A low footprint olive grove weather forecasting using a single-layered seasonal attention encoder-decoder model

Weather forecasting is essential in various applications such as olive smart farming. Farmers use the predicted weather data to take appropriate actions with the aim of increasing the crop production. Many deep learning models have been developed for tackling such a problem. However, olive groves ar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Ecological informatics Ročník 75; s. 102113
Hlavní autoři: Abdelwahab, Mohamed H., Mostafa, Hassan, Khattab, Ahmed
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2023
Témata:
ISSN:1574-9541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Weather forecasting is essential in various applications such as olive smart farming. Farmers use the predicted weather data to take appropriate actions with the aim of increasing the crop production. Many deep learning models have been developed for tackling such a problem. However, olive groves are located in remote areas with no Internet connectivity, therefore these models are not applicable as they require either powerful processors or communication with cloud servers for inference. In this work, we propose a deep learning encoder-decoder model that uses a seasonal attention mechanism for time series forecasting of weather variables. The proposed model is non-complex, yet more powerful, compared to the more complex models in the literature. We use this model as the core of a framework that preprocess the training and testing data, train the model, and deploy the model on a resource-constrained microcontroller. Using real-life weather datasets of Spanish, Greek, and Chinese weather stations, we prove that the proposed model achieves a higher prediction accuracy compared to the existing literature. More specifically, the achieved prediction mean absolute error (MAE) is 2.13 °C and root mean squared error (RMSE) is 2.64 °C. This outstanding accuracy performance is achieved with the model requiring only 37.6 kB of memory for storing the model parameters with a total memory requirement of 50.1 kB. Since the model is relatively non-complex, we implement it on the Raspberry Pi Pico platform which has a very low cost with minimal power consumption compared to other embedded platforms. We also build a prototype and test it to verify the model's ability to achieve the target objective in real-life scenarios. •Deep learning-based framework for predicting weather variables for olive farming.•A low complexity encoder-decoder model with a single LSTM/GRU layer.•Seasonal attention exploits seasonality to improve accuracy and reduce footprint.•Up to 29.7% improvement in MAE and 27.4% in RMSE with only 37.6 kB of memory.•Realized on a resource-constrained microcontroller (Raspberry Pi Pico).
AbstractList Weather forecasting is essential in various applications such as olive smart farming. Farmers use the predicted weather data to take appropriate actions with the aim of increasing the crop production. Many deep learning models have been developed for tackling such a problem. However, olive groves are located in remote areas with no Internet connectivity, therefore these models are not applicable as they require either powerful processors or communication with cloud servers for inference. In this work, we propose a deep learning encoder-decoder model that uses a seasonal attention mechanism for time series forecasting of weather variables. The proposed model is non-complex, yet more powerful, compared to the more complex models in the literature. We use this model as the core of a framework that preprocess the training and testing data, train the model, and deploy the model on a resource-constrained microcontroller. Using real-life weather datasets of Spanish, Greek, and Chinese weather stations, we prove that the proposed model achieves a higher prediction accuracy compared to the existing literature. More specifically, the achieved prediction mean absolute error (MAE) is 2.13 °C and root mean squared error (RMSE) is 2.64 °C. This outstanding accuracy performance is achieved with the model requiring only 37.6 kB of memory for storing the model parameters with a total memory requirement of 50.1 kB. Since the model is relatively non-complex, we implement it on the Raspberry Pi Pico platform which has a very low cost with minimal power consumption compared to other embedded platforms. We also build a prototype and test it to verify the model's ability to achieve the target objective in real-life scenarios. •Deep learning-based framework for predicting weather variables for olive farming.•A low complexity encoder-decoder model with a single LSTM/GRU layer.•Seasonal attention exploits seasonality to improve accuracy and reduce footprint.•Up to 29.7% improvement in MAE and 27.4% in RMSE with only 37.6 kB of memory.•Realized on a resource-constrained microcontroller (Raspberry Pi Pico).
ArticleNumber 102113
Author Khattab, Ahmed
Mostafa, Hassan
Abdelwahab, Mohamed H.
Author_xml – sequence: 1
  givenname: Mohamed H.
  surname: Abdelwahab
  fullname: Abdelwahab, Mohamed H.
  organization: Electronics and Electrical Communications Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
– sequence: 2
  givenname: Hassan
  surname: Mostafa
  fullname: Mostafa, Hassan
  organization: Electronics and Electrical Communications Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
– sequence: 3
  givenname: Ahmed
  surname: Khattab
  fullname: Khattab, Ahmed
  email: akhattab@eng.cu.edu.eg
  organization: Electronics and Electrical Communications Engineering Department, Faculty of Engineering, Cairo University, Giza 12613, Egypt
BookMark eNqFkM1KAzEUhbOoYFt9Axd5galJJvPnQijFPxDc6Dpkkjs1JU0kiS19ezOOKxe6OQfu5Rw43wLNnHeA0BUlK0pofb1bgfLGDStGWJlPjNJyhua0anjRVZyeo0WMO0J42bZsjvwaW3_Eg_fpIxiXsLfmAHgbfNYjyPQOIX8DKBmTcVv8GUeVeDQLhZUnCKBxBBm9kxbLlMAl4x0Gp7yGUGj4drzPai_Q2SBthMsfX6K3-7vXzWPx_PLwtFk_F6okdSq6mvW0kZpKXmnGtWp41Qxd25QtUODdwKGsW9aTnmupaK953fWNZgQIDJTTcon41KuCjzHAIPK8vQwnQYkYQYmdmECJEZSYQOXYza-YMkmOc1KQxv4Xvp3CkIcdDAQRlckUQJvMLwntzd8FX-zWjRE
CitedBy_id crossref_primary_10_1016_j_ipm_2024_103940
crossref_primary_10_3390_agriculture15030227
Cites_doi 10.1145/3524070
10.1007/s11265-020-01554-x
10.1016/j.ins.2022.02.007
10.1038/s41598-019-55320-6
10.1016/j.engappai.2019.07.011
10.1109/ACCESS.2021.3088075
10.1007/s10994-019-05815-0
10.1016/j.energy.2019.116187
10.1007/s10044-020-00898-1
10.1016/j.chaos.2020.110227
10.3390/agronomy10111755
10.3390/s21123973
10.1016/j.energy.2018.01.177
10.1007/s11042-019-08453-9
10.1016/j.procs.2020.03.036
10.1016/j.neucom.2019.12.118
ContentType Journal Article
Copyright 2023 Elsevier B.V.
Copyright_xml – notice: 2023 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.ecoinf.2023.102113
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Ecology
ExternalDocumentID 10_1016_j_ecoinf_2023_102113
S1574954123001425
GroupedDBID --K
--M
.~1
0R~
0SF
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATLK
AAXUO
ABFNM
ABFYP
ABGRD
ABJNI
ABLST
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADMUD
ADQTV
AEBSH
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLECG
BLXMC
CBWCG
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KCYFY
KOM
M41
MO0
N9A
N~3
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPCBC
SSA
SSJ
SSZ
T5K
~G-
9DU
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
GROUPED_DOAJ
M~E
~HD
ID FETCH-LOGICAL-c306t-962b17ad1a45d24dc7457f98738e1e49f4e3682b0b4dac1bd469b7d20e0ef1413
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001007441600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1574-9541
IngestDate Sat Nov 29 07:06:04 EST 2025
Tue Nov 18 21:32:32 EST 2025
Fri Feb 23 02:38:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Precision agriculture
Long short-term memory
Time series forecasting
Encoder-decoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-962b17ad1a45d24dc7457f98738e1e49f4e3682b0b4dac1bd469b7d20e0ef1413
ParticipantIDs crossref_primary_10_1016_j_ecoinf_2023_102113
crossref_citationtrail_10_1016_j_ecoinf_2023_102113
elsevier_sciencedirect_doi_10_1016_j_ecoinf_2023_102113
PublicationCentury 2000
PublicationDate July 2023
2023-07-00
PublicationDateYYYYMMDD 2023-07-01
PublicationDate_xml – month: 07
  year: 2023
  text: July 2023
PublicationDecade 2020
PublicationTitle Ecological informatics
PublicationYear 2023
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Raspberry Pi (bb0160) 2023
Sagheer, Kotb (bb0175) Dec. 2019; 9
Atef, Khattab, Agamy, Khairy (bb0010) Aug. 2021
Valenčič, Butinar, Podgornik, Bučar-Miklavčič (bb0220) 2021; 26
Kalamatianos, Avlonitis (bb0085) 2017
Raspberry Pi (bb0165) 2023
UCI Machine Learning Repository (bb0210) 2023
Laubscher (bb0090) 2019; 189
Fang, Yuan (bb0065) 2019; 85
STMicroelectronics (bb0205) 2023
Novac, Hacene, Pegatoquet, Miramond, Gripon (bb0125) 2021
Hewage, Trovati, Pereira, Behera (bb0075) Feb. 2021; 24
Coral (bb0050) 2023
Zhang, Suda, Lai, Chandra (bb0230) 2017
Zhang, Bi, Dong, Liu (bb0235) 2018
Nvidia Developer (bb0130) 2023
Observatory of Economic Complexity (OEC) (bb0135) 2023
Shih, Sun, Lee (bb0190) 2019; 108
Adams (bb0005) 2023
Qing, Niu (bb0155) 2018; 148
Mungarwal, Mehta (bb0115) 2023
Banbury, Zhou, Fedorov, Navarro, Thakker, Gope, Reddi, Mattina, Whatmough (bb0025) 2021
NanoPi (bb0120) 2023
Bahdanau, Cho, Bengio (bb0020) 2014
Politis (bb0145) Apr. 2023
Codeluppi, Davoli, Ferrari (bb0045) 2021; 21
Mamdouh, Wael, Khattab (bb0105) 2022
Benito-Picazo, Domínguez, Palomo, López-Rubio, Ortiz-de-Lazcano-Lobato (bb0035) 2018
Zhang, Zhang, Cao, Bian, Yi, Zheng, Li (bb0240) 2022
N. Mamdouh and A. Khattab, “YOLO-based deep Learning framework for olive fruit Fly detection and counting,” IEEE Access, vol. 9, pp.84252–84262, June 2021.
Shastri, Singh, Kumar, Kour, Mansotra (bb0185) Aug. 2020; 140
Pinheiro, Dader, Wanumen, Pereira, Santos, Medina (bb0140) Nov. 2020; 10
Cho, Merrienboer, Gulcehre, Bahdanau, Bougares, Schwenk, Bengio (bb0040) 2014
Garbin, Zhu, Marques (bb0070) May 2020; 79
Yu, Lukefahr, Das, Mahlke (bb0225) Oct. 2019; 18
Liu, Hou, Bao, Qi (bb0095) Nov. 2017
Sparkfun (bb0200) 2023
Digi-Key Electronics (bb0055) 2023
Institute for Agricultural and Fisheries Research and Training (IFAPA) (bb0080) 2023
Samanta, Prakash, Chilukuri (bb0180) 2022; 593
UNESCO World Heritage Convention (bb0215) 2023
Rybalkin, Sudarshan, Weis, Lappas, Wehn, Cheng (bb0170) 2020; 92
Shovon (bb0195)
Du, Li, Yang, Horng (bb0060) May 2020; 388
Mealey (bb0110) 2018
Baharani, Tabkhi (bb0015) September 2022; 21
Belavadi, Rajagopal, Ranjani, Mohan (bb0030) Jan. 2020; 170
Qin, Song, Cheng, Cheng, Jiang, Cottrell (bb0150) 2017
STMicroelectronics (10.1016/j.ecoinf.2023.102113_bb0205)
Mungarwal (10.1016/j.ecoinf.2023.102113_bb0115)
Novac (10.1016/j.ecoinf.2023.102113_bb0125) 2021
Raspberry Pi (10.1016/j.ecoinf.2023.102113_bb0160)
Coral (10.1016/j.ecoinf.2023.102113_bb0050)
Bahdanau (10.1016/j.ecoinf.2023.102113_bb0020) 2014
Sagheer (10.1016/j.ecoinf.2023.102113_bb0175) 2019; 9
Samanta (10.1016/j.ecoinf.2023.102113_bb0180) 2022; 593
Codeluppi (10.1016/j.ecoinf.2023.102113_bb0045) 2021; 21
Adams (10.1016/j.ecoinf.2023.102113_bb0005)
Banbury (10.1016/j.ecoinf.2023.102113_bb0025) 2021
Hewage (10.1016/j.ecoinf.2023.102113_bb0075) 2021; 24
Zhang (10.1016/j.ecoinf.2023.102113_bb0240) 2022
Qing (10.1016/j.ecoinf.2023.102113_bb0155) 2018; 148
Benito-Picazo (10.1016/j.ecoinf.2023.102113_bb0035) 2018
Mamdouh (10.1016/j.ecoinf.2023.102113_bb0105) 2022
Valenčič (10.1016/j.ecoinf.2023.102113_bb0220) 2021; 26
Institute for Agricultural and Fisheries Research and Training (IFAPA) (10.1016/j.ecoinf.2023.102113_bb0080)
Digi-Key Electronics (10.1016/j.ecoinf.2023.102113_bb0055)
NanoPi (10.1016/j.ecoinf.2023.102113_bb0120)
Observatory of Economic Complexity (OEC) (10.1016/j.ecoinf.2023.102113_bb0135)
Qin (10.1016/j.ecoinf.2023.102113_bb0150) 2017
Shastri (10.1016/j.ecoinf.2023.102113_bb0185) 2020; 140
Shovon (10.1016/j.ecoinf.2023.102113_bb0195)
Garbin (10.1016/j.ecoinf.2023.102113_bb0070) 2020; 79
Raspberry Pi (10.1016/j.ecoinf.2023.102113_bb0165)
Atef (10.1016/j.ecoinf.2023.102113_bb0010) 2021
Du (10.1016/j.ecoinf.2023.102113_bb0060) 2020; 388
Fang (10.1016/j.ecoinf.2023.102113_bb0065) 2019; 85
Belavadi (10.1016/j.ecoinf.2023.102113_bb0030) 2020; 170
Kalamatianos (10.1016/j.ecoinf.2023.102113_bb0085) 2017
UCI Machine Learning Repository (10.1016/j.ecoinf.2023.102113_bb0210)
Cho (10.1016/j.ecoinf.2023.102113_bb0040) 2014
Zhang (10.1016/j.ecoinf.2023.102113_bb0235) 2018
UNESCO World Heritage Convention (10.1016/j.ecoinf.2023.102113_bb0215)
Zhang (10.1016/j.ecoinf.2023.102113_bb0230) 2017
Politis (10.1016/j.ecoinf.2023.102113_bb0145)
Pinheiro (10.1016/j.ecoinf.2023.102113_bb0140) 2020; 10
Rybalkin (10.1016/j.ecoinf.2023.102113_bb0170) 2020; 92
Sparkfun (10.1016/j.ecoinf.2023.102113_bb0200)
Yu (10.1016/j.ecoinf.2023.102113_bb0225) 2019; 18
Nvidia Developer (10.1016/j.ecoinf.2023.102113_bb0130)
Laubscher (10.1016/j.ecoinf.2023.102113_bb0090) 2019; 189
Baharani (10.1016/j.ecoinf.2023.102113_bb0015) 2022; 21
Liu (10.1016/j.ecoinf.2023.102113_bb0095) 2017
10.1016/j.ecoinf.2023.102113_bb0100
Mealey (10.1016/j.ecoinf.2023.102113_bb0110) 2018
Shih (10.1016/j.ecoinf.2023.102113_bb0190) 2019; 108
References_xml – year: 2023
  ident: bb0135
  article-title: Olive oil (HS: 1510) Product Trade, Exporters and Importers
– ident: bb0195
  article-title: Raspberry Pi 3 Power Requirements
– year: 2023
  ident: bb0200
  article-title: NVIDIA Jetson Nano 2GB Developer kit
– volume: 92
  start-page: 1219
  year: 2020
  end-page: 1245
  ident: bb0170
  article-title: Efficient hardware architectures for 1D-and MD-LSTM networks
  publication-title: J. Sig. Process Syst.
– volume: 21
  start-page: 3973
  year: 2021
  ident: bb0045
  article-title: Forecasting air temperature on edge devices with embedded AI
  publication-title: Sensors (Basel)
– year: 2018
  ident: bb0035
  article-title: Deep learning-based anomalous object detection system powered by microcontroller for PTZ cameras
  publication-title: Proc of IEEE International Joint Conference on Neural Networks (IJCNN)
– volume: 388
  year: May 2020
  ident: bb0060
  article-title: Multivariate time series forecasting via attention-based encoder-decoder framework
  publication-title: Neurocomputing
– volume: 593
  start-page: 364
  year: 2022
  end-page: 384
  ident: bb0180
  article-title: MLTF: model less time-series forecasting
  publication-title: Inf. Sci.
– year: 2014
  ident: bb0040
  article-title: Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation
– year: 2017
  ident: bb0085
  article-title: Microclimates and their stochastic effect on olive fruit Fly evolution: modeling and simulation
  publication-title: Proc. 8th International Conference on Information and Communication Technologies in Agriculture, Food & Environment (HAICTA)
– year: 2023
  ident: bb0215
  article-title: The Olive Grove Landscapes of Andalusia
– year: 2017
  ident: bb0150
  article-title: A dual-stage attention-based recurrent neural network for time series prediction
  publication-title: Proc of 26 International Joint Conference on Artificial Intelligence (IJCAI-17)
– reference: N. Mamdouh and A. Khattab, “YOLO-based deep Learning framework for olive fruit Fly detection and counting,” IEEE Access, vol. 9, pp.84252–84262, June 2021.
– year: 2018
  ident: bb0235
  article-title: The implementation of CNN-based object detector on ARM embedded platforms
  publication-title: Proc. of IEEE 16th International Conference on Dependable, Autonomic and Secure Computing
– volume: 9
  year: Dec. 2019
  ident: bb0175
  article-title: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems
  publication-title: Sci. Rep.
– year: 2023
  ident: bb0165
  article-title: Raspberry Pi documentation
– year: 2017
  ident: bb0230
  article-title: Hello edge: keyword spotting on microcontrollers
  publication-title: Computing Research Repository (CoRR)
– start-page: 1062
  year: Aug. 2021
  end-page: 1065
  ident: bb0010
  article-title: Deep learning based time-series forecasting framework for olive precision farming
  publication-title: IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)
– year: 2023
  ident: bb0130
  article-title: Jetson Nano Developer Kit
– year: Apr. 2023
  ident: bb0145
  article-title: Greek weather data
– volume: 10
  year: Nov. 2020
  ident: bb0140
  article-title: Side effects of pesticides on the olive fruit Fly parasitoid Psyttalia concolor (Szépligeti): A Review
  publication-title: Agronomy
– year: 2023
  ident: bb0120
  article-title: NanoPi2
– volume: 85
  start-page: 533
  year: 2019
  end-page: 542
  ident: bb0065
  article-title: Performance enhancing techniques for deep learning models in time series forecasting
  publication-title: Eng. Appl. Artif. Intell.
– volume: 108
  start-page: 1421
  year: 2019
  end-page: 1441
  ident: bb0190
  article-title: Temporal pattern attention for multivariate time series forecasting
  publication-title: Mach. Learn.
– year: 2023
  ident: bb0080
  article-title: Andalusian Agroclimatic Information Network (RIA)
– year: 2021
  ident: bb0025
  article-title: MicroNets: neural network architectures for deploying TinyML applications on commodity microcontrollers
  publication-title: Computing Research Repository (CoRR)
– year: 2023
  ident: bb0055
  article-title: RASPBERRY PI 3
– volume: 21
  start-page: 1
  year: September 2022
  end-page: 19
  ident: bb0015
  article-title: ATCN: resource-efficient processing of time series on edge
  publication-title: ACM Trans. Embed. Comput. Syst.
– volume: 18
  year: Oct. 2019
  ident: bb0225
  article-title: TF-Net: deploying sub-byte deep neural networks on microcontrollers
  publication-title: Associat. Comp. Mach. Transact. Embedded Comput. Syst.
– volume: 189
  year: 2019
  ident: bb0090
  article-title: Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks
  publication-title: Energy
– volume: 26
  year: 2021
  ident: bb0220
  article-title: The effect of olive fruit Fly Bactrocera oleae (Rossi) infestation on certain chemical parameters of produced olive oils
  publication-title: Molecules
– year: 2022
  ident: bb0240
  article-title: Less Is More: Fast Multivariate Time Series Forecasting with Light Sampling-oriented MLP Structures
– volume: 170
  start-page: 241
  year: Jan. 2020
  end-page: 248
  ident: bb0030
  article-title: Air quality forecasting using LSTM RNN and wireless sensor networks
  publication-title: Procedia Comp. Sci.
– year: 2022
  ident: bb0105
  article-title: Artificial intelligence based detection and counting of olive fruit flies: a comprehensive survey
  publication-title: Deep Learning for Sustainable Agriculture
– year: 2023
  ident: bb0005
  article-title: Meet raspberry silicon: raspberry Pi Pico now on sale at $4
– volume: 79
  start-page: 1
  year: May 2020
  end-page: 39
  ident: bb0070
  article-title: Dropout vs. batch normalization: an empirical study of their impact to deep learning
  publication-title: Multimed. Tools Appl.
– year: 2018
  ident: bb0110
  article-title: Binary Recurrent Unit: Using FPGA Hardware to Accelerate Inference in Long Short-Term Memory Neural Networks
– year: 2021
  ident: bb0125
  article-title: Quantization and deployment of deep neural networks on microcontrollers
  publication-title: Computing Research Repository (CoRR)
– year: 2023
  ident: bb0210
  article-title: Beijing pm2.5 data dataset
– volume: 24
  year: Feb. 2021
  ident: bb0075
  article-title: Deep learning-based effective fine-grained weather forecasting model
  publication-title: Pattern. Anal. Applic.
– year: 2023
  ident: bb0050
  article-title: Dev Board
– year: 2023
  ident: bb0115
  article-title: Why Farmers Today Need to Take up Precision Farming
– year: 2023
  ident: bb0160
  article-title: Raspberry Pi 3 model B
– volume: 148
  year: 2018
  ident: bb0155
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
– year: 2023
  ident: bb0205
  article-title: STM32 Nucleo-64 Development Board with STM32F446RE MCU, Supports Arduino and ST Morpho Connectivity
– year: 2014
  ident: bb0020
  article-title: Neural machine translation by jointly learning to align and translate
  publication-title: Computing Research Repository (CoRR)
– year: Nov. 2017
  ident: bb0095
  article-title: Multi-step ahead time series forecasting for different data patterns based on LSTM recurrent neural network
  publication-title: Proc. 14th Web Information Systems and Applications Conference (WISA)
– volume: 140
  start-page: 1
  year: Aug. 2020
  end-page: 10
  ident: bb0185
  article-title: Time series forecasting of Covid-19 using deep Learning models: India-USA comparative case study
  publication-title: Chaos, Solitons Fractals
– year: 2017
  ident: 10.1016/j.ecoinf.2023.102113_bb0085
  article-title: Microclimates and their stochastic effect on olive fruit Fly evolution: modeling and simulation
– ident: 10.1016/j.ecoinf.2023.102113_bb0115
– volume: 21
  start-page: 1
  issue: 5
  year: 2022
  ident: 10.1016/j.ecoinf.2023.102113_bb0015
  article-title: ATCN: resource-efficient processing of time series on edge
  publication-title: ACM Trans. Embed. Comput. Syst.
  doi: 10.1145/3524070
– ident: 10.1016/j.ecoinf.2023.102113_bb0165
– volume: 92
  start-page: 1219
  issue: 11
  year: 2020
  ident: 10.1016/j.ecoinf.2023.102113_bb0170
  article-title: Efficient hardware architectures for 1D-and MD-LSTM networks
  publication-title: J. Sig. Process Syst.
  doi: 10.1007/s11265-020-01554-x
– ident: 10.1016/j.ecoinf.2023.102113_bb0120
– volume: 593
  start-page: 364
  year: 2022
  ident: 10.1016/j.ecoinf.2023.102113_bb0180
  article-title: MLTF: model less time-series forecasting
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2022.02.007
– volume: 26
  year: 2021
  ident: 10.1016/j.ecoinf.2023.102113_bb0220
  article-title: The effect of olive fruit Fly Bactrocera oleae (Rossi) infestation on certain chemical parameters of produced olive oils
  publication-title: Molecules
– year: 2014
  ident: 10.1016/j.ecoinf.2023.102113_bb0040
– ident: 10.1016/j.ecoinf.2023.102113_bb0055
– ident: 10.1016/j.ecoinf.2023.102113_bb0130
– volume: 9
  year: 2019
  ident: 10.1016/j.ecoinf.2023.102113_bb0175
  article-title: Unsupervised pre-training of a deep LSTM-based stacked autoencoder for multivariate time series forecasting problems
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-019-55320-6
– volume: 85
  start-page: 533
  year: 2019
  ident: 10.1016/j.ecoinf.2023.102113_bb0065
  article-title: Performance enhancing techniques for deep learning models in time series forecasting
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2019.07.011
– ident: 10.1016/j.ecoinf.2023.102113_bb0100
  doi: 10.1109/ACCESS.2021.3088075
– year: 2017
  ident: 10.1016/j.ecoinf.2023.102113_bb0150
  article-title: A dual-stage attention-based recurrent neural network for time series prediction
– ident: 10.1016/j.ecoinf.2023.102113_bb0145
– volume: 108
  start-page: 1421
  year: 2019
  ident: 10.1016/j.ecoinf.2023.102113_bb0190
  article-title: Temporal pattern attention for multivariate time series forecasting
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-019-05815-0
– ident: 10.1016/j.ecoinf.2023.102113_bb0080
– year: 2017
  ident: 10.1016/j.ecoinf.2023.102113_bb0095
  article-title: Multi-step ahead time series forecasting for different data patterns based on LSTM recurrent neural network
– ident: 10.1016/j.ecoinf.2023.102113_bb0160
– ident: 10.1016/j.ecoinf.2023.102113_bb0205
– year: 2014
  ident: 10.1016/j.ecoinf.2023.102113_bb0020
  article-title: Neural machine translation by jointly learning to align and translate
– year: 2018
  ident: 10.1016/j.ecoinf.2023.102113_bb0235
  article-title: The implementation of CNN-based object detector on ARM embedded platforms
– volume: 189
  year: 2019
  ident: 10.1016/j.ecoinf.2023.102113_bb0090
  article-title: Time-series forecasting of coal-fired power plant reheater metal temperatures using encoder-decoder recurrent neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2019.116187
– volume: 24
  year: 2021
  ident: 10.1016/j.ecoinf.2023.102113_bb0075
  article-title: Deep learning-based effective fine-grained weather forecasting model
  publication-title: Pattern. Anal. Applic.
  doi: 10.1007/s10044-020-00898-1
– year: 2022
  ident: 10.1016/j.ecoinf.2023.102113_bb0105
  article-title: Artificial intelligence based detection and counting of olive fruit flies: a comprehensive survey
– year: 2021
  ident: 10.1016/j.ecoinf.2023.102113_bb0125
  article-title: Quantization and deployment of deep neural networks on microcontrollers
– year: 2022
  ident: 10.1016/j.ecoinf.2023.102113_bb0240
– start-page: 1062
  year: 2021
  ident: 10.1016/j.ecoinf.2023.102113_bb0010
  article-title: Deep learning based time-series forecasting framework for olive precision farming
– year: 2018
  ident: 10.1016/j.ecoinf.2023.102113_bb0110
– volume: 140
  start-page: 1
  year: 2020
  ident: 10.1016/j.ecoinf.2023.102113_bb0185
  article-title: Time series forecasting of Covid-19 using deep Learning models: India-USA comparative case study
  publication-title: Chaos, Solitons Fractals
  doi: 10.1016/j.chaos.2020.110227
– year: 2021
  ident: 10.1016/j.ecoinf.2023.102113_bb0025
  article-title: MicroNets: neural network architectures for deploying TinyML applications on commodity microcontrollers
– volume: 10
  year: 2020
  ident: 10.1016/j.ecoinf.2023.102113_bb0140
  article-title: Side effects of pesticides on the olive fruit Fly parasitoid Psyttalia concolor (Szépligeti): A Review
  publication-title: Agronomy
  doi: 10.3390/agronomy10111755
– year: 2017
  ident: 10.1016/j.ecoinf.2023.102113_bb0230
  article-title: Hello edge: keyword spotting on microcontrollers
– ident: 10.1016/j.ecoinf.2023.102113_bb0005
– volume: 21
  start-page: 3973
  issue: 12
  year: 2021
  ident: 10.1016/j.ecoinf.2023.102113_bb0045
  article-title: Forecasting air temperature on edge devices with embedded AI
  publication-title: Sensors (Basel)
  doi: 10.3390/s21123973
– ident: 10.1016/j.ecoinf.2023.102113_bb0200
– ident: 10.1016/j.ecoinf.2023.102113_bb0050
– volume: 18
  issue: 45
  year: 2019
  ident: 10.1016/j.ecoinf.2023.102113_bb0225
  article-title: TF-Net: deploying sub-byte deep neural networks on microcontrollers
  publication-title: Associat. Comp. Mach. Transact. Embedded Comput. Syst.
– ident: 10.1016/j.ecoinf.2023.102113_bb0215
– ident: 10.1016/j.ecoinf.2023.102113_bb0135
– volume: 148
  year: 2018
  ident: 10.1016/j.ecoinf.2023.102113_bb0155
  article-title: Hourly day-ahead solar irradiance prediction using weather forecasts by LSTM
  publication-title: Energy
  doi: 10.1016/j.energy.2018.01.177
– volume: 79
  start-page: 1
  year: 2020
  ident: 10.1016/j.ecoinf.2023.102113_bb0070
  article-title: Dropout vs. batch normalization: an empirical study of their impact to deep learning
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-019-08453-9
– ident: 10.1016/j.ecoinf.2023.102113_bb0195
– volume: 170
  start-page: 241
  year: 2020
  ident: 10.1016/j.ecoinf.2023.102113_bb0030
  article-title: Air quality forecasting using LSTM RNN and wireless sensor networks
  publication-title: Procedia Comp. Sci.
  doi: 10.1016/j.procs.2020.03.036
– volume: 388
  year: 2020
  ident: 10.1016/j.ecoinf.2023.102113_bb0060
  article-title: Multivariate time series forecasting via attention-based encoder-decoder framework
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.12.118
– year: 2018
  ident: 10.1016/j.ecoinf.2023.102113_bb0035
  article-title: Deep learning-based anomalous object detection system powered by microcontroller for PTZ cameras
– ident: 10.1016/j.ecoinf.2023.102113_bb0210
SSID ssj0043882
Score 2.3250213
Snippet Weather forecasting is essential in various applications such as olive smart farming. Farmers use the predicted weather data to take appropriate actions with...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 102113
SubjectTerms Deep learning
Encoder-decoder
Long short-term memory
Precision agriculture
Time series forecasting
Title A low footprint olive grove weather forecasting using a single-layered seasonal attention encoder-decoder model
URI https://dx.doi.org/10.1016/j.ecoinf.2023.102113
Volume 75
WOSCitedRecordID wos001007441600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1574-9541
  databaseCode: AIEXJ
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0043882
  providerName: Elsevier
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  issn: 1574-9541
  databaseCode: M~E
  dateStart: 20060101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://road.issn.org
  omitProxy: false
  ssIdentifier: ssj0043882
  providerName: ISSN International Centre
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Na9swFBdZt8EuY5-s3Qc67GYU_CFb0tGMjsBo2aGD3owsycuKF5fUbdrLYP95nyRbSdrRrYdd5CCkFyW_X6Snl_eB0EdaU5qLrLapEGNChUoIXJsNgaMdlPOG8kRyV2yCHR7y42PxdTL5PcbCXLRsseCXl-L0v0INfQC2DZ29B9xBKHTAawAdWoAd2n8CvozabhU1Xddbm10fda11Dvq-7KBdeYXP-hYaJc-cy_O5sxbIyD5aQ1p5Zct3RtZ46KyENgGnd4m0OS-1WRJt3NNX0dky7auwlQ4JWfsNZ_qyhuErOZfuL6CDbi7hJI5m04B5B5pq45TZGaj0a9p-mcMa_Kxy_nOIxhosFWkWvFrD5sooEblPdDXuvizf2D5tnXEfmnprZ_dGhpMpfELon1r50_Xw7UTaNw644HY4erSdVF5KZaVUXsoD9DBlubBegQe_9sfDnGbc1RsLSx-jL52L4O21_Fm72dBYjp6hp8NVA5eeIs_RxCxeoMceo6uXqCsxEAUHomBHFOyIggei4A2iYEcULPE2UfBIFByIgm8QBTuivELfPu8ffZqRofwGUXCP7Iko0jphUieS5jqlWjGas0ZwlnGTGCoaarKCp3VcUy1VUmtaiJrpNDaxaRJQjl6jnUW3MG8QzuBWrA3PC57HVFObBI4mqi6U0VwW1OyibPzaKjXkprclUtrqLsh2EQmzTn1ulr-MZyMi1aBfer2xApLdOXPvnu_0Fj1Z_wDeoZ1-eW7eo0fqov9xtvzgGHYN0PegKQ
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+low+footprint+olive+grove+weather+forecasting+using+a+single-layered+seasonal+attention+encoder-decoder+model&rft.jtitle=Ecological+informatics&rft.au=Abdelwahab%2C+Mohamed+H.&rft.au=Mostafa%2C+Hassan&rft.au=Khattab%2C+Ahmed&rft.date=2023-07-01&rft.issn=1574-9541&rft.volume=75&rft.spage=102113&rft_id=info:doi/10.1016%2Fj.ecoinf.2023.102113&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ecoinf_2023_102113
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1574-9541&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1574-9541&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1574-9541&client=summon