 365; s. 124944
Hlavní autori: Long, Xianhu, Zhong, Tao, Huang, Fan, Li, Ping, Zhao, Huinan, Fang, Jingyun, Shu, Dong, He, Chun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 15.05.2025
Predmet:
ISSN:0926-3373
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The reduction of nitrate (NO3−) can mitigate its impact on the environment. The electrochemical NO3− reduction reaction (NO3RR) offers a green and environmentally friendly approach for sustainable ammonia (NH3) synthesis, yet hindered by the complex reaction pathways. Herein, for the first time, we regulated the atomic structure of Cu-based catalysts to control the product selectivity of the NO3RR, and three catalysts with different microenvironmental configurations were successfully synthesized. Cu nanocluster (Cu NC) exhibited state-of-the-art NH3 selectivity (81.1 %), while Cu diatom (Cu DAC) was inclined to produce N2 (93.4 %), and Cu single atom (Cu SAC) was more likely to simultaneously produce both NH3 (44.9 %) and N2 (51.9 %). A series of experiments and theoretical calculations were performed to unveil the underlying mechanism. It was found that Cu NC can form Cu-O bonds with multiple oxygen atoms of the NO3−, facilitating electron transfer and rapid NH3 synthesis. Cu DAC was more conducive to the formation of N*intermediate, which is crucial for N2 production. This work provides a novel paradigm to regulate the NO3RR pathway and steer product selectivity via the microenvironmental configuration modulation of the electrocatalyst at the molecular level. [Display omitted] •Three Cu-based catalysts with different microenvironmental configuration were designed.•The functional properties of catalysts were revealed, each producing different reduction products.•The electrocatalytic characteristics of catalysts were analyzed through electrochemical analyses.•The reduction mechanisms of catalysts were explored using theoretical calculations.
AbstractList The reduction of nitrate (NO3−) can mitigate its impact on the environment. The electrochemical NO3− reduction reaction (NO3RR) offers a green and environmentally friendly approach for sustainable ammonia (NH3) synthesis, yet hindered by the complex reaction pathways. Herein, for the first time, we regulated the atomic structure of Cu-based catalysts to control the product selectivity of the NO3RR, and three catalysts with different microenvironmental configurations were successfully synthesized. Cu nanocluster (Cu NC) exhibited state-of-the-art NH3 selectivity (81.1 %), while Cu diatom (Cu DAC) was inclined to produce N2 (93.4 %), and Cu single atom (Cu SAC) was more likely to simultaneously produce both NH3 (44.9 %) and N2 (51.9 %). A series of experiments and theoretical calculations were performed to unveil the underlying mechanism. It was found that Cu NC can form Cu-O bonds with multiple oxygen atoms of the NO3−, facilitating electron transfer and rapid NH3 synthesis. Cu DAC was more conducive to the formation of N*intermediate, which is crucial for N2 production. This work provides a novel paradigm to regulate the NO3RR pathway and steer product selectivity via the microenvironmental configuration modulation of the electrocatalyst at the molecular level. [Display omitted] •Three Cu-based catalysts with different microenvironmental configuration were designed.•The functional properties of catalysts were revealed, each producing different reduction products.•The electrocatalytic characteristics of catalysts were analyzed through electrochemical analyses.•The reduction mechanisms of catalysts were explored using theoretical calculations.
ArticleNumber 124944
Author Long, Xianhu
Fang, Jingyun
Shu, Dong
Li, Ping
Zhong, Tao
Zhao, Huinan
He, Chun
Huang, Fan
Author_xml – sequence: 1
  givenname: Xianhu
  surname: Long
  fullname: Long, Xianhu
  organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 2
  givenname: Tao
  surname: Zhong
  fullname: Zhong, Tao
  organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 3
  givenname: Fan
  surname: Huang
  fullname: Huang, Fan
  organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 4
  givenname: Ping
  surname: Li
  fullname: Li, Ping
  email: liping56@mail.sysu.edu.cn
  organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 5
  givenname: Huinan
  surname: Zhao
  fullname: Zhao, Huinan
  organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 6
  givenname: Jingyun
  orcidid: 0000-0001-5997-0384
  surname: Fang
  fullname: Fang, Jingyun
