A biogeography-based optimization algorithm with local search for large-scale heterogeneous distributed scheduling with multiple process plans
Since modern production mode has shifted from a single factory to a multi-factory production network, distributed scheduling has been derived. Distributed scheduling problem (DSP) is characterized by many varieties, large scale, redundant production factories, flexible production processes, and high...
Gespeichert in:
| Veröffentlicht in: | Neurocomputing (Amsterdam) Jg. 595; S. 127897 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
28.08.2024
|
| Schlagworte: | |
| ISSN: | 0925-2312, 1872-8286 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Since modern production mode has shifted from a single factory to a multi-factory production network, distributed scheduling has been derived. Distributed scheduling problem (DSP) is characterized by many varieties, large scale, redundant production factories, flexible production processes, and high-value products. Each factory in the heterogeneous DSP can be considered an individual entity, and there may be several production process plans. To address the heterogeneous DSP with multiple process plans, we consider minimizing the global makespan over all factories containing the transportation time delivering tasks from factories to their destinations and propose a biogeography-based optimization algorithm combined with local search based on heuristic rules (BBO-LH) to find the optimal production plan and enhance productivity. First, a new encoding scheme with three-segment representation has been developed to avoid illegal solutions and realize the information sharing between solutions selecting different process plans. Then two efficient local search approaches have been proposed based on different heuristic rules on sequence and equipment allocation respectively, to improve the search efficiency. Besides, BBO-LH has adopted a cosine migration rate model to replace the linear one to strengthen the ability to jump out of local optima. BBO-LH is compared with a genetic algorithm (GA_X), using generated examples to test the performance of the proposed strategies, and simulation results show the effectiveness of the proposed BBO-LH on large-scale heterogeneous DSP with multiple process plans. |
|---|---|
| AbstractList | Since modern production mode has shifted from a single factory to a multi-factory production network, distributed scheduling has been derived. Distributed scheduling problem (DSP) is characterized by many varieties, large scale, redundant production factories, flexible production processes, and high-value products. Each factory in the heterogeneous DSP can be considered an individual entity, and there may be several production process plans. To address the heterogeneous DSP with multiple process plans, we consider minimizing the global makespan over all factories containing the transportation time delivering tasks from factories to their destinations and propose a biogeography-based optimization algorithm combined with local search based on heuristic rules (BBO-LH) to find the optimal production plan and enhance productivity. First, a new encoding scheme with three-segment representation has been developed to avoid illegal solutions and realize the information sharing between solutions selecting different process plans. Then two efficient local search approaches have been proposed based on different heuristic rules on sequence and equipment allocation respectively, to improve the search efficiency. Besides, BBO-LH has adopted a cosine migration rate model to replace the linear one to strengthen the ability to jump out of local optima. BBO-LH is compared with a genetic algorithm (GA_X), using generated examples to test the performance of the proposed strategies, and simulation results show the effectiveness of the proposed BBO-LH on large-scale heterogeneous DSP with multiple process plans. |
| ArticleNumber | 127897 |
| Author | Zhang, Yaya Gu, Xingsheng |
| Author_xml | – sequence: 1 givenname: Yaya surname: Zhang fullname: Zhang, Yaya – sequence: 2 givenname: Xingsheng surname: Gu fullname: Gu, Xingsheng email: xsgu@ecust.edu.cn |
| BookMark | eNqFkMtq3DAUQEVJIJM0f5CFfsATPfzsojCEJg0EsmnXQpaubA2yZSS5Jf2IfHM1dVdZJBtdceEcuOcSnc1-BoRuKNlTQuvb436GVflpzwgr95Q1bdd8QjvaNqxoWVufoR3pWFUwTtkFuozxSAhtKOt26PWAe-sH8EOQy_hS9DKCxn5JdrJ_ZLJ-xtINPtg0Tvh3frHzSjocQQY1YuMDdjIMUMS8BTxCgpB1M_g1Ym1jCrZfU1ZGNYJenZ2HTTOtLtklI0vwCmLEi5Nz_IzOjXQRrv_PK_Tz_tuPu-_F0_PD493hqVCc1KnoqhZ6XdeclRxK3na8MQzySlWk133-dYSA4qZvjTSEMaq5MVXJdFtXZdnxK1RuXhV8jAGMWIKdZHgRlIhTU3EUW1Nxaiq2phn78gZTNv2rlIK07iP46wZDPuyXhSCisjAr0DaASkJ7-77gL1JHnMM |
| CitedBy_id | crossref_primary_10_3390_fi17060258 crossref_primary_10_3390_app15179435 crossref_primary_10_3390_pr13030831 |
| Cites_doi | 10.1016/j.jmsy.2021.03.020 10.1109/TASE.2021.3091610 10.1016/j.asoc.2019.105492 10.1007/s10845-015-1084-y 10.1016/j.engappai.2020.104016 10.1109/TCYB.2021.3086181 10.1016/j.ejor.2009.01.008 10.1016/j.asoc.2022.109138 10.1021/ie00048a015 10.1016/j.compchemeng.2006.02.008 10.1021/ie0512587 10.26599/TST.2021.9010009 10.1016/j.asoc.2023.110022 10.1016/j.jmsy.2021.08.014 10.1016/j.knosys.2022.109190 10.1007/s10489-020-01809-x 10.1016/j.knosys.2022.108315 10.1016/j.cie.2020.106638 10.1287/opre.25.1.45 10.1016/j.cor.2020.105053 10.1016/j.jmsy.2022.10.013 10.1109/TEVC.2008.919004 10.1007/s00521-016-2179-x 10.1109/TSMC.2023.3272311 10.1016/j.cie.2018.11.003 10.1016/j.omega.2019.01.003 10.1080/18756891.2016.1175817 10.3233/JIFS-201066 10.1016/j.asoc.2021.107750 10.1007/s10732-019-09420-1 10.1016/0377-2217(93)90182-M 10.1016/j.ejor.2018.04.033 10.1109/TCYB.2020.3026651 10.1111/itor.12654 10.1109/TCYB.2019.2943606 10.1016/j.cie.2020.106347 10.1080/0305215X.2021.1886289 10.1016/j.cor.2021.105482 10.1109/TII.2022.3220860 10.1016/j.cie.2016.05.005 10.1080/00207543.2020.1775911 10.1016/j.knosys.2020.105527 10.1016/j.asoc.2021.108371 10.1016/j.eswa.2014.06.023 10.1016/j.knosys.2022.108413 10.1016/j.jmsy.2021.08.003 10.1016/j.eswa.2019.02.023 10.1109/ACCESS.2020.2996305 10.1007/s42835-022-01056-9 10.1016/j.jmsy.2021.10.005 10.1016/j.asoc.2023.110029 10.1007/s10845-014-0890-y 10.1109/TSMC.2023.3256484 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2024.127897 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| ExternalDocumentID | 10_1016_j_neucom_2024_127897 S0925231224006684 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM LG9 M41 MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EFLBG EJD FEDTE FGOYB HLZ HVGLF HZ~ R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-958ebd663243e438937f2eebdc50bdbeeb900ec3fb8faf0221d3ff542d8654493 |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001250350900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Tue Nov 18 22:23:56 EST 2025 Sat Nov 29 06:33:59 EST 2025 Tue Jun 18 08:52:15 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | DSP CSP Local search MILP Heuristic rule FCFS BBO GA_X ECT Heterogeneous distributed scheduling Process plan Biogeography-based optimization algorithm BBO-LH |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-958ebd663243e438937f2eebdc50bdbeeb900ec3fb8faf0221d3ff542d8654493 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2024_127897 crossref_citationtrail_10_1016_j_neucom_2024_127897 elsevier_sciencedirect_doi_10_1016_j_neucom_2024_127897 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-28 |
| PublicationDateYYYYMMDD | 2024-08-28 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-28 day: 28 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhao, Zhang, Wang (bib10) 2023; 19 Gharaei, Jolai (bib40) 2021; 28 Song, Yang, Li, Ye (bib24) 2023; 135 Framinan, Perez-Gonzalez, Fernandez-Viagas (bib23) 2018; 273 He, Chiong, Li, Budhi, Zhang (bib36) 2022; 243 Huang, Pan, Miao, Gao (bib42) 2021; 97 Shao, Shao, Pi (bib22) 2022; 125 Guo, Chen, Wang, Mao, Wu (bib46) 2016; 28 Simon (bib45) 2008; 12 Pinto, Grossmann (bib54) 1995; 34 Pan, Gao, Li, Jose (bib27) 2019; 81 Shao, Shao, Pi (bib12) 2020; 194 Mehmet (bib14) 2021; 106 Wang, Lu (bib32) 2021; 61 Chang, Liu (bib34) 2017; 28 Zhao, Ma, Wang (bib21) 2022; 52 Shao, Shao, Pi (bib43) 2020; 50 Zhang, Xing, Zhang, He (bib26) 2020; 8 Zhu, Guo, Wang, Wu (bib3) 2022; 19 Liu, Li, Li, Zou (bib37) 2020; 26 Huang, Gu (bib51) 2022; 54 Fu, Hou, Wang, Wu, Gao, Wang (bib1) 2021; 26 Mao, Pan, Miao, Gao, Chen (bib6) 2022; 242 Meng, Zhang, Ren, Zhang, Lv (bib17) 2020; 142 Li, Song, Wang, Duan, Han, Sang, Pan (bib25) 2020; 50 Behnamian, Fatemi Ghomi (bib19) 2016; 27 Zhang, Tang, Chica (bib31) 2021; 59 Liu, Li, Gao, Li (bib4) 2020; 51 Naderi, Azab (bib15) 2014; 41 Mahmud, Abbasi, Chakrabortty, Ryan (bib35) 2022; 251 Lin, Zhang (bib50) 2016; 97 Zhao, Zhou, Wang (bib8) 2023; 53 Tamannaei, Rasti-Barzoki (bib39) 2019; 127 Li, Li, Gao, Meng (bib41) 2020; 147 Dai, Zhang, Chen (bib53) 2021; 41 Zhao, Zhu, Wang (bib11) 2023; 53 Zhao, Zhao, Wang, Tang (bib30) 2021; 112 Zhao, Qin, Zhang, Ma, Zhang, Song (bib48) 2019; 126 Panwalkar, Iskander (bib55) 1977; 25 Taillard (bib16) 1993; 64 Miyata, Nagano (bib9) 2021; 61 He, Hui (bib56) 2006; 45 Lin, Li, Wei, Wu (bib5) 2020; 124 Wang, Song (bib47) 2015; 9 Suraya, Irshad, Ramesh, Sujatha (bib52) 2022; 17 Barzanji, Naderi, Begen (bib2) 2020; 93 Lei, Yuan, Cai (bib20) 2021; 59 Wang, Lei, Cai (bib28) 2022; 117 Méndez, Cerdá, Grossmann, Harjunkoski, Fahl (bib38) 2006; 30 An, Chen, Li, Han, Zhang, Shi (bib49) 2020; 99 Yu, Zhang, Huang (bib7) 2023; 135 Zhang, Gu (bib44) 2019; 162 Shao, Shao, Pi (bib13) 2021; 136 Pourhejazy, Cheng, Ying, Lin (bib29) 2021; 61 De Giovanni, Pezzella (bib18) 2010; 200 Cheng, Tang, Zhang, Li (bib33) 2022; 65 Suraya (10.1016/j.neucom.2024.127897_bib52) 2022; 17 Barzanji (10.1016/j.neucom.2024.127897_bib2) 2020; 93 Framinan (10.1016/j.neucom.2024.127897_bib23) 2018; 273 Zhang (10.1016/j.neucom.2024.127897_bib26) 2020; 8 He (10.1016/j.neucom.2024.127897_bib36) 2022; 243 Naderi (10.1016/j.neucom.2024.127897_bib15) 2014; 41 Shao (10.1016/j.neucom.2024.127897_bib43) 2020; 50 Chang (10.1016/j.neucom.2024.127897_bib34) 2017; 28 Zhao (10.1016/j.neucom.2024.127897_bib48) 2019; 126 Li (10.1016/j.neucom.2024.127897_bib25) 2020; 50 Tamannaei (10.1016/j.neucom.2024.127897_bib39) 2019; 127 Yu (10.1016/j.neucom.2024.127897_bib7) 2023; 135 Zhao (10.1016/j.neucom.2024.127897_bib21) 2022; 52 Huang (10.1016/j.neucom.2024.127897_bib42) 2021; 97 Cheng (10.1016/j.neucom.2024.127897_bib33) 2022; 65 Pan (10.1016/j.neucom.2024.127897_bib27) 2019; 81 De Giovanni (10.1016/j.neucom.2024.127897_bib18) 2010; 200 Pourhejazy (10.1016/j.neucom.2024.127897_bib29) 2021; 61 Panwalkar (10.1016/j.neucom.2024.127897_bib55) 1977; 25 Li (10.1016/j.neucom.2024.127897_bib41) 2020; 147 Simon (10.1016/j.neucom.2024.127897_bib45) 2008; 12 Fu (10.1016/j.neucom.2024.127897_bib1) 2021; 26 Lin (10.1016/j.neucom.2024.127897_bib5) 2020; 124 Miyata (10.1016/j.neucom.2024.127897_bib9) 2021; 61 Méndez (10.1016/j.neucom.2024.127897_bib38) 2006; 30 Meng (10.1016/j.neucom.2024.127897_bib17) 2020; 142 Shao (10.1016/j.neucom.2024.127897_bib22) 2022; 125 Zhao (10.1016/j.neucom.2024.127897_bib30) 2021; 112 Mehmet (10.1016/j.neucom.2024.127897_bib14) 2021; 106 Wang (10.1016/j.neucom.2024.127897_bib47) 2015; 9 Mahmud (10.1016/j.neucom.2024.127897_bib35) 2022; 251 Huang (10.1016/j.neucom.2024.127897_bib51) 2022; 54 Shao (10.1016/j.neucom.2024.127897_bib13) 2021; 136 Zhang (10.1016/j.neucom.2024.127897_bib31) 2021; 59 He (10.1016/j.neucom.2024.127897_bib56) 2006; 45 Gharaei (10.1016/j.neucom.2024.127897_bib40) 2021; 28 Lin (10.1016/j.neucom.2024.127897_bib50) 2016; 97 Taillard (10.1016/j.neucom.2024.127897_bib16) 1993; 64 Zhao (10.1016/j.neucom.2024.127897_bib8) 2023; 53 Guo (10.1016/j.neucom.2024.127897_bib46) 2016; 28 Zhao (10.1016/j.neucom.2024.127897_bib11) 2023; 53 Behnamian (10.1016/j.neucom.2024.127897_bib19) 2016; 27 An (10.1016/j.neucom.2024.127897_bib49) 2020; 99 Liu (10.1016/j.neucom.2024.127897_bib4) 2020; 51 Wang (10.1016/j.neucom.2024.127897_bib28) 2022; 117 Song (10.1016/j.neucom.2024.127897_bib24) 2023; 135 Shao (10.1016/j.neucom.2024.127897_bib12) 2020; 194 Liu (10.1016/j.neucom.2024.127897_bib37) 2020; 26 Zhang (10.1016/j.neucom.2024.127897_bib44) 2019; 162 Dai (10.1016/j.neucom.2024.127897_bib53) 2021; 41 Mao (10.1016/j.neucom.2024.127897_bib6) 2022; 242 Pinto (10.1016/j.neucom.2024.127897_bib54) 1995; 34 Zhu (10.1016/j.neucom.2024.127897_bib3) 2022; 19 Lei (10.1016/j.neucom.2024.127897_bib20) 2021; 59 Wang (10.1016/j.neucom.2024.127897_bib32) 2021; 61 Zhao (10.1016/j.neucom.2024.127897_bib10) 2023; 19 |
| References_xml | – volume: 142 year: 2020 ident: bib17 article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem publication-title: Comput. Ind. Eng. – volume: 52 start-page: 12675 year: 2022 end-page: 12686 ident: bib21 article-title: A self-learning discrete jaya algorithm for multi-objective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system publication-title: IEEE T. Cybern. – volume: 162 year: 2019 ident: bib44 article-title: Biogeography-based optimization algorithm for large-scale multistage batch plant scheduling publication-title: Expert Syst. Appl. – volume: 9 start-page: 544 year: 2015 end-page: 558 ident: bib47 article-title: Migration ratio model analysis of biogeography-based optimization algorithm and performance comparison publication-title: Int. J. Comput. Intell. Syst. – volume: 41 start-page: 3849 year: 2021 end-page: 3872 ident: bib53 article-title: Collaborative task scheduling with new task arrival in cloud manufacturing using improved multi-population biogeography-based optimization publication-title: J. Intell. Fuzzy Syst. – volume: 51 start-page: 4429 year: 2020 end-page: 4438 ident: bib4 article-title: A Modified Genetic Algorithm With New Encoding and Decoding Methods for Integrated Process Planning and Scheduling Problem publication-title: IEEE T. Cybern. – volume: 124 year: 2020 ident: bib5 article-title: Integration of process planning and scheduling for distributed flexible job shops publication-title: Comput. Oper. Res. – volume: 53 start-page: 4899 year: 2023 end-page: 4911 ident: bib8 article-title: A Cooperative Scatter Search with Reinforcement Learning Mechanism for the Distributed Permutation Flowshop Scheduling Problem with Sequence-Dependent Setup Times publication-title: IEEE Trans. Syst. Man Cybern. -Syst. – volume: 135 year: 2023 ident: bib24 article-title: An effective hyper heuristic-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: Appl. Soft. Comput. – volume: 112 year: 2021 ident: bib30 article-title: An optimal block knowledge driven backtracking search algorithm for distributed assembly No-wait flow shop scheduling problem publication-title: Appl. Soft. Comput. – volume: 106 year: 2021 ident: bib14 article-title: A discrete spotted hyena optimizer for solving distributed job shop scheduling problems publication-title: Appl. Soft. Comput. – volume: 125 year: 2022 ident: bib22 article-title: Multi-local search-based general variable neighborhood search for distributed flow shop scheduling in heterogeneous multi-factories publication-title: Appl. Soft. Comput. – volume: 147 year: 2020 ident: bib41 article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times publication-title: Comput. Ind. Eng. – volume: 26 start-page: 625 year: 2021 end-page: 645 ident: bib1 article-title: Distributed scheduling problems in intelligent manufacturing systems publication-title: Tsinghua Sci. Technol. – volume: 25 start-page: 45 year: 1977 end-page: 61 ident: bib55 article-title: A survey of scheduling rules publication-title: Oper. Res. – volume: 61 start-page: 27 year: 2021 end-page: 44 ident: bib32 article-title: An integrated job shop scheduling and assembly sequence planning approach for discrete manufacturing publication-title: J. Manuf. Syst. – volume: 28 start-page: 2139 year: 2021 end-page: 2168 ident: bib40 article-title: An ERNSGA-III algorithm for the production and distribution planning problem in the multiagent supply chain publication-title: Int. Trans. Oper. Res. – volume: 273 start-page: 401 year: 2018 end-page: 417 ident: bib23 article-title: Deterministic assembly scheduling problems: a review and classification of concurrent-type scheduling models and solution procedures publication-title: Eur. J. Oper. Res. – volume: 27 start-page: 231 year: 2016 end-page: 249 ident: bib19 article-title: A Survey of Multi-Factory Scheduling publication-title: J. Intell. Manuf. – volume: 28 start-page: 1909 year: 2016 end-page: 1926 ident: bib46 article-title: A survey of biogeography-based optimization publication-title: Neural Comput. Appl. – volume: 61 start-page: 139 year: 2021 end-page: 154 ident: bib29 article-title: Supply chain-oriented two-stage assembly flowshops with sequence-dependent setup times publication-title: J. Manuf. Syst. – volume: 251 year: 2022 ident: bib35 article-title: A self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problems publication-title: Knowl. -Based Syst. – volume: 12 start-page: 702 year: 2008 end-page: 713 ident: bib45 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. – volume: 45 start-page: 4679 year: 2006 end-page: 4692 ident: bib56 article-title: Rule-evolutionary approach for single-stage multiproduct scheduling with parallel units publication-title: Ind. Eng. Chem. Res. – volume: 135 year: 2023 ident: bib7 article-title: Acceleration-based artificial bee colony optimizer for a distributed permutation flowshop scheduling problem with sequence-dependent setup times publication-title: Appl. Soft. Comput. – volume: 117 year: 2022 ident: bib28 article-title: An adaptive artificial bee colony with reinforcement learning for distributed three-stage assembly scheduling with maintenance publication-title: Appl. Soft. Comput. – volume: 64 start-page: 278 year: 1993 end-page: 285 ident: bib16 article-title: Benchmarks for basic scheduling problems publication-title: Eur. J. Oper. Res. – volume: 126 start-page: 321 year: 2019 end-page: 339 ident: bib48 article-title: A hybrid biogeography-based optimization with variable neighborhood search mechanism for no-wait flow shop scheduling problem publication-title: Expert Syst. Appl. – volume: 136 year: 2021 ident: bib13 article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem publication-title: Comput. Oper. Res. – volume: 50 start-page: 4647 year: 2020 end-page: 4669 ident: bib43 article-title: Effective constructive heuristic and metaheuristic for the distributed assembly blocking flow-shop scheduling problem publication-title: Appl. Intell. – volume: 243 year: 2022 ident: bib36 article-title: A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles publication-title: Knowl. -Based Syst. – volume: 19 start-page: 2566 year: 2022 end-page: 2580 ident: bib3 article-title: A Genetic Programming-Based Iterative Approach for the Integrated Process Planning and Scheduling Problem publication-title: IEEE Trans. Autom. Sci. Eng. – volume: 81 year: 2019 ident: bib27 article-title: Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem publication-title: Appl. Soft. Comput. – volume: 8 start-page: 96115 year: 2020 end-page: 96128 ident: bib26 article-title: Memetic algorithm with meta-lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem publication-title: IEEE Access – volume: 99 year: 2020 ident: bib49 article-title: An improved non-dominated sorting biogeography-based optimization algorithm for the (hybrid) multi-objective flexible job-shop scheduling problem publication-title: Appl. Soft. Comput. – volume: 65 start-page: 660 year: 2022 end-page: 672 ident: bib33 article-title: Inventory and total completion time minimization for assembly job-shop scheduling considering material integrity and assembly sequential constraint publication-title: J. Manuf. Syst. – volume: 127 start-page: 643 year: 2019 end-page: 656 ident: bib39 article-title: Mathematical programming and solution approaches for minimizing tardiness and transportation costs in the supply chain scheduling problem publication-title: Comput. Ind. Eng. – volume: 54 start-page: 593 year: 2022 end-page: 613 ident: bib51 article-title: Distributed assembly permutation flow-shop scheduling problem with sequence-dependent set-up times using a novel biogeography-based optimization algorithm publication-title: Eng. Optim. – volume: 17 start-page: 1593 year: 2022 end-page: 1603 ident: bib52 article-title: Biogeography based optimization algorithm and neural network to optimize place and size of distributed generating system in electrical distribution publication-title: J. Electr. Eng. Technol. – volume: 53 start-page: 5626 year: 2023 end-page: 5637 ident: bib11 article-title: An estimation of distribution algorithm-based hyper-heuristic for the distributed assembly mixed no-idle permutation flowshop scheduling problem publication-title: IEEE Trans. Syst. Man Cybern. -Syst. – volume: 50 start-page: 2425 year: 2020 end-page: 2439 ident: bib25 article-title: Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs publication-title: IEEE T. Cybern. – volume: 59 start-page: 549 year: 2021 end-page: 564 ident: bib31 article-title: Maintenance costs and makespan minimization for assembly permutation flow shop scheduling by considering preventive and corrective maintenance publication-title: J. Manuf. Syst. – volume: 200 start-page: 395 year: 2010 end-page: 408 ident: bib18 article-title: An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem publication-title: Eur. J. Oper. Res. – volume: 28 start-page: 1973 year: 2017 end-page: 1986 ident: bib34 article-title: Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms publication-title: J. Intell. Manuf. – volume: 194 year: 2020 ident: bib12 article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem publication-title: Knowl. -Based Syst. – volume: 97 start-page: 128 year: 2016 end-page: 136 ident: bib50 article-title: An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: Comput. Ind. Eng. – volume: 34 start-page: 3037 year: 1995 end-page: 3051 ident: bib54 article-title: A continuous time mixed integer linear programming model for short term scheduling of multistage batch plants publication-title: Ind. Eng. Chem. Res. – volume: 26 start-page: 33 year: 2020 end-page: 58 ident: bib37 article-title: A coordinated production and transportation scheduling problem with minimum sum of order delivery times publication-title: J. Heuristics – volume: 97 year: 2021 ident: bib42 article-title: Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times publication-title: Eng. Appl. Artif. Intell. – volume: 61 start-page: 592 year: 2021 end-page: 612 ident: bib9 article-title: Optimizing distributed no-wait flow shop scheduling problem with setup times and maintenance operations via iterated greedy algorithm publication-title: J. Manuf. Syst. – volume: 242 year: 2022 ident: bib6 article-title: A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime publication-title: Knowl. -Based Syst. – volume: 19 start-page: 8588 year: 2023 end-page: 8599 ident: bib10 article-title: A Pareto-Based Discrete Jaya Algorithm for Multiobjective Carbon-Efficient Distributed Blocking Flow Shop Scheduling Problem publication-title: IEEE Trans. Ind. Inform. – volume: 59 start-page: 5259 year: 2021 end-page: 5271 ident: bib20 article-title: An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling publication-title: Int. J. Prod. Res. – volume: 93 year: 2020 ident: bib2 article-title: Decomposition algorithms for the integrated process planning and scheduling problem publication-title: Omega – volume: 30 start-page: 913 year: 2006 end-page: 946 ident: bib38 article-title: State-of-the-art review of optimization methods for short-term scheduling of batch processes publication-title: Comput. Chem. Eng. – volume: 41 start-page: 7754 year: 2014 end-page: 7763 ident: bib15 article-title: Modeling and heuristics for scheduling of distributed job shops publication-title: Expert Syst. Appl. – volume: 59 start-page: 549 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib31 article-title: Maintenance costs and makespan minimization for assembly permutation flow shop scheduling by considering preventive and corrective maintenance publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.03.020 – volume: 19 start-page: 2566 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib3 article-title: A Genetic Programming-Based Iterative Approach for the Integrated Process Planning and Scheduling Problem publication-title: IEEE Trans. Autom. Sci. Eng. doi: 10.1109/TASE.2021.3091610 – volume: 81 year: 2019 ident: 10.1016/j.neucom.2024.127897_bib27 article-title: Effective constructive heuristics and meta-heuristics for the distributed assembly permutation flowshop scheduling problem publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2019.105492 – volume: 28 start-page: 1973 year: 2017 ident: 10.1016/j.neucom.2024.127897_bib34 article-title: Optimisation of distributed manufacturing flexible job shop scheduling by using hybrid genetic algorithms publication-title: J. Intell. Manuf. doi: 10.1007/s10845-015-1084-y – volume: 99 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib49 article-title: An improved non-dominated sorting biogeography-based optimization algorithm for the (hybrid) multi-objective flexible job-shop scheduling problem publication-title: Appl. Soft. Comput. – volume: 97 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib42 article-title: Effective constructive heuristics and discrete bee colony optimization for distributed flowshop with setup times publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2020.104016 – volume: 52 start-page: 12675 issue: 12 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib21 article-title: A self-learning discrete jaya algorithm for multi-objective energy-efficient distributed no-idle flow-shop scheduling problem in heterogeneous factory system publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2021.3086181 – volume: 200 start-page: 395 year: 2010 ident: 10.1016/j.neucom.2024.127897_bib18 article-title: An Improved Genetic Algorithm for the Distributed and Flexible Job-shop Scheduling problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2009.01.008 – volume: 125 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib22 article-title: Multi-local search-based general variable neighborhood search for distributed flow shop scheduling in heterogeneous multi-factories publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2022.109138 – volume: 34 start-page: 3037 year: 1995 ident: 10.1016/j.neucom.2024.127897_bib54 article-title: A continuous time mixed integer linear programming model for short term scheduling of multistage batch plants publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie00048a015 – volume: 30 start-page: 913 year: 2006 ident: 10.1016/j.neucom.2024.127897_bib38 article-title: State-of-the-art review of optimization methods for short-term scheduling of batch processes publication-title: Comput. Chem. Eng. doi: 10.1016/j.compchemeng.2006.02.008 – volume: 45 start-page: 4679 year: 2006 ident: 10.1016/j.neucom.2024.127897_bib56 article-title: Rule-evolutionary approach for single-stage multiproduct scheduling with parallel units publication-title: Ind. Eng. Chem. Res. doi: 10.1021/ie0512587 – volume: 26 start-page: 625 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib1 article-title: Distributed scheduling problems in intelligent manufacturing systems publication-title: Tsinghua Sci. Technol. doi: 10.26599/TST.2021.9010009 – volume: 135 year: 2023 ident: 10.1016/j.neucom.2024.127897_bib24 article-title: An effective hyper heuristic-based memetic algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2023.110022 – volume: 61 start-page: 139 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib29 article-title: Supply chain-oriented two-stage assembly flowshops with sequence-dependent setup times publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.08.014 – volume: 251 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib35 article-title: A self-adaptive hyper-heuristic based multi-objective optimisation approach for integrated supply chain scheduling problems publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2022.109190 – volume: 50 start-page: 4647 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib43 article-title: Effective constructive heuristic and metaheuristic for the distributed assembly blocking flow-shop scheduling problem publication-title: Appl. Intell. doi: 10.1007/s10489-020-01809-x – volume: 243 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib36 article-title: A multiobjective evolutionary algorithm for achieving energy efficiency in production environments integrated with multiple automated guided vehicles publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2022.108315 – volume: 106 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib14 article-title: A discrete spotted hyena optimizer for solving distributed job shop scheduling problems publication-title: Appl. Soft. Comput. – volume: 147 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib41 article-title: An improved artificial bee colony algorithm for distributed heterogeneous hybrid flowshop scheduling problem with sequence-dependent setup times publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106638 – volume: 25 start-page: 45 year: 1977 ident: 10.1016/j.neucom.2024.127897_bib55 article-title: A survey of scheduling rules publication-title: Oper. Res. doi: 10.1287/opre.25.1.45 – volume: 162 year: 2019 ident: 10.1016/j.neucom.2024.127897_bib44 article-title: Biogeography-based optimization algorithm for large-scale multistage batch plant scheduling publication-title: Expert Syst. Appl. – volume: 124 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib5 article-title: Integration of process planning and scheduling for distributed flexible job shops publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2020.105053 – volume: 65 start-page: 660 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib33 article-title: Inventory and total completion time minimization for assembly job-shop scheduling considering material integrity and assembly sequential constraint publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.10.013 – volume: 12 start-page: 702 issue: 6 year: 2008 ident: 10.1016/j.neucom.2024.127897_bib45 article-title: Biogeography-based optimization publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2008.919004 – volume: 28 start-page: 1909 year: 2016 ident: 10.1016/j.neucom.2024.127897_bib46 article-title: A survey of biogeography-based optimization publication-title: Neural Comput. Appl. doi: 10.1007/s00521-016-2179-x – volume: 53 start-page: 5626 issue: 9 year: 2023 ident: 10.1016/j.neucom.2024.127897_bib11 article-title: An estimation of distribution algorithm-based hyper-heuristic for the distributed assembly mixed no-idle permutation flowshop scheduling problem publication-title: IEEE Trans. Syst. Man Cybern. -Syst. doi: 10.1109/TSMC.2023.3272311 – volume: 127 start-page: 643 year: 2019 ident: 10.1016/j.neucom.2024.127897_bib39 article-title: Mathematical programming and solution approaches for minimizing tardiness and transportation costs in the supply chain scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2018.11.003 – volume: 93 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib2 article-title: Decomposition algorithms for the integrated process planning and scheduling problem publication-title: Omega doi: 10.1016/j.omega.2019.01.003 – volume: 9 start-page: 544 year: 2015 ident: 10.1016/j.neucom.2024.127897_bib47 article-title: Migration ratio model analysis of biogeography-based optimization algorithm and performance comparison publication-title: Int. J. Comput. Intell. Syst. doi: 10.1080/18756891.2016.1175817 – volume: 41 start-page: 3849 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib53 article-title: Collaborative task scheduling with new task arrival in cloud manufacturing using improved multi-population biogeography-based optimization publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-201066 – volume: 112 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib30 article-title: An optimal block knowledge driven backtracking search algorithm for distributed assembly No-wait flow shop scheduling problem publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2021.107750 – volume: 26 start-page: 33 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib37 article-title: A coordinated production and transportation scheduling problem with minimum sum of order delivery times publication-title: J. Heuristics doi: 10.1007/s10732-019-09420-1 – volume: 64 start-page: 278 year: 1993 ident: 10.1016/j.neucom.2024.127897_bib16 article-title: Benchmarks for basic scheduling problems publication-title: Eur. J. Oper. Res. doi: 10.1016/0377-2217(93)90182-M – volume: 273 start-page: 401 year: 2018 ident: 10.1016/j.neucom.2024.127897_bib23 article-title: Deterministic assembly scheduling problems: a review and classification of concurrent-type scheduling models and solution procedures publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2018.04.033 – volume: 51 start-page: 4429 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib4 article-title: A Modified Genetic Algorithm With New Encoding and Decoding Methods for Integrated Process Planning and Scheduling Problem publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2020.3026651 – volume: 28 start-page: 2139 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib40 article-title: An ERNSGA-III algorithm for the production and distribution planning problem in the multiagent supply chain publication-title: Int. Trans. Oper. Res. doi: 10.1111/itor.12654 – volume: 50 start-page: 2425 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib25 article-title: Hybrid artificial bee colony algorithm for a parallel batching distributed flow-shop problem with deteriorating jobs publication-title: IEEE T. Cybern. doi: 10.1109/TCYB.2019.2943606 – volume: 142 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib17 article-title: Mixed-integer linear programming and constraint programming formulations for solving distributed flexible job shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106347 – volume: 54 start-page: 593 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib51 article-title: Distributed assembly permutation flow-shop scheduling problem with sequence-dependent set-up times using a novel biogeography-based optimization algorithm publication-title: Eng. Optim. doi: 10.1080/0305215X.2021.1886289 – volume: 136 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib13 article-title: Effective constructive heuristics for distributed no-wait flexible flow shop scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105482 – volume: 19 start-page: 8588 issue: 8 year: 2023 ident: 10.1016/j.neucom.2024.127897_bib10 article-title: A Pareto-Based Discrete Jaya Algorithm for Multiobjective Carbon-Efficient Distributed Blocking Flow Shop Scheduling Problem publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2022.3220860 – volume: 97 start-page: 128 year: 2016 ident: 10.1016/j.neucom.2024.127897_bib50 article-title: An effective hybrid biogeography-based optimization algorithm for the distributed assembly permutation flow-shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.05.005 – volume: 59 start-page: 5259 issue: 17 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib20 article-title: An improved artificial bee colony for multi-objective distributed unrelated parallel machine scheduling publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1775911 – volume: 194 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib12 article-title: Modeling and multi-neighborhood iterated greedy algorithm for distributed hybrid flow shop scheduling problem publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2020.105527 – volume: 117 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib28 article-title: An adaptive artificial bee colony with reinforcement learning for distributed three-stage assembly scheduling with maintenance publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2021.108371 – volume: 41 start-page: 7754 year: 2014 ident: 10.1016/j.neucom.2024.127897_bib15 article-title: Modeling and heuristics for scheduling of distributed job shops publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.06.023 – volume: 242 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib6 article-title: A hash map-based memetic algorithm for the distributed permutation flowshop scheduling problem with preventive maintenance to minimize total flowtime publication-title: Knowl. -Based Syst. doi: 10.1016/j.knosys.2022.108413 – volume: 61 start-page: 27 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib32 article-title: An integrated job shop scheduling and assembly sequence planning approach for discrete manufacturing publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.08.003 – volume: 126 start-page: 321 year: 2019 ident: 10.1016/j.neucom.2024.127897_bib48 article-title: A hybrid biogeography-based optimization with variable neighborhood search mechanism for no-wait flow shop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.02.023 – volume: 8 start-page: 96115 year: 2020 ident: 10.1016/j.neucom.2024.127897_bib26 article-title: Memetic algorithm with meta-lamarckian learning and simplex search for distributed flexible assembly permutation flowshop scheduling problem publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2996305 – volume: 17 start-page: 1593 year: 2022 ident: 10.1016/j.neucom.2024.127897_bib52 article-title: Biogeography based optimization algorithm and neural network to optimize place and size of distributed generating system in electrical distribution publication-title: J. Electr. Eng. Technol. doi: 10.1007/s42835-022-01056-9 – volume: 61 start-page: 592 year: 2021 ident: 10.1016/j.neucom.2024.127897_bib9 article-title: Optimizing distributed no-wait flow shop scheduling problem with setup times and maintenance operations via iterated greedy algorithm publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.10.005 – volume: 135 year: 2023 ident: 10.1016/j.neucom.2024.127897_bib7 article-title: Acceleration-based artificial bee colony optimizer for a distributed permutation flowshop scheduling problem with sequence-dependent setup times publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2023.110029 – volume: 27 start-page: 231 year: 2016 ident: 10.1016/j.neucom.2024.127897_bib19 article-title: A Survey of Multi-Factory Scheduling publication-title: J. Intell. Manuf. doi: 10.1007/s10845-014-0890-y – volume: 53 start-page: 4899 issue: 8 year: 2023 ident: 10.1016/j.neucom.2024.127897_bib8 article-title: A Cooperative Scatter Search with Reinforcement Learning Mechanism for the Distributed Permutation Flowshop Scheduling Problem with Sequence-Dependent Setup Times publication-title: IEEE Trans. Syst. Man Cybern. -Syst. doi: 10.1109/TSMC.2023.3256484 |
| SSID | ssj0017129 |
| Score | 2.4545078 |
| Snippet | Since modern production mode has shifted from a single factory to a multi-factory production network, distributed scheduling has been derived. Distributed... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 127897 |
| SubjectTerms | Biogeography-based optimization algorithm Heterogeneous distributed scheduling Heuristic rule Local search Process plan |
| Title | A biogeography-based optimization algorithm with local search for large-scale heterogeneous distributed scheduling with multiple process plans |
| URI | https://dx.doi.org/10.1016/j.neucom.2024.127897 |
| Volume | 595 |
| WOSCitedRecordID | wos001250350900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXpk8kbVpw6GYokEjREkehSNJ2CDqkgDsJokglNmTZcOwg3Tv3N_dOpGi5CdJm6CIQZ-kk6D7dHc_3IOSDVEkotRYBEyVsUBR-UjphQaFYko5kXJSxHTaRnJ2l47H8Ohj87GphruukadKbG7n4r6IGGggbS2cfIG7PFAiwBqHDEcQOx38SfDZUk_mFca2oAzRTejgHzTBzJZfDor6YLyery5mNwrbmbOjCH5h1WGN2eHAFVAOOJLx4YNcYzJXV2GYXJ2QBS9gWg5mqfTDXpyYubO0BDqh2ocBp1yJqDT-1YyRcgCKbYZ8GjaD0AQkfwv5e_PA243SNlDGG9S-NM7YuVsFiDL6ynnoNJQNU8GhL_wopeho0wtLc5E7lbuMM06PGrDHTB29wtDl9u5f2HzbOZx52SW3T3HLJkUtuuTwiuywREtT7bvb5ePzF_xuVRMz2bHRP35VgtnmCt5_mbhen57acPyNP3X6DZhYnz8nANC_IXjfLgzrV_pL8yuht2NA-bKiHDUV50xY21MKGAmxoDzZ0Cza0Bxu6gY1l08GGOtjQFjavyLeT4_OPnwI3qyMoYdO5CqRIjdIjbP7PTdx6wRUzQCpFqLSClQxDU_JKpVVRgeMYaV5VImY6HYk4lvw12WnmjdknlJXgk1cj9JRMDAtlFC8514IrBuYiOiC8e7156RrZ4zyVOr9PuAck8FctbCOXv5yfdJLLnTNqncwc4HjvlW8eeKe35MnmWzkkO6vl2rwjj8vr1eRq-d5h8TeDM7W9 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+biogeography-based+optimization+algorithm+with+local+search+for+large-scale+heterogeneous+distributed+scheduling+with+multiple+process+plans&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Zhang%2C+Yaya&rft.au=Gu%2C+Xingsheng&rft.date=2024-08-28&rft.issn=0925-2312&rft.volume=595&rft.spage=127897&rft_id=info:doi/10.1016%2Fj.neucom.2024.127897&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_neucom_2024_127897 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |