Exploring microenvironmental configuration effects of Cu-based catalysts on nitrate electrocatalytic reduction selectivity
The reduction of nitrate (NO3−) can mitigate its impact on the environment. The electrochemical NO3− reduction reaction (NO3RR) offers a green and environmentally friendly approach for sustainable ammonia (NH3) synthesis, yet hindered by the complex reaction pathways. Herein, for the first time, we...
Uložené v:
| Vydané v: | Applied catalysis. B, Environmental Ročník 365; s. 124944 |
|---|---|
| Hlavní autori: | , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
15.05.2025
|
| Predmet: | |
| ISSN: | 0926-3373 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The reduction of nitrate (NO3−) can mitigate its impact on the environment. The electrochemical NO3− reduction reaction (NO3RR) offers a green and environmentally friendly approach for sustainable ammonia (NH3) synthesis, yet hindered by the complex reaction pathways. Herein, for the first time, we regulated the atomic structure of Cu-based catalysts to control the product selectivity of the NO3RR, and three catalysts with different microenvironmental configurations were successfully synthesized. Cu nanocluster (Cu NC) exhibited state-of-the-art NH3 selectivity (81.1 %), while Cu diatom (Cu DAC) was inclined to produce N2 (93.4 %), and Cu single atom (Cu SAC) was more likely to simultaneously produce both NH3 (44.9 %) and N2 (51.9 %). A series of experiments and theoretical calculations were performed to unveil the underlying mechanism. It was found that Cu NC can form Cu-O bonds with multiple oxygen atoms of the NO3−, facilitating electron transfer and rapid NH3 synthesis. Cu DAC was more conducive to the formation of N*intermediate, which is crucial for N2 production. This work provides a novel paradigm to regulate the NO3RR pathway and steer product selectivity via the microenvironmental configuration modulation of the electrocatalyst at the molecular level.
[Display omitted]
•Three Cu-based catalysts with different microenvironmental configuration were designed.•The functional properties of catalysts were revealed, each producing different reduction products.•The electrocatalytic characteristics of catalysts were analyzed through electrochemical analyses.•The reduction mechanisms of catalysts were explored using theoretical calculations. |
|---|---|
| AbstractList | The reduction of nitrate (NO3−) can mitigate its impact on the environment. The electrochemical NO3− reduction reaction (NO3RR) offers a green and environmentally friendly approach for sustainable ammonia (NH3) synthesis, yet hindered by the complex reaction pathways. Herein, for the first time, we regulated the atomic structure of Cu-based catalysts to control the product selectivity of the NO3RR, and three catalysts with different microenvironmental configurations were successfully synthesized. Cu nanocluster (Cu NC) exhibited state-of-the-art NH3 selectivity (81.1 %), while Cu diatom (Cu DAC) was inclined to produce N2 (93.4 %), and Cu single atom (Cu SAC) was more likely to simultaneously produce both NH3 (44.9 %) and N2 (51.9 %). A series of experiments and theoretical calculations were performed to unveil the underlying mechanism. It was found that Cu NC can form Cu-O bonds with multiple oxygen atoms of the NO3−, facilitating electron transfer and rapid NH3 synthesis. Cu DAC was more conducive to the formation of N*intermediate, which is crucial for N2 production. This work provides a novel paradigm to regulate the NO3RR pathway and steer product selectivity via the microenvironmental configuration modulation of the electrocatalyst at the molecular level.
[Display omitted]
•Three Cu-based catalysts with different microenvironmental configuration were designed.•The functional properties of catalysts were revealed, each producing different reduction products.•The electrocatalytic characteristics of catalysts were analyzed through electrochemical analyses.•The reduction mechanisms of catalysts were explored using theoretical calculations. |
| ArticleNumber | 124944 |
| Author | Long, Xianhu Fang, Jingyun Shu, Dong Li, Ping Zhong, Tao Zhao, Huinan He, Chun Huang, Fan |
| Author_xml | – sequence: 1 givenname: Xianhu surname: Long fullname: Long, Xianhu organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China – sequence: 2 givenname: Tao surname: Zhong fullname: Zhong, Tao organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China – sequence: 3 givenname: Fan surname: Huang fullname: Huang, Fan organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China – sequence: 4 givenname: Ping surname: Li fullname: Li, Ping email: liping56@mail.sysu.edu.cn organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China – sequence: 5 givenname: Huinan surname: Zhao fullname: Zhao, Huinan organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China – sequence: 6 givenname: Jingyun orcidid: 0000-0001-5997-0384 surname: Fang fullname: Fang, Jingyun email: fangjy3@mail.sysu.edu.cn organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China – sequence: 7 givenname: Dong surname: Shu fullname: Shu, Dong organization: School of Chemistry, South China Normal University, Guangzhou 510006, China – sequence: 8 givenname: Chun orcidid: 0000-0002-3875-5631 surname: He fullname: He, Chun email: hechun@mail.sysu.edu.cn organization: School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China |
| BookMark | eNqFkM1KAzEUhbOoYKu-gYu8wNRMEubHhSCl_kDBja5DJrlTbpkmJUmL9elNO65c6OrCveecy_lmZOK8A0JuSzYvWVndbeZ6Z3Tq5pxxOS-5bKWckClreVUIUYtLMotxwxjjgjdT8rX83A0-oFvTLZrgwR0weLcFl_RAjXc9rvdBJ_SOQt-DSZH6ni72RacjWJpf6eEYT1tHHaYsBQpD1gU_3hIaGsDuzTkjnm94wHS8Jhe9HiLc_Mwr8vG0fF-8FKu359fF46owglWpaOvKagtQV6WQghtTdrIGw3lnK2a1qNvagG6As4a3rJENVDUrJQOps7K14orIMTfXizFAr3YBtzocVcnUiZnaqJGZOjFTI7Nsu_9lM5jOIHJJHP4zP4xmyMUOCEFFg-AMWAy5v7Ie_w74BuGxkoA |
| CitedBy_id | crossref_primary_10_1039_D5GC01306B crossref_primary_10_1021_acsnano_5c08014 crossref_primary_10_1007_s00396_025_05469_6 crossref_primary_10_1002_adfm_202508134 crossref_primary_10_1016_j_cej_2025_164635 crossref_primary_10_1002_adfm_202512473 crossref_primary_10_1002_smll_202500833 crossref_primary_10_1039_D5TA02053K crossref_primary_10_1002_cssc_202500581 crossref_primary_10_1039_D5TA01988E crossref_primary_10_1016_j_seppur_2025_132609 crossref_primary_10_1039_D5SC03248B crossref_primary_10_1002_agt2_70016 crossref_primary_10_1021_acs_iecr_5c01634 |
| Cites_doi | 10.1016/j.watres.2023.120256 10.1002/adfm.202302651 10.1021/acs.est.2c07968 10.1002/anie.202014017 10.1038/s41467-023-39366-9 10.1039/D2EE04095F 10.1021/acs.est.3c10936 10.1002/aenm.201800369 10.1039/D1CS00857A 10.1002/anie.202210958 10.1016/j.scitotenv.2022.155640 10.1016/j.electacta.2018.08.154 10.1002/smll.202306311 10.1126/science.345.6197.610 10.1007/s13201-015-0269-z 10.1021/acscatal.0c03600 10.1038/s41586-019-1134-2 10.1002/adma.202312746 10.1016/j.apcatb.2022.121683 10.1038/s41560-020-0654-1 10.1039/D1CC07299D 10.1021/acscatal.9b02179 10.1038/s41467-023-44078-1 10.1021/acs.chemrev.9b00311 10.1002/aenm.202002863 10.1021/acsnano.2c00101 10.1038/s41893-021-00739-x 10.1002/anie.202010159 10.1016/j.apcatb.2023.123580 10.2116/analsci.7.Supple_1681 10.1002/smll.202400551 10.1002/smll.202303732 10.1021/acs.est.4c03949 10.1021/jacs.3c08084 10.1038/s41565-022-01121-4 10.1002/adfm.202403838 10.1002/adma.202304021 10.1002/adma.202403965 10.1002/adma.202000381 10.1038/s41467-021-22147-7 10.1038/s41586-019-1260-x 10.1016/j.ccr.2024.215723 10.1021/acsenergylett.1c01614 10.1002/adma.202204306 10.1021/acscatal.1c03666 10.1016/j.apcatb.2023.123185 10.1002/adma.202409797 10.1002/anie.202211373 10.1016/j.chemosphere.2023.140016 10.1021/jacs.7b12101 10.1021/acs.est.2c04456 10.1039/D4EE00784K |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.apcatb.2024.124944 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Chemistry Environmental Sciences |
| ExternalDocumentID | 10_1016_j_apcatb_2024_124944 S092633732401258X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFNM ABMAC ABNUV ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE AEBSH AEIPS AEKER AFJKZ AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 EBS EFJIC ENUVR EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W KOM LX7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 ROL RPZ SDF SDG SES SEW SPC SPD SSG SSZ T5K ~02 ~G- 53G 9DU AAQXK AATTM AAYWO AAYXX ABJNI ABWVN ABXDB ACLOT ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AGQPQ AI. AIGII AIIUN AKBMS AKYEP ANKPU ASPBG AVWKF AZFZN BBWZM CITATION EFKBS EFLBG EJD FEDTE FGOYB HLY HVGLF HZ~ NDZJH R2- SCE VH1 WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-976dadee7613432cc1b47ec22bd60da3797cea8e208290848e670140e4a1b49d3 |
| ISICitedReferencesCount | 19 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001409472700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0926-3373 |
| IngestDate | Sat Nov 29 06:47:16 EST 2025 Tue Nov 18 22:24:04 EST 2025 Sat Jan 18 16:09:21 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Electrocatalysis Molecular-scale Reaction selectivity NO3− reduction reaction Copper catalyst |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-976dadee7613432cc1b47ec22bd60da3797cea8e208290848e670140e4a1b49d3 |
| ORCID | 0000-0001-5997-0384 0000-0002-3875-5631 |
| ParticipantIDs | crossref_primary_10_1016_j_apcatb_2024_124944 crossref_citationtrail_10_1016_j_apcatb_2024_124944 elsevier_sciencedirect_doi_10_1016_j_apcatb_2024_124944 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-05-15 |
| PublicationDateYYYYMMDD | 2025-05-15 |
| PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied catalysis. B, Environmental |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Luo, Chen, Luo, Jiang, Yang, Zhang, Chen, Dong, Yang (bib37) 2023; 62 Zhang, Wang, Cao, Chen, Liu, Zhou, Huang, Xia, Wang, Li, Zheng, Luo, Sun, Zhao, Sun (bib4) 2024; 36 Andersen, Čolić, Yang, Schwalbe, Nielander, McEnaney, Enemark-Rasmussen, Baker, Singh, Rohr, Statt, Blair, Mezzavilla, Kibsgaard, Vesborg, Cargnello, Bent, Jaramillo, Stephens, Nørskov, Chorkendorff (bib46) 2019; 570 Han, Wang, Wang, Yu, Zhang (bib51) 2021; 60 Liu, Richards, Singh, Goldsmith (bib50) 2019; 9 Chen, Sun, Qin, Wang, Liu, Liang, Li, Pang, Guo, Li, Chen (bib31) 2024; 27 Ashida, Arashiba, Nakajima, Nishibayashi (bib1) 2019; 568 Chen, Yuan, Jiang, Ren, Ding, Ma, Wu, Lu, Wang (bib6) 2020; 5 Luo, Chen, Yang (bib19) 2024; 41 Liu, Wang, Smith, Liu, Qi (bib39) 2022; 836 Cai, Wei, Cao, Huang, Jiang, Lu, Zang (bib32) 2022; 316 Song, Liu, Zhong, Guo, Zeng, Geng (bib23) 2022; 34 Guo, Gao, Li, Wang, Shang, Duan, Xu (bib28) 2024; 36 Zheng, Ren, Yang, Huang, Liu (bib38) 2023; 341 Zhou, Zhu, Wen, Pan, Ma, Niu, Wang, Zhao (bib40) 2024; 58 Shin, Hansen, Jiao (bib45) 2021; 4 Yi, Liu, Lai, Zeng, Li, Liu, Li, Huo, Qin, Li, Zhang, Fu, An, Chen (bib20) 2021; 11 Li, Lu, Zheng, Yan, Xie, Yu, Zhang, Jiang, Chen (bib53) 2024; 17 Li, Ji, Liu, Cao, Tian, Chen, Niu, Li (bib27) 2020; 120 Kim, Ringe, Kim, Kim, Kim, Bae, Oh, Jaouen, Kim, Kim, Choi (bib34) 2021; 12 Sarkar, Adalder, Paul, Kapse, Thapa, Ghorai (bib48) 2024; 343 Elisante, Muzuka (bib8) 2017; 7 Gao, Tse (bib17) 2024; 20 Xiong, Wang, Zhou, Liu, Hao, Fan (bib57) 2024; 36 Zhao, Tang, Chen, Zhu, Tang, Meng (bib41) 2022; 58 Zhang, Shang, Deng, Cai, Long, Xiong, Chai (bib56) 2022; 16 Yao, Zhu, Wang, Li, Shao (bib52) 2018; 140 Ogawa, Ikeda (bib13) 1991; 7 Stroka, Kandemir, Matson, Bren (bib35) 2020; 10 Long, Huang, Yao, Li, Zhong, Zhao, Tian, Shu, He (bib5) 2024; 20 Zhang, Fang, Yang, Chen, Ning, Wang, Hu (bib47) 2024; 506 Geng, Ji, Jin, Zhang, Xu, Wang, Liang, Zhang (bib54) 2023; 62 Wu, Song, Guo, Xie, Cong, Kuang, Yang (bib11) 2024; 3 Cui, Tang, Zhang (bib9) 2018; 8 Zhou, Han, Yang, Li, Li, Wang, Yu, Zhang (bib33) 2023; 62 Xue, Yu, Ma, Chen, Zhang, Teng, Fan, Zhang (bib21) 2022; 56 Zhang, Li, Chen, Guo, Ma, Chu (bib16) 2023; 62 Zhang, Yang, Yuan, Wei, Ding, Chu, Rong, Zhang, Ye, Xuan, Zhai, Zhang, Yang (bib29) 2023; 14 Moon, Song, Jeon, Lai, Chang, Lin, Park, Lin, Hsu, Shin, Yun, Yong (bib30) 2023; 339 Sun, Yang, Gao, Cao, Zhao (bib36) 2022; 61 Xu, Ma, Chen, Zhang, Yang (bib14) 2022; 51 Zhang, Wu, Zheng, Jin, Shen, Li, Wang, Wang, Wang, Wei, Zhang, Wang, Zhang, Yu, Dong, Zhu, Zhang, Lu (bib24) 2023; 14 Zhou, Zhan, Yao, Zhang, Zhao, Quan, Fang, Shi, Huang, Jia, Zhang (bib44) 2023; 242 Wang, Chen, Tse (bib58) 2023; 145 Chen, Wu, Gupta, Rivera, Lambeets, Pecaut, Kim, Zhu, Finfrock, Meira, King, Gao, Xu, Cullen, Zhou, Han, Perea, Muhich, Wang (bib7) 2022; 17 Han, Ren, Ou, Cheng, Rui, Lin, Liu, Zhuo, Song, Sun, Luo, Xin (bib26) 2021; 60 Yin, Peng, Li (bib25) 2023; 57 Luo, Li, Wu, Jiang, Kuang, Liu, Luo, Zhang, Yang (bib12) 2024; 34 Xiang, Liang, Zeng, Deng, Yuan, Xiong, Song, Zhou, Yang (bib15) 2023; 19 Wang, Zhang, Wen, Yu, Du, Ni, Zhu, Zhu (bib22) 2023; 33 Li, Zhang, Zhang, Gong, Kexun (bib59) 2024; 9 Lim, Fernández, Lee, Hatzell (bib3) 2021; 6 Service (bib2) 2014; 345 Xiong, Wang, Zhou, Liu, Hao, Fan (bib18) 2023; 36 Zhou, Wen, Huang, Wu, Luo, Tian, Wei, Fu (bib55) 2023; 16 Fan, Arrazolo, Du, Xu, Fang, Liu, Wu, Kim, Wu (bib43) 2024; 58 Zhang, Zhao, Chen, Wang, Wu, Wang (bib42) 2018; 291 Li, Wang, Priest, Li, Xu, Wu (bib10) 2021; 33 Hu, Wang, Wang, Li, Guo (bib49) 2021; 11 Sarkar (10.1016/j.apcatb.2024.124944_bib48) 2024; 343 Xiong (10.1016/j.apcatb.2024.124944_bib57) 2024; 36 Service (10.1016/j.apcatb.2024.124944_bib2) 2014; 345 Yao (10.1016/j.apcatb.2024.124944_bib52) 2018; 140 Song (10.1016/j.apcatb.2024.124944_bib23) 2022; 34 Gao (10.1016/j.apcatb.2024.124944_bib17) 2024; 20 Zhang (10.1016/j.apcatb.2024.124944_bib4) 2024; 36 Sun (10.1016/j.apcatb.2024.124944_bib36) 2022; 61 Zhao (10.1016/j.apcatb.2024.124944_bib41) 2022; 58 Stroka (10.1016/j.apcatb.2024.124944_bib35) 2020; 10 Liu (10.1016/j.apcatb.2024.124944_bib39) 2022; 836 Geng (10.1016/j.apcatb.2024.124944_bib54) 2023; 62 Ogawa (10.1016/j.apcatb.2024.124944_bib13) 1991; 7 Long (10.1016/j.apcatb.2024.124944_bib5) 2024; 20 Zhang (10.1016/j.apcatb.2024.124944_bib37) 2023; 62 Wang (10.1016/j.apcatb.2024.124944_bib22) 2023; 33 Cai (10.1016/j.apcatb.2024.124944_bib32) 2022; 316 Zhou (10.1016/j.apcatb.2024.124944_bib55) 2023; 16 Zhang (10.1016/j.apcatb.2024.124944_bib47) 2024; 506 Moon (10.1016/j.apcatb.2024.124944_bib30) 2023; 339 Zhang (10.1016/j.apcatb.2024.124944_bib42) 2018; 291 Xiang (10.1016/j.apcatb.2024.124944_bib15) 2023; 19 Lim (10.1016/j.apcatb.2024.124944_bib3) 2021; 6 Chen (10.1016/j.apcatb.2024.124944_bib6) 2020; 5 Elisante (10.1016/j.apcatb.2024.124944_bib8) 2017; 7 Chen (10.1016/j.apcatb.2024.124944_bib7) 2022; 17 Cui (10.1016/j.apcatb.2024.124944_bib9) 2018; 8 Zhang (10.1016/j.apcatb.2024.124944_bib29) 2023; 14 Fan (10.1016/j.apcatb.2024.124944_bib43) 2024; 58 Zhou (10.1016/j.apcatb.2024.124944_bib44) 2023; 242 Ashida (10.1016/j.apcatb.2024.124944_bib1) 2019; 568 Xu (10.1016/j.apcatb.2024.124944_bib14) 2022; 51 Xue (10.1016/j.apcatb.2024.124944_bib21) 2022; 56 Li (10.1016/j.apcatb.2024.124944_bib53) 2024; 17 Zhang (10.1016/j.apcatb.2024.124944_bib16) 2023; 62 Kim (10.1016/j.apcatb.2024.124944_bib34) 2021; 12 Shin (10.1016/j.apcatb.2024.124944_bib45) 2021; 4 Wang (10.1016/j.apcatb.2024.124944_bib58) 2023; 145 Luo (10.1016/j.apcatb.2024.124944_bib12) 2024; 34 Guo (10.1016/j.apcatb.2024.124944_bib28) 2024; 36 Xiong (10.1016/j.apcatb.2024.124944_bib18) 2023; 36 Yi (10.1016/j.apcatb.2024.124944_bib20) 2021; 11 Li (10.1016/j.apcatb.2024.124944_bib59) 2024; 9 Yin (10.1016/j.apcatb.2024.124944_bib25) 2023; 57 Li (10.1016/j.apcatb.2024.124944_bib10) 2021; 33 Zhang (10.1016/j.apcatb.2024.124944_bib24) 2023; 14 Chen (10.1016/j.apcatb.2024.124944_bib31) 2024; 27 Hu (10.1016/j.apcatb.2024.124944_bib49) 2021; 11 Liu (10.1016/j.apcatb.2024.124944_bib50) 2019; 9 Luo (10.1016/j.apcatb.2024.124944_bib19) 2024; 41 Zhou (10.1016/j.apcatb.2024.124944_bib40) 2024; 58 Wu (10.1016/j.apcatb.2024.124944_bib11) 2024; 3 Han (10.1016/j.apcatb.2024.124944_bib51) 2021; 60 Andersen (10.1016/j.apcatb.2024.124944_bib46) 2019; 570 Zheng (10.1016/j.apcatb.2024.124944_bib38) 2023; 341 Zhang (10.1016/j.apcatb.2024.124944_bib56) 2022; 16 Han (10.1016/j.apcatb.2024.124944_bib26) 2021; 60 Li (10.1016/j.apcatb.2024.124944_bib27) 2020; 120 Zhou (10.1016/j.apcatb.2024.124944_bib33) 2023; 62 |
| References_xml | – volume: 17 start-page: 4582 year: 2024 end-page: 4593 ident: bib53 article-title: The synergistic catalysis effect on electrochemical nitrate reduction at the dual-function active sites of the heterostructure publication-title: Energy Environ. Sci. – volume: 570 start-page: 504 year: 2019 end-page: 508 ident: bib46 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nat – volume: 9 start-page: 7052 year: 2019 end-page: 7064 ident: bib50 article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals publication-title: ACS Catal. – volume: 36 start-page: 2304021 year: 2023 ident: bib18 article-title: Electrochemical nitrate reduction: ammonia synthesis and the beyond publication-title: Adv. Mater. – volume: 51 start-page: 2710 year: 2022 end-page: 2758 ident: bib14 article-title: Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle publication-title: Chem. Soc. Rev. – volume: 62 year: 2023 ident: bib33 article-title: Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites publication-title: Angew. Chem. Int. Ed. – volume: 568 start-page: 536 year: 2019 end-page: 540 ident: bib1 article-title: Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water publication-title: Natre – volume: 16 start-page: 4795 year: 2022 end-page: 4804 ident: bib56 article-title: Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction publication-title: ACS Nano – volume: 20 start-page: 2306311 year: 2024 ident: bib17 article-title: Unraveling the performance descriptors for designing single-atom catalysts on defective MXenes for exclusive nitrate-to-ammonia electrocatalytic upcycling publication-title: Small – volume: 12 start-page: 1856 year: 2021 ident: bib34 article-title: Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst publication-title: Nat. Commun. – volume: 339 year: 2023 ident: bib30 article-title: Atomically isolated copper on titanium dioxide for ammonia photosynthesis via nitrate reduction with unprecedently high apparent quantum yield publication-title: Appl. Catal. B – volume: 62 year: 2023 ident: bib54 article-title: Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites publication-title: Angew. Chem. Int. Ed. – volume: 62 year: 2023 ident: bib37 article-title: Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 3613 year: 2022 end-page: 3616 ident: bib41 article-title: Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu publication-title: Chem. Commun. – volume: 34 start-page: 2403838 year: 2024 ident: bib12 article-title: Relay catalysis of Fe and Co with multi-active sites for specialized division of labor in electrocatalytic nitrate reduction reaction publication-title: Adv. Funct. Mater. – volume: 14 start-page: 8311 year: 2023 ident: bib29 article-title: Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy publication-title: Nat. Commun. – volume: 62 year: 2023 ident: bib16 article-title: Tandem Electrocatalytic nitrate reduction to ammonia on MBenes publication-title: Angew. Chem. Int. Ed. – volume: 33 start-page: 2000381 year: 2021 ident: bib10 article-title: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions publication-title: Adv. Mater. – volume: 341 year: 2023 ident: bib38 article-title: Rational design of electrocatalytic system to selective transform nitrate to nitrogen publication-title: Chemosphere – volume: 120 start-page: 623 year: 2020 end-page: 682 ident: bib27 article-title: Well-Defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites publication-title: Chem. Rev. – volume: 9 start-page: 198 year: 2024 end-page: 216 ident: bib59 article-title: Strategies of selective electroreduction of aqueous nitrate to N publication-title: Green Energy Environ. – volume: 60 start-page: 345 year: 2021 end-page: 350 ident: bib26 article-title: Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis publication-title: Angew. Chem. Int. Ed. – volume: 17 start-page: 759 year: 2022 end-page: 767 ident: bib7 article-title: Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst publication-title: Nat. Nanotechnol. – volume: 3 start-page: 245 year: 2024 end-page: 269 ident: bib11 article-title: Tandem catalysis in electrocatalytic nitrate reduction: unlocking efficiency and mechanism publication-title: Interdiscip. Mater. – volume: 34 start-page: 2204306 year: 2022 ident: bib23 article-title: Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect publication-title: Adv. Mater. – volume: 291 start-page: 151 year: 2018 end-page: 160 ident: bib42 article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: high efficiency and N publication-title: Electrochim. Acta – volume: 4 start-page: 911 year: 2021 end-page: 919 ident: bib45 article-title: Techno-economic assessment of low-temperature carbon dioxide electrolysis publication-title: Nat. Sustain. – volume: 20 start-page: 2400551 year: 2024 ident: bib5 article-title: Advancements in electrocatalytic nitrogen reduction: a comprehensive review of single-atom catalysts for sustainable ammonia synthesis publication-title: Small – volume: 506 year: 2024 ident: bib47 article-title: Strategies and applications of electrocatalytic nitrate reduction towards ammonia publication-title: Coord. Chem. Rev. – volume: 6 start-page: 3676 year: 2021 end-page: 3685 ident: bib3 article-title: Ammonia and nitric acid demands for fertilizer use in 2050 publication-title: ACS Energy Lett. – volume: 36 start-page: 2304021 year: 2024 ident: bib57 article-title: Electrochemical nitrate reduction: ammonia synthesis and the beyond publication-title: Adv. Mater. – volume: 27 start-page: 2409797 year: 2024 ident: bib31 article-title: Asymmetrically coordinated Cu dual-atom-sites enables selective CO publication-title: Adv. Mater. – volume: 343 year: 2024 ident: bib48 article-title: Iron phthalocyanine hollow architecture enabled ammonia production via nitrate reduction to achieve 100% Faradaic efficiency publication-title: Appl. Catal. B – volume: 7 start-page: 71 year: 2017 end-page: 87 ident: bib8 article-title: Occurrence of nitrate in Tanzanian groundwater aquifers: a review publication-title: Appl. Water Sci. – volume: 36 start-page: 2403965 year: 2024 ident: bib28 article-title: Size-dependent catalysis in fenton-like chemistry: from nanoparticles to single atoms publication-title: Adv. Mater. – volume: 60 start-page: 4474 year: 2021 end-page: 4478 ident: bib51 article-title: Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets publication-title: Angew. Chem. Int. Ed. – volume: 58 start-page: 12823 year: 2024 end-page: 12845 ident: bib43 article-title: Effects of ionic interferents on electrocatalytic nitrate reduction: mechanistic insight publication-title: Environ. Sci. Technol. – volume: 7 start-page: 1681 year: 1991 end-page: 1684 ident: bib13 article-title: On the electrochemical reduction of nitrate ion in the presence of various metal ions publication-title: Anal. Sci. – volume: 5 start-page: 605 year: 2020 end-page: 613 ident: bib6 article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst publication-title: Nat. Energy – volume: 14 start-page: 3634 year: 2023 ident: bib24 article-title: Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia publication-title: Nat. Commun. – volume: 19 start-page: 2303732 year: 2023 ident: bib15 article-title: Transition metal single-atom catalysts for the electrocatalytic nitrate reduction: mechanism, synthesis, characterization, application, and prospects publication-title: Small – volume: 345 year: 2014 ident: bib2 article-title: New recipe produces ammonia from air, water, and sunlight publication-title: Science – volume: 316 year: 2022 ident: bib32 article-title: Electrocatalytic nitrate-to-ammonia conversion with ∼100% Faradaic efficiency via single-atom alloying publication-title: Appl. Catal. B – volume: 145 start-page: 26678 year: 2023 end-page: 26687 ident: bib58 article-title: Synergy between Cu and Co in a layered double hydroxide enables close to 100% nitrate-to-ammonia selectivity publication-title: J. Am. Chem. Soc. – volume: 11 start-page: 14417 year: 2021 end-page: 14427 ident: bib49 article-title: Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts publication-title: ACS Catal. – volume: 8 start-page: 1800369 year: 2018 ident: bib9 article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions publication-title: Adv. Energy Mater. – volume: 58 start-page: 4824 year: 2024 end-page: 4836 ident: bib40 article-title: Efficient and selective electrochemical nitrate reduction to N publication-title: Environ. Sci. Technol. – volume: 36 start-page: 2312746 year: 2024 ident: bib4 article-title: Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion publication-title: Adv. Mater. – volume: 33 start-page: 2302651 year: 2023 ident: bib22 article-title: Atomically dispersed unsaturated Cu-N3 sites on high-curvature hierarchically porous carbon nanotube for synergetic enhanced nitrate electroreduction to ammonia publication-title: Adv. Funct. Mater. – volume: 61 year: 2022 ident: bib36 article-title: Diatomic Pd−Cu metal-phosphorus sites for complete N publication-title: Angew. Chem. Int. Ed. – volume: 16 start-page: 2611 year: 2023 end-page: 2620 ident: bib55 article-title: Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate publication-title: Energy Environ. Sci. – volume: 57 start-page: 3134 year: 2023 end-page: 3144 ident: bib25 article-title: Electrocatalytic reduction of nitrate to ammonia via a Au/Cu single atom alloy catalyst publication-title: Environ. Sci. Technol. – volume: 10 start-page: 13968 year: 2020 end-page: 13972 ident: bib35 article-title: Electrocatalytic multielectron nitrite reduction in water by an iron complex publication-title: ACS Catal. – volume: 140 start-page: 1496 year: 2018 end-page: 1501 ident: bib52 article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces publication-title: J. Am. Chem. Soc. – volume: 41 start-page: 333 year: 2024 end-page: 348 ident: bib19 article-title: Recent advances in transition metal-based catalysts for electrocatalytic nitrate reduction reaction publication-title: J. Donghua Univ. (Engl. Ed.) – volume: 11 start-page: 2002863 year: 2021 ident: bib20 article-title: Recent advance of transition-metal-based layered double hydroxide nanosheets: synthesis, properties, modification, and electrocatalytic applications publication-title: Adv. Energy Mater. – volume: 836 year: 2022 ident: bib39 article-title: Synthesis of self-renewing Fe(0)-dispersed ordered mesoporous carbon for electrocatalytic reduction of nitrates to nitrogen publication-title: Sci. Total Environ. – volume: 242 year: 2023 ident: bib44 article-title: Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device publication-title: Water Res. – volume: 56 start-page: 14797 year: 2022 end-page: 14807 ident: bib21 article-title: Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites publication-title: Environ. Sci. Technol. – volume: 242 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib44 article-title: Renewable energy driven electroreduction nitrate to ammonia and in-situ ammonia recovery via a flow-through coupled device publication-title: Water Res. doi: 10.1016/j.watres.2023.120256 – volume: 33 start-page: 2302651 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib22 article-title: Atomically dispersed unsaturated Cu-N3 sites on high-curvature hierarchically porous carbon nanotube for synergetic enhanced nitrate electroreduction to ammonia publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202302651 – volume: 57 start-page: 3134 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib25 article-title: Electrocatalytic reduction of nitrate to ammonia via a Au/Cu single atom alloy catalyst publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c07968 – volume: 60 start-page: 4474 year: 2021 ident: 10.1016/j.apcatb.2024.124944_bib51 article-title: Electrosynthesis of nitrate via the oxidation of nitrogen on tensile-strained palladium porous nanosheets publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202014017 – volume: 14 start-page: 3634 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib24 article-title: Fe/Cu diatomic catalysts for electrochemical nitrate reduction to ammonia publication-title: Nat. Commun. doi: 10.1038/s41467-023-39366-9 – volume: 16 start-page: 2611 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib55 article-title: Regulating active hydrogen adsorbed on grain boundary defects of nano-nickel for boosting ammonia electrosynthesis from nitrate publication-title: Energy Environ. Sci. doi: 10.1039/D2EE04095F – volume: 58 start-page: 4824 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib40 article-title: Efficient and selective electrochemical nitrate reduction to N2 using a flow-through zero-gap electrochemical reactor with a reconstructed Cu(OH)2 cathode: insights into the importance of inter-electrode distance publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.3c10936 – volume: 8 start-page: 1800369 year: 2018 ident: 10.1016/j.apcatb.2024.124944_bib9 article-title: A review of electrocatalytic reduction of dinitrogen to ammonia under ambient conditions publication-title: Adv. Energy Mater. doi: 10.1002/aenm.201800369 – volume: 51 start-page: 2710 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib14 article-title: Electrocatalytic reduction of nitrate - a step towards a sustainable nitrogen cycle publication-title: Chem. Soc. Rev. doi: 10.1039/D1CS00857A – volume: 62 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib54 article-title: Ambient electrosynthesis of urea with nitrate and carbon dioxide over iron-based dual-sites publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202210958 – volume: 836 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib39 article-title: Synthesis of self-renewing Fe(0)-dispersed ordered mesoporous carbon for electrocatalytic reduction of nitrates to nitrogen publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2022.155640 – volume: 291 start-page: 151 year: 2018 ident: 10.1016/j.apcatb.2024.124944_bib42 article-title: Electrochemical reduction of nitrate via Cu/Ni composite cathode paired with Ir-Ru/Ti anode: high efficiency and N2 selectivity publication-title: Electrochim. Acta doi: 10.1016/j.electacta.2018.08.154 – volume: 20 start-page: 2306311 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib17 article-title: Unraveling the performance descriptors for designing single-atom catalysts on defective MXenes for exclusive nitrate-to-ammonia electrocatalytic upcycling publication-title: Small doi: 10.1002/smll.202306311 – volume: 345 year: 2014 ident: 10.1016/j.apcatb.2024.124944_bib2 article-title: New recipe produces ammonia from air, water, and sunlight publication-title: Science doi: 10.1126/science.345.6197.610 – volume: 7 start-page: 71 year: 2017 ident: 10.1016/j.apcatb.2024.124944_bib8 article-title: Occurrence of nitrate in Tanzanian groundwater aquifers: a review publication-title: Appl. Water Sci. doi: 10.1007/s13201-015-0269-z – volume: 10 start-page: 13968 year: 2020 ident: 10.1016/j.apcatb.2024.124944_bib35 article-title: Electrocatalytic multielectron nitrite reduction in water by an iron complex publication-title: ACS Catal. doi: 10.1021/acscatal.0c03600 – volume: 568 start-page: 536 year: 2019 ident: 10.1016/j.apcatb.2024.124944_bib1 article-title: Molybdenum-catalysed ammonia production with samarium diiodide and alcohols or water publication-title: Natre doi: 10.1038/s41586-019-1134-2 – volume: 36 start-page: 2312746 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib4 article-title: Unveiling cutting-edge developments in electrocatalytic nitrate-to-ammonia conversion publication-title: Adv. Mater. doi: 10.1002/adma.202312746 – volume: 316 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib32 article-title: Electrocatalytic nitrate-to-ammonia conversion with ∼100% Faradaic efficiency via single-atom alloying publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2022.121683 – volume: 5 start-page: 605 year: 2020 ident: 10.1016/j.apcatb.2024.124944_bib6 article-title: Electrochemical reduction of nitrate to ammonia via direct eight-electron transfer using a copper–molecular solid catalyst publication-title: Nat. Energy doi: 10.1038/s41560-020-0654-1 – volume: 58 start-page: 3613 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib41 article-title: Efficient electrocatalytic reduction of nitrate to nitrogen gas by a cubic Cu2O film with predominant (111) orientation publication-title: Chem. Commun. doi: 10.1039/D1CC07299D – volume: 9 start-page: 7052 year: 2019 ident: 10.1016/j.apcatb.2024.124944_bib50 article-title: Activity and selectivity trends in electrocatalytic nitrate reduction on transition metals publication-title: ACS Catal. doi: 10.1021/acscatal.9b02179 – volume: 9 start-page: 198 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib59 article-title: Strategies of selective electroreduction of aqueous nitrate to N2 in chloride-free system: a critical review publication-title: Green Energy Environ. – volume: 14 start-page: 8311 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib29 article-title: Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy publication-title: Nat. Commun. doi: 10.1038/s41467-023-44078-1 – volume: 3 start-page: 245 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib11 article-title: Tandem catalysis in electrocatalytic nitrate reduction: unlocking efficiency and mechanism publication-title: Interdiscip. Mater. – volume: 120 start-page: 623 year: 2020 ident: 10.1016/j.apcatb.2024.124944_bib27 article-title: Well-Defined materials for heterogeneous catalysis: from nanoparticles to isolated single-atom sites publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00311 – volume: 62 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib33 article-title: Linear adsorption enables NO selective electroreduction to hydroxylamine on single Co sites publication-title: Angew. Chem. Int. Ed. – volume: 11 start-page: 2002863 year: 2021 ident: 10.1016/j.apcatb.2024.124944_bib20 article-title: Recent advance of transition-metal-based layered double hydroxide nanosheets: synthesis, properties, modification, and electrocatalytic applications publication-title: Adv. Energy Mater. doi: 10.1002/aenm.202002863 – volume: 16 start-page: 4795 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib56 article-title: Governing interlayer strain in bismuth nanocrystals for efficient ammonia electrosynthesis from nitrate reduction publication-title: ACS Nano doi: 10.1021/acsnano.2c00101 – volume: 4 start-page: 911 year: 2021 ident: 10.1016/j.apcatb.2024.124944_bib45 article-title: Techno-economic assessment of low-temperature carbon dioxide electrolysis publication-title: Nat. Sustain. doi: 10.1038/s41893-021-00739-x – volume: 60 start-page: 345 year: 2021 ident: 10.1016/j.apcatb.2024.124944_bib26 article-title: Modulating single-atom palladium sites with copper for enhanced ambient ammonia electrosynthesis publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202010159 – volume: 343 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib48 article-title: Iron phthalocyanine hollow architecture enabled ammonia production via nitrate reduction to achieve 100% Faradaic efficiency publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2023.123580 – volume: 7 start-page: 1681 year: 1991 ident: 10.1016/j.apcatb.2024.124944_bib13 article-title: On the electrochemical reduction of nitrate ion in the presence of various metal ions publication-title: Anal. Sci. doi: 10.2116/analsci.7.Supple_1681 – volume: 20 start-page: 2400551 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib5 article-title: Advancements in electrocatalytic nitrogen reduction: a comprehensive review of single-atom catalysts for sustainable ammonia synthesis publication-title: Small doi: 10.1002/smll.202400551 – volume: 19 start-page: 2303732 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib15 article-title: Transition metal single-atom catalysts for the electrocatalytic nitrate reduction: mechanism, synthesis, characterization, application, and prospects publication-title: Small doi: 10.1002/smll.202303732 – volume: 58 start-page: 12823 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib43 article-title: Effects of ionic interferents on electrocatalytic nitrate reduction: mechanistic insight publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.4c03949 – volume: 145 start-page: 26678 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib58 article-title: Synergy between Cu and Co in a layered double hydroxide enables close to 100% nitrate-to-ammonia selectivity publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.3c08084 – volume: 17 start-page: 759 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib7 article-title: Efficient conversion of low-concentration nitrate sources into ammonia on a Ru-dispersed Cu nanowire electrocatalyst publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-022-01121-4 – volume: 34 start-page: 2403838 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib12 article-title: Relay catalysis of Fe and Co with multi-active sites for specialized division of labor in electrocatalytic nitrate reduction reaction publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.202403838 – volume: 36 start-page: 2304021 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib18 article-title: Electrochemical nitrate reduction: ammonia synthesis and the beyond publication-title: Adv. Mater. doi: 10.1002/adma.202304021 – volume: 36 start-page: 2403965 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib28 article-title: Size-dependent catalysis in fenton-like chemistry: from nanoparticles to single atoms publication-title: Adv. Mater. doi: 10.1002/adma.202403965 – volume: 33 start-page: 2000381 year: 2021 ident: 10.1016/j.apcatb.2024.124944_bib10 article-title: Advanced electrocatalysis for energy and environmental sustainability via water and nitrogen reactions publication-title: Adv. Mater. doi: 10.1002/adma.202000381 – volume: 41 start-page: 333 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib19 article-title: Recent advances in transition metal-based catalysts for electrocatalytic nitrate reduction reaction publication-title: J. Donghua Univ. (Engl. Ed.) – volume: 12 start-page: 1856 year: 2021 ident: 10.1016/j.apcatb.2024.124944_bib34 article-title: Selective electrochemical reduction of nitric oxide to hydroxylamine by atomically dispersed iron catalyst publication-title: Nat. Commun. doi: 10.1038/s41467-021-22147-7 – volume: 570 start-page: 504 year: 2019 ident: 10.1016/j.apcatb.2024.124944_bib46 article-title: A rigorous electrochemical ammonia synthesis protocol with quantitative isotope measurements publication-title: Nat doi: 10.1038/s41586-019-1260-x – volume: 506 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib47 article-title: Strategies and applications of electrocatalytic nitrate reduction towards ammonia publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2024.215723 – volume: 62 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib16 article-title: Tandem Electrocatalytic nitrate reduction to ammonia on MBenes publication-title: Angew. Chem. Int. Ed. – volume: 6 start-page: 3676 year: 2021 ident: 10.1016/j.apcatb.2024.124944_bib3 article-title: Ammonia and nitric acid demands for fertilizer use in 2050 publication-title: ACS Energy Lett. doi: 10.1021/acsenergylett.1c01614 – volume: 36 start-page: 2304021 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib57 article-title: Electrochemical nitrate reduction: ammonia synthesis and the beyond publication-title: Adv. Mater. doi: 10.1002/adma.202304021 – volume: 34 start-page: 2204306 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib23 article-title: Efficient electroreduction of nitrate into ammonia at ultralow concentrations via an enrichment effect publication-title: Adv. Mater. doi: 10.1002/adma.202204306 – volume: 11 start-page: 14417 year: 2021 ident: 10.1016/j.apcatb.2024.124944_bib49 article-title: Theoretical insights into superior nitrate reduction to ammonia performance of copper catalysts publication-title: ACS Catal. doi: 10.1021/acscatal.1c03666 – volume: 339 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib30 article-title: Atomically isolated copper on titanium dioxide for ammonia photosynthesis via nitrate reduction with unprecedently high apparent quantum yield publication-title: Appl. Catal. B doi: 10.1016/j.apcatb.2023.123185 – volume: 27 start-page: 2409797 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib31 article-title: Asymmetrically coordinated Cu dual-atom-sites enables selective CO2 electroreduction to ethanol publication-title: Adv. Mater. doi: 10.1002/adma.202409797 – volume: 61 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib36 article-title: Diatomic Pd−Cu metal-phosphorus sites for complete NN bond formation in photoelectrochemical nitrate reduction publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.202211373 – volume: 341 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib38 article-title: Rational design of electrocatalytic system to selective transform nitrate to nitrogen publication-title: Chemosphere doi: 10.1016/j.chemosphere.2023.140016 – volume: 62 year: 2023 ident: 10.1016/j.apcatb.2024.124944_bib37 article-title: Interfacial assembly of nanocrystals on nanofibers with strong interaction for electrocatalytic nitrate reduction publication-title: Angew. Chem. Int. Ed. – volume: 140 start-page: 1496 year: 2018 ident: 10.1016/j.apcatb.2024.124944_bib52 article-title: A spectroscopic study on the nitrogen electrochemical reduction reaction on gold and platinum surfaces publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12101 – volume: 56 start-page: 14797 year: 2022 ident: 10.1016/j.apcatb.2024.124944_bib21 article-title: Electrocatalytic hydrogenation boosts reduction of nitrate to ammonia over single-atom Cu with Cu(I)-N3C1 sites publication-title: Environ. Sci. Technol. doi: 10.1021/acs.est.2c04456 – volume: 17 start-page: 4582 year: 2024 ident: 10.1016/j.apcatb.2024.124944_bib53 article-title: The synergistic catalysis effect on electrochemical nitrate reduction at the dual-function active sites of the heterostructure publication-title: Energy Environ. Sci. doi: 10.1039/D4EE00784K |
| SSID | ssj0002328 |
| Score | 2.5563543 |
| Snippet | The reduction of nitrate (NO3−) can mitigate its impact on the environment. The electrochemical NO3− reduction reaction (NO3RR) offers a green and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 124944 |
| SubjectTerms | Copper catalyst Electrocatalysis Molecular-scale NO3− reduction reaction Reaction selectivity |
| Title | Exploring microenvironmental configuration effects of Cu-based catalysts on nitrate electrocatalytic reduction selectivity |
| URI | https://dx.doi.org/10.1016/j.apcatb.2024.124944 |
| Volume | 365 |
| WOSCitedRecordID | wos001409472700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0926-3373 databaseCode: AIEXJ dateStart: 19950211 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0002328 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKhgQcEBQmxpd84Fa5SmMnjo-j2gQcpkkUKbfIdhzotKXV0k4Daf_7nmM7zVbEl8QlihzbTfP7xX7v5X0g9K7SaSZFUpGERgYUFFURqZOEJKxSIlY6mhjWFpvgx8dZnouTweA6xMJcnvG6zq6uxPK_Qg1tALYNnf0LuLtJoQHOAXQ4Auxw_CPgN15159bZrhfJ1qYCqav517WHvefMMV0Tu6GVo9ae871xnxHgfbepJEa-WI675rI-ly7t7Khpr7UlKPqCbpBu_XTzZjx63667_dvpvIG8X3AOXP223tiyffNMLjbs8_bto54vUeuQcBL2YG_CiBP79d0FcTq72lZsjTNQximh1BU6CWs1dYUlttZ9Z4I4Hcsl_C0Fan_MxrastssteSej9mc7tZ0ZpBmQ77L8HtqNeSJgUdw9-HiYf-q2chA326083EqIvWwdBLd_6-eyTU9emT1Bj72igQ8cQZ6igamH6ME01Pcboke9VJRDtHcLGOyX_OYZ-tHxCW_zCd_iE_Z8wosKBz7hjk8YOng-4bt8wh2fcI9Pz9GXo8PZ9APxBTuIBs1zRUC0LWVpDAcZkdFY64li3Og4VmUalZJywbWRmYltQLct5GBSbjV8wyT0FCXdQzv1ojYvEE6jiWRMVipKDYN9Q4HarqgUSgkuacn3EQ2PutA-m70tqnJWBLfF08IBVFiACgfQPiLdqKXL5vKb_jygWHiJ1EmaBRDvlyNf_vPIV-jh5h15jXZWF2vzBt3Xl6t5c_HWM_QGMai6Cg |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Exploring+microenvironmental+configuration+effects+of+Cu-based+catalysts+on+nitrate+electrocatalytic+reduction+selectivity&rft.jtitle=Applied+catalysis.+B%2C+Environmental&rft.au=Long%2C+Xianhu&rft.au=Zhong%2C+Tao&rft.au=Huang%2C+Fan&rft.au=Li%2C+Ping&rft.date=2025-05-15&rft.pub=Elsevier+B.V&rft.issn=0926-3373&rft.volume=365&rft_id=info:doi/10.1016%2Fj.apcatb.2024.124944&rft.externalDocID=S092633732401258X |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0926-3373&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0926-3373&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0926-3373&client=summon |