  email: fangjy3@mail.sysu.edu.cn
  organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
– sequence: 7
  givenname: Dong
  surname: Shu
  fullname: Shu, Dong
  organization: School of Chemistry, South China Normal University, Guangzhou 510006, China
– sequence: 8
  givenname: Chun
  orcidid: 0000-0002-3875-5631
  surname: He
  fullname: He, Chun
  email: hechun@mail.sysu.edu.cn
  organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
BookMark eNqFkM1KAzEUhbOoYKu-gYu8wNRMEubHhSCl_kDBja5DJrlTbpkmJUmL9elNO65c6OrCveecy_lmZOK8A0JuSzYvWVndbeZ6Z3Tq5pxxOS-5bKWckClreVUIUYtLMotxwxjjgjdT8rX83A0-oFvTLZrgwR0weLcFl_RAjXc9rvdBJ_SOQt-DSZH6ni72RacjWJpf6eEYT1tHHaYsBQpD1gU_3hIaGsDuzTkjnm94wHS8Jhe9HiLc_Mwr8vG0fF-8FKu359fF46owglWpaOvKagtQV6WQghtTdrIGw3lnK2a1qNvagG6As4a3rJENVDUrJQOps7K14orIMTfXizFAr3YBtzocVcnUiZnaqJGZOjFTI7Nsu_9lM5jOIHJJHP4zP4xmyMUOCEFFg-AMWAy5v7Ie_w74BuGxkoA
CitedBy_id crossref_primary_10_1039_D5GC01306B
crossref_primary_10_1021_acsnano_5c08014
crossref_primary_10_1007_s00396_025_05469_6
crossref_primary_10_1002_adfm_202508134
crossref_primary_10_1016_j_cej_2025_164635
crossref_primary_10_1002_adfm_202512473
crossref_primary_10_1002_smll_202500833
crossref_primary_10_1039_D5TA02053K
crossref_primary_10_1002_cssc_202500581
crossref_primary_10_1039_D5TA01988E
crossref_primary_10_1016_j_seppur_2025_132609
crossref_primary_10_1039_D5SC03248B
crossref_primary_10_1002_agt2_70016
crossref_primary_10_1021_acs_iecr_5c01634
Cites_doi 10.1016/j.watres.2023.120256
10.1002/adfm.202302651
10.1021/acs.est.2c07968
10.1002/anie.202014017
10.1038/s41467-023-39366-9
10.1039/D2EE04095F
10.1021/acs.est.3c10936
10.1002/aenm.201800369
10.1039/D1CS00857A
10.1002/anie.202210958
10.1016/j.scitotenv.2022.155640
10.1016/j.electacta.2018.08.154
10.1002/smll.202306311
10.1126/science.345.6197.610
10.1007/s13201-015-0269-z
10.1021/acscatal.0c03600
10.1038/s41586-019-1134-2
10.1002/adma.202312746
10.1016/j.apcatb.2022.121683
10.1038/s41560-020-0654-1
10.1039/D1CC07299D
10.1021/acscatal.9b02179
10.1038/s41467-023-44078-1
10.1021/acs.chemrev.9b00311
10.1002/aenm.202002863
10.1021/acsnano.2c00101
10.1038/s41893-021-00739-x
10.1002/anie.202010159
10.1016/j.apcatb.2023.123580
10.2116/analsci.7.Supple_1681
10.1002/smll.202400551
10.1002/smll.202303732
10.1021/acs.est.4c03949
10.1021/jacs.3c08084
10.1038/s41565-022-01121-4
10.1002/adfm.202403838
10.1002/adma.202304021
10.1002/adma.202403965
10.1002/adma.202000381
10.1038/s41467-021-22147-7
10.1038/s41586-019-1260-x
10.1016/j.ccr.2024.215723
10.1021/acsenergylett.1c01614
10.1002/adma.202204306
10.1021/acscatal.1c03666
10.1016/j.apcatb.2023.123185
10.1002/adma.202409797
10.1002/anie.202211373
10.1016/j.chemosphere.2023.140016
10.1021/jacs.7b12101
10.1021/acs.est.2c04456
10.1039/D4EE00784K
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.apcatb.2024.124944
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Chemistry
Environmental Sciences
ExternalDocumentID 10_1016_j_apcatb_2024_124944
S092633732401258X
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFNM
ABMAC
ABNUV
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
AEBSH
AEIPS
AEKER
AFJKZ
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
EBS
EFJIC
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
LX7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPD
SSG
SSZ
T5K
~02
~G-
53G
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABJNI
ABWVN
ABXDB
ACLOT
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
ASPBG
AVWKF
AZFZN
BBWZM
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
HLY
HVGLF
HZ~
NDZJH
R2-
SCE
VH1
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-976dadee7613432cc1b47ec22bd60da3797cea8e208290848e670140e4a1b49d3
ISICitedReferencesCount 19
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409472700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0926-3373
IngestDate Sat Nov 29 06:47:16 EST 2025
Tue Nov 18 22:24:04 EST 2025
Sat Jan 18 16:09:21 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Electrocatalysis
Molecular-scale
Reaction selectivity
NO3− reduction reaction
Copper catalyst
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-976dadee7613432cc1b47ec22bd60da3797cea8e208290848e670140e4a1b49d3
ORCID 0000-0001-5997-0384
0000-0002-3875-5631
ParticipantIDs crossref_primary_10_1016_j_apcatb_2024_124944
crossref_citationtrail_10_1016_j_apcatb_2024_124944
elsevier_sciencedirect_doi_10_1016_j_apcatb_2024_124944
PublicationCentury 2000
PublicationDate 2025-05-15
PublicationDateYYYYMMDD 2025-05-15
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-15
  day: 15
PublicationDecade 2020
PublicationTitle Applied catalysis. B, Environmental
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zhang, Luo, Chen, Luo, Jiang, Yang, Zhang, Chen, Dong, Yang (bib37) 2023; 62
Zhang, Wang, Cao, Chen, Liu, Zhou, Huang, Xia, Wang, Li, Zheng, Luo, Sun, Zhao, Sun (bib4) 2024; 36
Andersen, Čolić, Yang, Schwalbe, Nielander, McEnaney, Enemark-Rasmussen, Baker, Singh, Rohr, Statt, Blair, Mezzavilla, Kibsgaard, Vesborg, Cargnello, Bent, Jaramillo, Stephens, Nørskov, Chorkendorff (bib46) 2019; 570
Han, Wang, Wang, Yu, Zhang (bib51) 2021; 60
Liu, Richards, Singh, Goldsmith (bib50) 2019; 9
Chen, Sun, Qin, Wang, Liu, Liang, Li, Pang, Guo, Li, Chen (bib31) 2024; 27
Ashida, Arashiba, Nakajima, Nishibayashi (bib1) 2019; 568
Chen, Yuan, Jiang, Ren, Ding, Ma, Wu, Lu, Wang (bib6) 2020; 5
Luo, Chen, Yang (bib19) 2024; 41
Liu, Wang, Smith, Liu, Qi (bib39) 2022; 836
Cai, Wei, Cao, Huang, Jiang, Lu, Zang (bib32) 2022; 316
Song, Liu, Zhong, Guo, Zeng, Geng (bib23) 2022; 34
Guo, Gao, Li, Wang, Shang, Duan, Xu (bib28) 2024; 36
Zheng, Ren, Yang, Huang, Liu (bib38) 2023; 341
Zhou, Zhu, Wen, Pan, Ma, Niu, Wang, Zhao (bib40) 2024; 58
Shin, Hansen, Jiao (bib45) 2021; 4
Yi, Liu, Lai, Zeng, Li, Liu, Li, Huo, Qin, Li, Zhang, Fu, An, Chen (bib20) 2021; 11
Li, Lu, Zheng, Yan, Xie, Yu, Zhang, Jiang, Chen (bib53) 2024; 17
Li, Ji, Liu, Cao, Tian, Chen, Niu, Li (bib27) 2020; 120
Kim, Ringe, Kim, Kim, Kim, Bae, Oh, Jaouen, Kim, Kim, Choi (bib34) 2021; 12
Sarkar, Adalder, Paul, Kapse, Thapa, Ghorai (bib48) 2024; 343
Elisante, Muzuka (bib8) 2017; 7
Gao, Tse (bib17) 2024; 20
Xiong, Wang, Zhou, Liu, Hao, Fan (bib57) 2024; 36
Zhao, Tang, Chen, Zhu, Tang, Meng (bib41) 2022; 58
Zhang, Shang, Deng, Cai, Long, Xiong, Chai (bib56) 2022; 16
Yao, Zhu, Wang, Li, Shao (bib52) 2018; 140
Ogawa, Ikeda (bib13) 1991; 7
Stroka, Kandemir, Matson, Bren (bib35) 2020; 10
Long, Huang, Yao, Li, Zhong, Zhao, Tian, Shu, He (bib5) 2024; 20
Zhang, Fang, Yang, Chen, Ning, Wang, Hu (bib47) 2024; 506
Geng, Ji, Jin, Zhang, Xu, Wang, Liang, Zhang (bib54) 2023; 62
Wu, Song, Guo, Xie, Cong, Kuang, Yang (bib11) 2024; 3
Cui, Tang, Zhang (bib9) 2018; 8
Zhou, Han, Yang, Li, Li, Wang, Yu, Zhang (bib33) 2023; 62
Xue, Yu, Ma, Chen, Zhang, Teng, Fan, Zhang (bib21) 2022; 56
Zhang, Li, Chen, Guo, Ma, Chu (bib16) 2023; 62
Zhang, Yang, Yuan, Wei, Ding, Chu, Rong, Zhang, Ye, Xuan, Zhai, Zhang, Yang (bib29) 2023; 14
Moon, Song, Jeon, Lai, Chang, Lin, Park, Lin, Hsu, Shin, Yun, Yong (bib30) 2023; 339
Sun, Yang, Gao, Cao, Zhao (bib36) 2022; 61
Xu, Ma, Chen, Zhang, Yang (bib14) 2022; 51
Zhang, Wu, Zheng, Jin, Shen, Li, Wang, Wang, Wang, Wei, Zhang, Wang, Zhang, Yu, Dong, Zhu, Zhang, Lu (bib24) 2023; 14
Zhou, Zhan, Yao, Zhang, Zhao, Quan, Fang, Shi, Huang, Jia, Zhang (bib44) 2023; 242
Wang, Chen, Tse (bib58) 2023; 145
Chen, Wu, Gupta, Rivera, Lambeets, Pecaut, Kim, Zhu, Finfrock, Meira, King, Gao, Xu, Cullen, Zhou, Han, Perea, Muhich, Wang (bib7) 2022; 17
Han, Ren, Ou, Cheng, Rui, Lin, Liu, Zhuo, Song, Sun, Luo, Xin (bib26) 2021; 60
Yin, Peng, Li (bib25) 2023; 57
Luo, Li, Wu, Jiang, Kuang, Liu, Luo, Zhang, Yang (bib12) 2024; 34
Xiang, Liang, Zeng, Deng, Yuan, Xiong, Song, Zhou, Yang (bib15) 2023; 19
Wang, Zhang, Wen, Yu, Du, Ni, Zhu, Zhu (bib22) 2023; 33
Li, Zhang, Zhang, Gong, Kexun (bib59) 2024; 9
Lim, Fernández, Lee, Hatzell (bib3) 2021; 6
Service (bib2) 2014; 345
Xiong, Wang, Zhou, Liu, Hao, Fan (bib18) 2023; 36
Zhou, Wen, Huang, Wu, Luo, Tian, Wei, Fu (bib55) 2023; 16
Fan, Arrazolo, Du, Xu, Fang, Liu, Wu, Kim, Wu (bib43) 2024; 58
Zhang, Zhao, Chen, Wang, Wu, Wang (bib42) 2018; 291
Li, Wang, Priest, Li, Xu, Wu (bib10) 2021; 33
Hu, Wang, Wang, Li, Guo (bib49) 2021; 11
Sarkar (10.1016/j.apcatb.2024.124944_bib48) 2024; 343
Xiong (10.1016/j.apcatb.2024.124944_bib57) 2024; 36
Service (10.1016/j.apcatb.2024.124944_bib2) 2014; 345
Yao (10.1016/j.apcatb.2024.124944_bib52) 2018; 140
Song (10.1016/j.apcatb.2024.124944_bib23) 2022; 34
Gao (10.1016/j.apcatb.2024.124944_bib17) 2024; 20
Zhang (10.1016/j.apcatb.2024.124944_bib4) 2024; 36
Sun (10.1016/j.apcatb.2024.124944_bib36) 2022; 61
Zhao (10.1016/j.apcatb.2024.124944_bib41) 2022; 58
Stroka (10.1016/j.apcatb.2024.124944_bib35) 2020; 10
Liu (10.1016/j.apcatb.2024.124944_bib39) 2022; 836
Geng (10.1016/j.apcatb.2024.124944_bib54) 2023; 62
Ogawa (10.1016/j.apcatb.2024.124944_bib13) 1991; 7
Long (10.1016/j.apcatb.2024.124944_bib5) 2024; 20
Zhang (10.1016/j.apcatb.2024.124944_bib37) 2023; 62
Wang (10.1016/j.apcatb.2024.124944_bib22) 2023; 33
Cai (10.1016/j.apcatb.2024.124944_bib32) 2022; 316
Zhou (10.1016/j.apcatb.2024.124944_bib55) 2023; 16
Zhang (10.1016/j.apcatb.2024.124944_bib47) 2024; 506
Moon (10.1016/j.apcatb.2024.124944_bib30) 2023; 339
Zhang (10.1016/j.apcatb.2024.124944_bib42) 2018; 291
Xiang (10.1016/j.apcatb.2024.124944_bib15) 2023; 19
Lim (10.1016/j.apcatb.2024.124944_bib3) 2021; 6
Chen (10.1016/j.apcatb.2024.124944_bib6) 2020; 5
Elisante (10.1016/j.apcatb.2024.124944_bib8) 2017; 7
Chen (10.1016/j.apcatb.2024.124944_bib7) 2022; 17
Cui (10.1016/j.apcatb.2024.124944_bib9) 2018; 8
Zhang (10.1016/j.apcatb.2024.124944_bib29) 2023; 14
Fan (10.1016/j.apcatb.2024.124944_bib43) 2024; 58
Zhou (10.1016/j.apcatb.2024.124944_bib44) 2023; 242
Ashida (10.1016/j.apcatb.2024.124944_bib1) 2019; 568
Xu (10.1016/j.apcatb.2024.124944_bib14) 2022; 51
Xue (10.1016/j.apcatb.2024.124944_bib21) 2022; 56
Li (10.1016/j.apcatb.2024.124944_bib53) 2024; 17
Zhang (10.1016/j.apcatb.2024.124944_bib16) 2023; 62
Kim (10.1016/j.apcatb.2024.124944_bib34) 2021; 12
Shin (10.1016/j.apcatb.2024.124944_bib45) 2021; 4
Wang (10.1016/j.apcatb.2024.124944_bib58) 2023; 145
Luo (10.1016/j.apcatb.2024.124944_bib12) 2024; 34
Guo (10.1016/j.apcatb.2024.124944_bib28) 2024; 36
Xiong (10.1016/j.apcatb.2024.124944_bib18) 2023; 36
Yi (10.1016/j.apcatb.2024.124944_bib20) 2021; 11
Li (10.1016/j.apcatb.2024.124944_bib59) 2024; 9
Yin (10.1016/j.apcatb.2024.124944_bib25) 2023; 57
Li (10.1016/j.apcatb.2024.124944_bib10) 2021; 33
Zhang (10.1016/j.apcatb.2024.124944_bib24) 2023; 14
Chen (10.1016/j.apcatb.2024.124944_bib31) 2024; 27
Hu (10.1016/j.apcatb.2024.124944_bib49) 2021; 11
Liu (10.1016/j.apcatb.2024.124944_bib50) 2019; 9
Luo (10.1016/j.apcatb.2024.124944_bib19) 2024; 41
Zhou (10.1016/j.apcatb.2024.124944_bib40) 2024; 58
Wu (10.1016/j.apcatb.2024.124944_bib11) 2024; 3
Han (10.1016/j.apcatb.2024.124944_bib51) 2021; 60
Andersen (10.1016/j.apcatb.2024.124944_bib46) 2019; 570
Zheng (10.1016/j.apcatb.2024.124944_bib38) 2023; 341
Zhang (10.1016/j.apcatb.2024.124944_bib56) 2022; 16
Han (10.1016/j.apcatb.2024.124944_bib26) 2021; 60
Li (10.1016/j.apcatb.2024.124944_bib27) 2020; 120
Zhou (10.1016/j.apcatb.2024.124944_bib33) 2023; 62
References_xml – volume: 17
  start-page: 4582
  year: 2024
  end-page: 4593
  ident: bib53
  article-title: The synergistic catalysis effect on electrochemical nitrate reduction at the dual-function active sites of the heterostructure
  publication-title: Energy Environ. Sci.
– volume: 570
  start-page: 504
  year: 2019
  end-page: 508
  ident: bib46
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nat
– volume: 9
  start-page: 7052
  year: 2019
  end-page: 7064
  ident: bib50
  article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals
  publication-title: ACS Catal.
– volume: 36
  start-page: 2304021
  year: 2023
  ident: bib18
  article-title: Electrochemical nitrate reduction: ammonia synthesis and the beyond
  publication-title: Adv. Mater.
– volume: 51
  start-page: 2710
  year: 2022
  end-page: 2758
  ident: bib14
  article-title: Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle
  publication-title: Chem. Soc. Rev.
– volume: 62
  year: 2023
  ident: bib33
  article-title: Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites
  publication-title: Angew. Chem. Int. Ed.
– volume: 568
  start-page: 536
  year: 2019
  end-page: 540
  ident: bib1
  article-title: Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water
  publication-title: Natre
– volume: 16
  start-page: 4795
  year: 2022
  end-page: 4804
  ident: bib56
  article-title: Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction
  publication-title: ACS Nano
– volume: 20
  start-page: 2306311
  year: 2024
  ident: bib17
  article-title: Unraveling the performance descriptors for designing single-atom catalysts on defective MXenes for exclusive nitrate-to-ammonia electrocatalytic upcycling
  publication-title: Small
– volume: 12
  start-page: 1856
  year: 2021
  ident: bib34
  article-title: Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst
  publication-title: Nat. Commun.
– volume: 339
  year: 2023
  ident: bib30
  article-title: Atomically isolated copper on titanium dioxide for ammonia photosynthesis via nitrate reduction with unprecedently high apparent quantum yield
  publication-title: Appl. Catal. B
– volume: 62
  year: 2023
  ident: bib54
  article-title: Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites
  publication-title: Angew. Chem. Int. Ed.
– volume: 62
  year: 2023
  ident: bib37
  article-title: Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 3613
  year: 2022
  end-page: 3616
  ident: bib41
  article-title: Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu
  publication-title: Chem. Commun.
– volume: 34
  start-page: 2403838
  year: 2024
  ident: bib12
  article-title: Relay catalysis of Fe and Co with multi-active sites for specialized division of labor in electrocatalytic nitrate reduction reaction
  publication-title: Adv. Funct. Mater.
– volume: 14
  start-page: 8311
  year: 2023
  ident: bib29
  article-title: Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy
  publication-title: Nat. Commun.
– volume: 62
  year: 2023
  ident: bib16
  article-title: Tandem Electrocatalytic nitrate reduction to ammonia on MBenes
  publication-title: Angew. Chem. Int. Ed.
– volume: 33
  start-page: 2000381
  year: 2021
  ident: bib10
  article-title: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions
  publication-title: Adv. Mater.
– volume: 341
  year: 2023
  ident: bib38
  article-title: Rational design of electrocatalytic system to selective transform nitrate to nitrogen
  publication-title: Chemosphere
– volume: 120
  start-page: 623
  year: 2020
  end-page: 682
  ident: bib27
  article-title: Well-Defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites
  publication-title: Chem. Rev.
– volume: 9
  start-page: 198
  year: 2024
  end-page: 216
  ident: bib59
  article-title: Strategies of selective electroreduction of aqueous nitrate to N
  publication-title: Green Energy Environ.
– volume: 60
  start-page: 345
  year: 2021
  end-page: 350
  ident: bib26
  article-title: Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis
  publication-title: Angew. Chem. Int. Ed.
– volume: 17
  start-page: 759
  year: 2022
  end-page: 767
  ident: bib7
  article-title: Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst
  publication-title: Nat. Nanotechnol.
– volume: 3
  start-page: 245
  year: 2024
  end-page: 269
  ident: bib11
  article-title: Tandem catalysis in electrocatalytic nitrate reduction: unlocking efficiency and mechanism
  publication-title: Interdiscip. Mater.
– volume: 34
  start-page: 2204306
  year: 2022
  ident: bib23
  article-title: Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect
  publication-title: Adv. Mater.
– volume: 291
  start-page: 151
  year: 2018
  end-page: 160
  ident: bib42
  article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: high efficiency and N
  publication-title: Electrochim. Acta
– volume: 4
  start-page: 911
  year: 2021
  end-page: 919
  ident: bib45
  article-title: Techno-economic assessment of low-temperature carbon dioxide electrolysis
  publication-title: Nat. Sustain.
– volume: 20
  start-page: 2400551
  year: 2024
  ident: bib5
  article-title: Advancements in electrocatalytic nitrogen reduction: a comprehensive review of single-atom catalysts for sustainable ammonia synthesis
  publication-title: Small
– volume: 506
  year: 2024
  ident: bib47
  article-title: Strategies and applications of electrocatalytic nitrate reduction towards ammonia
  publication-title: Coord. Chem. Rev.
– volume: 6
  start-page: 3676
  year: 2021
  end-page: 3685
  ident: bib3
  article-title: Ammonia and nitric acid demands for fertilizer use in 2050
  publication-title: ACS Energy Lett.
– volume: 36
  start-page: 2304021
  year: 2024
  ident: bib57
  article-title: Electrochemical nitrate reduction: ammonia synthesis and the beyond
  publication-title: Adv. Mater.
– volume: 27
  start-page: 2409797
  year: 2024
  ident: bib31
  article-title: Asymmetrically coordinated Cu dual-atom-sites enables selective CO
  publication-title: Adv. Mater.
– volume: 343
  year: 2024
  ident: bib48
  article-title: Iron phthalocyanine hollow architecture enabled ammonia production via nitrate reduction to achieve 100% Faradaic efficiency
  publication-title: Appl. Catal. B
– volume: 7
  start-page: 71
  year: 2017
  end-page: 87
  ident: bib8
  article-title: Occurrence of nitrate in Tanzanian groundwater aquifers: a review
  publication-title: Appl. Water Sci.
– volume: 36
  start-page: 2403965
  year: 2024
  ident: bib28
  article-title: Size-dependent catalysis in fenton-like chemistry: from nanoparticles to single atoms
  publication-title: Adv. Mater.
– volume: 60
  start-page: 4474
  year: 2021
  end-page: 4478
  ident: bib51
  article-title: Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets
  publication-title: Angew. Chem. Int. Ed.
– volume: 58
  start-page: 12823
  year: 2024
  end-page: 12845
  ident: bib43
  article-title: Effects of ionic interferents on electrocatalytic nitrate reduction: mechanistic insight
  publication-title: Environ. Sci. Technol.
– volume: 7
  start-page: 1681
  year: 1991
  end-page: 1684
  ident: bib13
  article-title: On the electrochemical reduction of nitrate ion in the presence of various metal ions
  publication-title: Anal. Sci.
– volume: 5
  start-page: 605
  year: 2020
  end-page: 613
  ident: bib6
  article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst
  publication-title: Nat. Energy
– volume: 14
  start-page: 3634
  year: 2023
  ident: bib24
  article-title: Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia
  publication-title: Nat. Commun.
– volume: 19
  start-page: 2303732
  year: 2023
  ident: bib15
  article-title: Transition metal single-atom catalysts for the electrocatalytic nitrate reduction: mechanism, synthesis, characterization, application, and prospects
  publication-title: Small
– volume: 345
  year: 2014
  ident: bib2
  article-title: New recipe produces ammonia from air, water, and sunlight
  publication-title: Science
– volume: 316
  year: 2022
  ident: bib32
  article-title: Electrocatalytic nitrate-to-ammonia conversion with ∼100% Faradaic efficiency via single-atom alloying
  publication-title: Appl. Catal. B
– volume: 145
  start-page: 26678
  year: 2023
  end-page: 26687
  ident: bib58
  article-title: Synergy between Cu and Co in a layered double hydroxide enables close to 100% nitrate-to-ammonia selectivity
  publication-title: J. Am. Chem. Soc.
– volume: 11
  start-page: 14417
  year: 2021
  end-page: 14427
  ident: bib49
  article-title: Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts
  publication-title: ACS Catal.
– volume: 8
  start-page: 1800369
  year: 2018
  ident: bib9
  article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions
  publication-title: Adv. Energy Mater.
– volume: 58
  start-page: 4824
  year: 2024
  end-page: 4836
  ident: bib40
  article-title: Efficient and selective electrochemical nitrate reduction to N
  publication-title: Environ. Sci. Technol.
– volume: 36
  start-page: 2312746
  year: 2024
  ident: bib4
  article-title: Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion
  publication-title: Adv. Mater.
– volume: 33
  start-page: 2302651
  year: 2023
  ident: bib22
  article-title: Atomically dispersed unsaturated Cu-N3 sites on high-curvature hierarchically porous carbon nanotube for synergetic enhanced nitrate electroreduction to ammonia
  publication-title: Adv. Funct. Mater.
– volume: 61
  year: 2022
  ident: bib36
  article-title: Diatomic Pd−Cu metal-phosphorus sites for complete N
  publication-title: Angew. Chem. Int. Ed.
– volume: 16
  start-page: 2611
  year: 2023
  end-page: 2620
  ident: bib55
  article-title: Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate
  publication-title: Energy Environ. Sci.
– volume: 57
  start-page: 3134
  year: 2023
  end-page: 3144
  ident: bib25
  article-title: Electrocatalytic reduction of nitrate to ammonia via a Au/Cu single atom alloy catalyst
  publication-title: Environ. Sci. Technol.
– volume: 10
  start-page: 13968
  year: 2020
  end-page: 13972
  ident: bib35
  article-title: Electrocatalytic multielectron nitrite reduction in water by an iron complex
  publication-title: ACS Catal.
– volume: 140
  start-page: 1496
  year: 2018
  end-page: 1501
  ident: bib52
  article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces
  publication-title: J. Am. Chem. Soc.
– volume: 41
  start-page: 333
  year: 2024
  end-page: 348
  ident: bib19
  article-title: Recent advances in transition metal-based catalysts for electrocatalytic nitrate reduction reaction
  publication-title: J. Donghua Univ. (Engl. Ed.)
– volume: 11
  start-page: 2002863
  year: 2021
  ident: bib20
  article-title: Recent advance of transition-metal-based layered double hydroxide nanosheets: synthesis, properties, modification, and electrocatalytic applications
  publication-title: Adv. Energy Mater.
– volume: 836
  year: 2022
  ident: bib39
  article-title: Synthesis of self-renewing Fe(0)-dispersed ordered mesoporous carbon for electrocatalytic reduction of nitrates to nitrogen
  publication-title: Sci. Total Environ.
– volume: 242
  year: 2023
  ident: bib44
  article-title: Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device
  publication-title: Water Res.
– volume: 56
  start-page: 14797
  year: 2022
  end-page: 14807
  ident: bib21
  article-title: Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites
  publication-title: Environ. Sci. Technol.
– volume: 242
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib44
  article-title: Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device
  publication-title: Water Res.
  doi: 10.1016/j.watres.2023.120256
– volume: 33
  start-page: 2302651
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib22
  article-title: Atomically dispersed unsaturated Cu-N3 sites on high-curvature hierarchically porous carbon nanotube for synergetic enhanced nitrate electroreduction to ammonia
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202302651
– volume: 57
  start-page: 3134
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib25
  article-title: Electrocatalytic reduction of nitrate to ammonia via a Au/Cu single atom alloy catalyst
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c07968
– volume: 60
  start-page: 4474
  year: 2021
  ident: 10.1016/j.apcatb.2024.124944_bib51
  article-title: Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202014017
– volume: 14
  start-page: 3634
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib24
  article-title: Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-39366-9
– volume: 16
  start-page: 2611
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib55
  article-title: Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D2EE04095F
– volume: 58
  start-page: 4824
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib40
  article-title: Efficient and selective electrochemical nitrate reduction to N2 using a flow-through zero-gap electrochemical reactor with a reconstructed Cu(OH)2 cathode: insights into the importance of inter-electrode distance
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.3c10936
– volume: 8
  start-page: 1800369
  year: 2018
  ident: 10.1016/j.apcatb.2024.124944_bib9
  article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.201800369
– volume: 51
  start-page: 2710
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib14
  article-title: Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D1CS00857A
– volume: 62
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib54
  article-title: Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202210958
– volume: 836
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib39
  article-title: Synthesis of self-renewing Fe(0)-dispersed ordered mesoporous carbon for electrocatalytic reduction of nitrates to nitrogen
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2022.155640
– volume: 291
  start-page: 151
  year: 2018
  ident: 10.1016/j.apcatb.2024.124944_bib42
  article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: high efficiency and N2 selectivity
  publication-title: Electrochim. Acta
  doi: 10.1016/j.electacta.2018.08.154
– volume: 20
  start-page: 2306311
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib17
  article-title: Unraveling the performance descriptors for designing single-atom catalysts on defective MXenes for exclusive nitrate-to-ammonia electrocatalytic upcycling
  publication-title: Small
  doi: 10.1002/smll.202306311
– volume: 345
  year: 2014
  ident: 10.1016/j.apcatb.2024.124944_bib2
  article-title: New recipe produces ammonia from air, water, and sunlight
  publication-title: Science
  doi: 10.1126/science.345.6197.610
– volume: 7
  start-page: 71
  year: 2017
  ident: 10.1016/j.apcatb.2024.124944_bib8
  article-title: Occurrence of nitrate in Tanzanian groundwater aquifers: a review
  publication-title: Appl. Water Sci.
  doi: 10.1007/s13201-015-0269-z
– volume: 10
  start-page: 13968
  year: 2020
  ident: 10.1016/j.apcatb.2024.124944_bib35
  article-title: Electrocatalytic multielectron nitrite reduction in water by an iron complex
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.0c03600
– volume: 568
  start-page: 536
  year: 2019
  ident: 10.1016/j.apcatb.2024.124944_bib1
  article-title: Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water
  publication-title: Natre
  doi: 10.1038/s41586-019-1134-2
– volume: 36
  start-page: 2312746
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib4
  article-title: Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202312746
– volume: 316
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib32
  article-title: Electrocatalytic nitrate-to-ammonia conversion with ∼100% Faradaic efficiency via single-atom alloying
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2022.121683
– volume: 5
  start-page: 605
  year: 2020
  ident: 10.1016/j.apcatb.2024.124944_bib6
  article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst
  publication-title: Nat. Energy
  doi: 10.1038/s41560-020-0654-1
– volume: 58
  start-page: 3613
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib41
  article-title: Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu2O film with predominant (111) orientation
  publication-title: Chem. Commun.
  doi: 10.1039/D1CC07299D
– volume: 9
  start-page: 7052
  year: 2019
  ident: 10.1016/j.apcatb.2024.124944_bib50
  article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b02179
– volume: 9
  start-page: 198
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib59
  article-title: Strategies of selective electroreduction of aqueous nitrate to N2 in chloride-free system: a critical review
  publication-title: Green Energy Environ.
– volume: 14
  start-page: 8311
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib29
  article-title: Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-44078-1
– volume: 3
  start-page: 245
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib11
  article-title: Tandem catalysis in electrocatalytic nitrate reduction: unlocking efficiency and mechanism
  publication-title: Interdiscip. Mater.
– volume: 120
  start-page: 623
  year: 2020
  ident: 10.1016/j.apcatb.2024.124944_bib27
  article-title: Well-Defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00311
– volume: 62
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib33
  article-title: Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites
  publication-title: Angew. Chem. Int. Ed.
– volume: 11
  start-page: 2002863
  year: 2021
  ident: 10.1016/j.apcatb.2024.124944_bib20
  article-title: Recent advance of transition-metal-based layered double hydroxide nanosheets: synthesis, properties, modification, and electrocatalytic applications
  publication-title: Adv. Energy Mater.
  doi: 10.1002/aenm.202002863
– volume: 16
  start-page: 4795
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib56
  article-title: Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction
  publication-title: ACS Nano
  doi: 10.1021/acsnano.2c00101
– volume: 4
  start-page: 911
  year: 2021
  ident: 10.1016/j.apcatb.2024.124944_bib45
  article-title: Techno-economic assessment of low-temperature carbon dioxide electrolysis
  publication-title: Nat. Sustain.
  doi: 10.1038/s41893-021-00739-x
– volume: 60
  start-page: 345
  year: 2021
  ident: 10.1016/j.apcatb.2024.124944_bib26
  article-title: Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202010159
– volume: 343
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib48
  article-title: Iron phthalocyanine hollow architecture enabled ammonia production via nitrate reduction to achieve 100% Faradaic efficiency
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2023.123580
– volume: 7
  start-page: 1681
  year: 1991
  ident: 10.1016/j.apcatb.2024.124944_bib13
  article-title: On the electrochemical reduction of nitrate ion in the presence of various metal ions
  publication-title: Anal. Sci.
  doi: 10.2116/analsci.7.Supple_1681
– volume: 20
  start-page: 2400551
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib5
  article-title: Advancements in electrocatalytic nitrogen reduction: a comprehensive review of single-atom catalysts for sustainable ammonia synthesis
  publication-title: Small
  doi: 10.1002/smll.202400551
– volume: 19
  start-page: 2303732
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib15
  article-title: Transition metal single-atom catalysts for the electrocatalytic nitrate reduction: mechanism, synthesis, characterization, application, and prospects
  publication-title: Small
  doi: 10.1002/smll.202303732
– volume: 58
  start-page: 12823
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib43
  article-title: Effects of ionic interferents on electrocatalytic nitrate reduction: mechanistic insight
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.4c03949
– volume: 145
  start-page: 26678
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib58
  article-title: Synergy between Cu and Co in a layered double hydroxide enables close to 100% nitrate-to-ammonia selectivity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.3c08084
– volume: 17
  start-page: 759
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib7
  article-title: Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-022-01121-4
– volume: 34
  start-page: 2403838
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib12
  article-title: Relay catalysis of Fe and Co with multi-active sites for specialized division of labor in electrocatalytic nitrate reduction reaction
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.202403838
– volume: 36
  start-page: 2304021
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib18
  article-title: Electrochemical nitrate reduction: ammonia synthesis and the beyond
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202304021
– volume: 36
  start-page: 2403965
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib28
  article-title: Size-dependent catalysis in fenton-like chemistry: from nanoparticles to single atoms
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202403965
– volume: 33
  start-page: 2000381
  year: 2021
  ident: 10.1016/j.apcatb.2024.124944_bib10
  article-title: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202000381
– volume: 41
  start-page: 333
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib19
  article-title: Recent advances in transition metal-based catalysts for electrocatalytic nitrate reduction reaction
  publication-title: J. Donghua Univ. (Engl. Ed.)
– volume: 12
  start-page: 1856
  year: 2021
  ident: 10.1016/j.apcatb.2024.124944_bib34
  article-title: Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-22147-7
– volume: 570
  start-page: 504
  year: 2019
  ident: 10.1016/j.apcatb.2024.124944_bib46
  article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements
  publication-title: Nat
  doi: 10.1038/s41586-019-1260-x
– volume: 506
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib47
  article-title: Strategies and applications of electrocatalytic nitrate reduction towards ammonia
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2024.215723
– volume: 62
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib16
  article-title: Tandem Electrocatalytic nitrate reduction to ammonia on MBenes
  publication-title: Angew. Chem. Int. Ed.
– volume: 6
  start-page: 3676
  year: 2021
  ident: 10.1016/j.apcatb.2024.124944_bib3
  article-title: Ammonia and nitric acid demands for fertilizer use in 2050
  publication-title: ACS Energy Lett.
  doi: 10.1021/acsenergylett.1c01614
– volume: 36
  start-page: 2304021
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib57
  article-title: Electrochemical nitrate reduction: ammonia synthesis and the beyond
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202304021
– volume: 34
  start-page: 2204306
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib23
  article-title: Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202204306
– volume: 11
  start-page: 14417
  year: 2021
  ident: 10.1016/j.apcatb.2024.124944_bib49
  article-title: Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c03666
– volume: 339
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib30
  article-title: Atomically isolated copper on titanium dioxide for ammonia photosynthesis via nitrate reduction with unprecedently high apparent quantum yield
  publication-title: Appl. Catal. B
  doi: 10.1016/j.apcatb.2023.123185
– volume: 27
  start-page: 2409797
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib31
  article-title: Asymmetrically coordinated Cu dual-atom-sites enables selective CO2 electroreduction to ethanol
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202409797
– volume: 61
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib36
  article-title: Diatomic Pd−Cu metal-phosphorus sites for complete NN bond formation in photoelectrochemical nitrate reduction
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.202211373
– volume: 341
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib38
  article-title: Rational design of electrocatalytic system to selective transform nitrate to nitrogen
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2023.140016
– volume: 62
  year: 2023
  ident: 10.1016/j.apcatb.2024.124944_bib37
  article-title: Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction
  publication-title: Angew. Chem. Int. Ed.
– volume: 140
  start-page: 1496
  year: 2018
  ident: 10.1016/j.apcatb.2024.124944_bib52
  article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12101
– volume: 56
  start-page: 14797
  year: 2022
  ident: 10.1016/j.apcatb.2024.124944_bib21
  article-title: Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/acs.est.2c04456
– volume: 17
  start-page: 4582
  year: 2024
  ident: 10.1016/j.apcatb.2024.124944_bib53
  article-title: The synergistic catalysis effect on electrochemical nitrate reduction at the dual-function active sites of the heterostructure
  publication-title: Energy Environ. Sci.
  doi: 10.1039/D4EE00784K
SSID ssj0002328
Score 2.5563543
Snippet The reduction of nitrate (NO3−) can mitigate its impact on the environment. The electrochemical NO3− reduction reaction (NO3RR) offers a green and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 124944
SubjectTerms Copper catalyst
Electrocatalysis
Molecular-scale
NO3− reduction reaction
Reaction selectivity
Title Exploring microenvironmental configuration effects of Cu-based catalysts on nitrate electrocatalytic reduction selectivity
URI https://dx.doi.org/10.1016/j.apcatb.2024.124944
Volume 365
WOSCitedRecordID wos001409472700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0926-3373
  databaseCode: AIEXJ
  dateStart: 19950211
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002328
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhgQcEBQmxpd84Fa5SmMnjo-j2gQcpkkUKbfIdhzotKXV0k4Daf_7nmM7zVbEl8QlihzbTfP7xX7v5X0g9K7SaSZFUpGERgYUFFURqZOEJKxSIlY6mhjWFpvgx8dZnouTweA6xMJcnvG6zq6uxPK_Qg1tALYNnf0LuLtJoQHOAXQ4Auxw_CPgN15159bZrhfJ1qYCqav517WHvefMMV0Tu6GVo9ae871xnxHgfbepJEa-WI675rI-ly7t7Khpr7UlKPqCbpBu_XTzZjx63667_dvpvIG8X3AOXP223tiyffNMLjbs8_bto54vUeuQcBL2YG_CiBP79d0FcTq72lZsjTNQximh1BU6CWs1dYUlttZ9Z4I4Hcsl_C0Fan_MxrastssteSej9mc7tZ0ZpBmQ77L8HtqNeSJgUdw9-HiYf-q2chA326083EqIvWwdBLd_6-eyTU9emT1Bj72igQ8cQZ6igamH6ME01Pcboke9VJRDtHcLGOyX_OYZ-tHxCW_zCd_iE_Z8wosKBz7hjk8YOng-4bt8wh2fcI9Pz9GXo8PZ9APxBTuIBs1zRUC0LWVpDAcZkdFY64li3Og4VmUalZJywbWRmYltQLct5GBSbjV8wyT0FCXdQzv1ojYvEE6jiWRMVipKDYN9Q4HarqgUSgkuacn3EQ2PutA-m70tqnJWBLfF08IBVFiACgfQPiLdqKXL5vKb_jygWHiJ1EmaBRDvlyNf_vPIV-jh5h15jXZWF2vzBt3Xl6t5c_HWM_QGMai6Cg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+microenvironmental+configuration+effects+of+Cu-based+catalysts+on+nitrate+electrocatalytic+reduction+selectivity&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Long%2C+Xianhu&rft.au=Zhong%2C+Tao&rft.au=Huang%2C+Fan&rft.au=Li%2C+Ping&rft.date=2025-05-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.volume=365&rft_id=info:doi/10.1016%2Fj.apcatb.2024.124944&rft.externalDocID=S092633732401258X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon