Feature selection based on dataset variance optimization using Hybrid Sine Cosine – Firehawk Algorithm (HSCFHA)

Feature selection plays a pivotal role in preprocessing data for machine learning (ML) models. It entails choosing a subset of pertinent features to enhance the model’s accuracy and minimize overfitting. Wrapper methods based on metaheuristics are one approach to feature selection, leveraging the pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Future generation computer systems Jg. 155; S. 272 - 286
Hauptverfasser: Moosavi, Syed Kumayl Raza, Saadat, Ahsan, Abaid, Zainab, Ni, Wei, Li, Kai, Guizani, Mohsen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2024
Schlagworte:
ISSN:0167-739X, 1872-7115
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract Feature selection plays a pivotal role in preprocessing data for machine learning (ML) models. It entails choosing a subset of pertinent features to enhance the model’s accuracy and minimize overfitting. Wrapper methods based on metaheuristics are one approach to feature selection, leveraging the predictive accuracy of a learning algorithm to form a condensed set of features. Traditionally, this method uses K-Nearest Neighbor (KNN) for maximizing accuracy as its cost function. However, this approach often yields less than optimal results in large sample spaces and demands considerable computational resources. To circumvent the shortcomings of this approach, this work proposes a novel metaheuristic algorithm, termed the Hybrid Sine Cosine Firehawk Algorithm. Furthermore, a novel feature selection technique is designed that uses this hybrid algorithm to eliminate insignificant and redundant features by incorporating the minimization of dataset variance in the cost function. Additionally, the hybridization of multiple metaheuristic algorithms produces the best features of each algorithm to improve the exploration ability. The proposed technique is tested on 22 University of California Irvine datasets containing low, medium and high dimensional datasets and compared to the traditional KNN-based approach. The technique is also compared with other state-of-the-art metaheuristic techniques, namely Particle Swarm Optimizer, Grey Wolf Optimizer, Whale Optimization Algorithm, Hybrid Ant Colony Optimizer and Improved Binary Bat Algorithm. The results show significant improvements over previous techniques in terms of minimal loss in essential data while reducing the size of the raw data in considerably less time, as well as a well-balanced confusion matrix. •Feature Selection using Variance minimization.•Hybrid Sine Cosine - Firehawk Algorithm•Comparative Analysis with metaheuristic techniques.•Tested on multi-dimensional and bi/multi class datasets.
AbstractList Feature selection plays a pivotal role in preprocessing data for machine learning (ML) models. It entails choosing a subset of pertinent features to enhance the model’s accuracy and minimize overfitting. Wrapper methods based on metaheuristics are one approach to feature selection, leveraging the predictive accuracy of a learning algorithm to form a condensed set of features. Traditionally, this method uses K-Nearest Neighbor (KNN) for maximizing accuracy as its cost function. However, this approach often yields less than optimal results in large sample spaces and demands considerable computational resources. To circumvent the shortcomings of this approach, this work proposes a novel metaheuristic algorithm, termed the Hybrid Sine Cosine Firehawk Algorithm. Furthermore, a novel feature selection technique is designed that uses this hybrid algorithm to eliminate insignificant and redundant features by incorporating the minimization of dataset variance in the cost function. Additionally, the hybridization of multiple metaheuristic algorithms produces the best features of each algorithm to improve the exploration ability. The proposed technique is tested on 22 University of California Irvine datasets containing low, medium and high dimensional datasets and compared to the traditional KNN-based approach. The technique is also compared with other state-of-the-art metaheuristic techniques, namely Particle Swarm Optimizer, Grey Wolf Optimizer, Whale Optimization Algorithm, Hybrid Ant Colony Optimizer and Improved Binary Bat Algorithm. The results show significant improvements over previous techniques in terms of minimal loss in essential data while reducing the size of the raw data in considerably less time, as well as a well-balanced confusion matrix. •Feature Selection using Variance minimization.•Hybrid Sine Cosine - Firehawk Algorithm•Comparative Analysis with metaheuristic techniques.•Tested on multi-dimensional and bi/multi class datasets.
Author Li, Kai
Ni, Wei
Saadat, Ahsan
Moosavi, Syed Kumayl Raza
Guizani, Mohsen
Abaid, Zainab
Author_xml – sequence: 1
  givenname: Syed Kumayl Raza
  orcidid: 0000-0001-7064-255X
  surname: Moosavi
  fullname: Moosavi, Syed Kumayl Raza
  organization: National University of Sciences and Technology (NUST), Islamabad, Pakistan
– sequence: 2
  givenname: Ahsan
  surname: Saadat
  fullname: Saadat, Ahsan
  email: ahsan.saadat@seecs.edu.pk
  organization: National University of Sciences and Technology (NUST), Islamabad, Pakistan
– sequence: 3
  givenname: Zainab
  surname: Abaid
  fullname: Abaid, Zainab
  organization: FAST School of Computing, National University of Computer and Emerging Sciences, Islamabad, Pakistan
– sequence: 4
  givenname: Wei
  orcidid: 0000-0003-0780-4637
  surname: Ni
  fullname: Ni, Wei
  organization: Data61, Commonwealth Scientific and Industrial Research Organisation, Sydney, Australia
– sequence: 5
  givenname: Kai
  surname: Li
  fullname: Li, Kai
  organization: CISTER Research Centre, Portugal
– sequence: 6
  givenname: Mohsen
  surname: Guizani
  fullname: Guizani, Mohsen
  organization: Mohamed Bin Zayed University of Artificial Intelligence, Abu Dhabi, United Arab Emirates
BookMark eNqFkLFOwzAYhC1UJNrCGzB4hCHBdpq4YUCqKkKQKjEUJDbLsf-0Lm1SbLeoTLwDb8iTkLRMDDDdDXen__96qFPVFSB0TklICU2uFmG58RsLISNsEBIWEsqPUJcOOQs4pXEHdZsYD3iUPp-gnnMLQppIRLvoNQPZVrGDJShv6goX0oHGjdHSN9bjrbRGVgpwvfZmZd7lPrZxpprhfFdYo_HUVIDHtWvl6-MTZ8bCXL694NFyVlvj5yt8kU_HWT66PEXHpVw6OPvRPnrKbh_HeTB5uLsfjyaBikjig5SBllHCYAil5owSpVNeslinwFQMRcJjHRWcymFZFHLAE5pqokiakogWPEmjPro-7CpbO2ehFMr4_eneSrMUlIgWnliIAzzRwhOEiZZMHw1-ldfWrKTd_Ve7OdSgeWxrwAqnDDTodMNDeaFr8_fAN7MekCE
CitedBy_id crossref_primary_10_1109_TSMC_2025_3551500
crossref_primary_10_1109_TITS_2024_3403518
crossref_primary_10_3390_biomimetics9110701
crossref_primary_10_1109_ACCESS_2025_3566430
crossref_primary_10_1007_s11831_024_10218_z
crossref_primary_10_1016_j_knosys_2025_113062
crossref_primary_10_1016_j_knosys_2025_113286
crossref_primary_10_1088_2631_8695_adb376
Cites_doi 10.1016/j.advengsoft.2013.12.007
10.1016/j.asoc.2016.01.044
10.1007/s00521-023-08772-x
10.1504/IJCAT.2013.056915
10.1016/j.ijepes.2016.03.007
10.1007/s00521-021-05997-6
10.1023/A:1010933404324
10.1093/bioinformatics/btm344
10.1007/s00530-015-0494-1
10.1109/ASIANCON51346.2021.9544105
10.1016/j.neucom.2014.06.006
10.1111/j.2517-6161.1996.tb02080.x
10.1016/S0004-3702(97)00043-X
10.1145/3059336.3059363
10.1002/int.22703
10.1016/j.knosys.2015.12.022
10.1016/j.patcog.2021.107933
10.1007/s00521-020-04761-6
10.1016/j.asoc.2016.08.011
10.1016/j.advengsoft.2016.01.008
10.1007/s12652-020-02623-6
10.1186/s12859-019-2754-0
10.1007/s00521-013-1525-5
10.1109/ACCESS.2020.3035531
10.3923/pjbs.2014.266.271
10.1007/s13369-017-2790-x
10.1016/j.eswa.2021.115290
10.1109/TPAMI.2013.50
10.1016/j.patcog.2021.108169
10.1016/j.fusengdes.2017.03.042
10.1109/TGRS.2019.2958812
10.1016/j.compeleceng.2013.11.024
10.1007/s10479-005-3971-7
10.1007/s10586-021-03459-1
10.1089/cmb.2015.0189
10.1007/s00521-017-2837-7
10.1126/science.1127647
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2024.02.017
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 286
ExternalDocumentID 10_1016_j_future_2024_02_017
S0167739X24000621
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-92eda362e8efd7210cd97f25d9e2c5eb675d3b71a8fbba47619d0c099031b7693
ISICitedReferencesCount 11
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001188860600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 03:48:12 EST 2025
Tue Nov 18 22:08:51 EST 2025
Sat Mar 02 16:00:43 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Hybrid Sine Cosine Firehawk Algorithm
Feature selection
Machine learning
Classification
Optimization algorithms
Dataset variance optimization
Metaheuristic algorithms
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-92eda362e8efd7210cd97f25d9e2c5eb675d3b71a8fbba47619d0c099031b7693
ORCID 0000-0003-0780-4637
0000-0001-7064-255X
PageCount 15
ParticipantIDs crossref_citationtrail_10_1016_j_future_2024_02_017
crossref_primary_10_1016_j_future_2024_02_017
elsevier_sciencedirect_doi_10_1016_j_future_2024_02_017
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Mafarja, Abdullah (b43) 2013; 48
Tibshirani (b18) 1996; 58
Sindhu (b36) 2017; 28
Neapolitan (b24) 2004
Gendreau, Potvin (b26) 2005; 140
Breiman (b19) 2001; 45
Alzubi (b31) 2022; 25
Yue (b47) 2019
Movassagh, Alzubi, Gheisari (b51) 2023; 14
Eiben, Smith (b3) 2015
T. Hastie (b13) 2009
Mirjalili (b55) 2014; 25
Chandrashekar, Sahin (b20) 2014; 40
Mirjalili, Lewis (b57) 2016; 95
Jr., Yang, Fister (b27) 2013
Wan (b40) 2020; 58
Moosavi, Zafar, Akhter (b49) 2021
Stephan, Stephan, Kannan (b7) 2021; 33
Kalyani, Chaudhari (b10) 2022; 34
Mirjalili, Mirjalili, Lewis (b53) 2014; 69
Hijazi (b5) 2021; 182
Tuba, Bacanin (b11) 2014; 143
Alawad, Abed-alguni, Al-Betar (b58) 2023; 35
Jona, Nagaveni (b33) 2014; 17
Kohavi, John (b14) 1997; 97
L. Yu, H. Liu, Feature selection for high-dimensional data: A fast correlation-based filter solution, in: Proceedings of the 20th International Conference on Machine Learning, ICML-03, 2003, pp. 856–863.
Dey, Chattopadhyay (b41) 2020; 8
Hinton, Salakhutdinov (b22) 2006; 313
Gao, Song, Liu, Shao (b23) 2017; 23
Sangaiah, Zhang, Sheng (b28) 2018
Mirjalili (b45) 2016; 96
(b52) 2023
Zafar, Khan, Moosavi (b48) 2022
Moosavi, Younis, Zafar (b50) 2022
R. Kommadath, J. Dondeti, P. Kotecha, Benchmarking Jaya and sine cosine algorithm on real parameter bound constrained single objective optimization problems, in: Proceedings of the 2017 International Conference on Intelligent Systems, cec2016, 2017, pp. 31–34.
Wan, Wang, Ye, Lai (b32) 2016; 49
Alzubi, Alzubi, Tedmori, Rashaideh, Almomani (b9) 2018; 15
Hasanin (b21) 2019
Taghian, Nadimi-Shahraki (b38) 2019
Li, Chen, Wasserman (b16) 2016; 23
Moradi, Gholampour (b34) 2016; 43
Saeys, Inza, Larranaga (b4) 2007; 23
Yu, Aouari, Mansour (b6) 2021; 3
Zhao, Jiang (b2) 2005; vol. 293
Masoudi-Sobhanzadeh (b15) 2019; 20
Kennedy, Eberhart (b54) 1995; vol. 4
S. Pathak, et al., A New Salp Swarm Algorithm for the Numerical Optimization Problems Based on An Elite Opposition-based Learning, in: 2021 Asian Conference on Innovation in Technology, ASIANCON, 2021, pp. 1–6.
Bengio (b17) 2013; 35
Madhura, Mahalakhsmi (b1) 2022; 100
Azizi, Talatahari, Gandomi (b44) 2022
Pereira, Rodrigues (b29) 2014
Alzubi, Alzubi, Alweshah, Qiqieh, Al-Shami, Manikandan (b8) 2020; 32
Fan, Liu, Liu, Du (b25) 2021; 120
Chattopadhyay (b37) 2022; 37
Reddy (b59) 2018; 43
Mao, Xie, Wang, Handroos (b35) 2017; 124
Belazzoug (b39) 2020; 32
Wen, Yin, Guo (b30) 2008; vol. 2
Lenin, Reddy, Suryakalavathi (b42) 2016; 82
Ma (b56) 2021; 116
Belazzoug (10.1016/j.future.2024.02.017_b39) 2020; 32
Mafarja (10.1016/j.future.2024.02.017_b43) 2013; 48
Wen (10.1016/j.future.2024.02.017_b30) 2008; vol. 2
Li (10.1016/j.future.2024.02.017_b16) 2016; 23
Azizi (10.1016/j.future.2024.02.017_b44) 2022
Moradi (10.1016/j.future.2024.02.017_b34) 2016; 43
Movassagh (10.1016/j.future.2024.02.017_b51) 2023; 14
Alzubi (10.1016/j.future.2024.02.017_b9) 2018; 15
Mao (10.1016/j.future.2024.02.017_b35) 2017; 124
Hinton (10.1016/j.future.2024.02.017_b22) 2006; 313
Tibshirani (10.1016/j.future.2024.02.017_b18) 1996; 58
Dey (10.1016/j.future.2024.02.017_b41) 2020; 8
Zafar (10.1016/j.future.2024.02.017_b48) 2022
Hasanin (10.1016/j.future.2024.02.017_b21) 2019
Masoudi-Sobhanzadeh (10.1016/j.future.2024.02.017_b15) 2019; 20
Mirjalili (10.1016/j.future.2024.02.017_b57) 2016; 95
Sindhu (10.1016/j.future.2024.02.017_b36) 2017; 28
Kennedy (10.1016/j.future.2024.02.017_b54) 1995; vol. 4
Mirjalili (10.1016/j.future.2024.02.017_b55) 2014; 25
Kalyani (10.1016/j.future.2024.02.017_b10) 2022; 34
Stephan (10.1016/j.future.2024.02.017_b7) 2021; 33
Reddy (10.1016/j.future.2024.02.017_b59) 2018; 43
Gao (10.1016/j.future.2024.02.017_b23) 2017; 23
Chattopadhyay (10.1016/j.future.2024.02.017_b37) 2022; 37
Alzubi (10.1016/j.future.2024.02.017_b31) 2022; 25
Mirjalili (10.1016/j.future.2024.02.017_b45) 2016; 96
Wan (10.1016/j.future.2024.02.017_b40) 2020; 58
Ma (10.1016/j.future.2024.02.017_b56) 2021; 116
Kohavi (10.1016/j.future.2024.02.017_b14) 1997; 97
10.1016/j.future.2024.02.017_b46
Zhao (10.1016/j.future.2024.02.017_b2) 2005; vol. 293
Chandrashekar (10.1016/j.future.2024.02.017_b20) 2014; 40
Yu (10.1016/j.future.2024.02.017_b6) 2021; 3
Neapolitan (10.1016/j.future.2024.02.017_b24) 2004
Alawad (10.1016/j.future.2024.02.017_b58) 2023; 35
T. Hastie (10.1016/j.future.2024.02.017_b13) 2009
Moosavi (10.1016/j.future.2024.02.017_b50) 2022
10.1016/j.future.2024.02.017_b12
Fan (10.1016/j.future.2024.02.017_b25) 2021; 120
Alzubi (10.1016/j.future.2024.02.017_b8) 2020; 32
Wan (10.1016/j.future.2024.02.017_b32) 2016; 49
Tuba (10.1016/j.future.2024.02.017_b11) 2014; 143
Gendreau (10.1016/j.future.2024.02.017_b26) 2005; 140
Jr. (10.1016/j.future.2024.02.017_b27) 2013
Saeys (10.1016/j.future.2024.02.017_b4) 2007; 23
10.1016/j.future.2024.02.017_b60
Mirjalili (10.1016/j.future.2024.02.017_b53) 2014; 69
Sangaiah (10.1016/j.future.2024.02.017_b28) 2018
Pereira (10.1016/j.future.2024.02.017_b29) 2014
Jona (10.1016/j.future.2024.02.017_b33) 2014; 17
Hijazi (10.1016/j.future.2024.02.017_b5) 2021; 182
Yue (10.1016/j.future.2024.02.017_b47) 2019
Breiman (10.1016/j.future.2024.02.017_b19) 2001; 45
Eiben (10.1016/j.future.2024.02.017_b3) 2015
(10.1016/j.future.2024.02.017_b52) 2023
Madhura (10.1016/j.future.2024.02.017_b1) 2022; 100
Taghian (10.1016/j.future.2024.02.017_b38) 2019
Bengio (10.1016/j.future.2024.02.017_b17) 2013; 35
Lenin (10.1016/j.future.2024.02.017_b42) 2016; 82
Moosavi (10.1016/j.future.2024.02.017_b49) 2021
References_xml – volume: vol. 4
  start-page: 1942
  year: 1995
  end-page: 1948
  ident: b54
  article-title: Particle swarm optimization
  publication-title: Proceedings of ICNN’95-International Conference on Neural Networks
– volume: 82
  start-page: 87
  year: 2016
  end-page: 91
  ident: b42
  article-title: Hybrid Tabu search-simulated annealing method to solve optimal reactive power problem
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 1
  year: 2022
  end-page: 77
  ident: b44
  article-title: Fire Hawk optimizer: A novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
– start-page: 58
  year: 2022
  end-page: 70
  ident: b50
  article-title: A novel group teaching optimization algorithm based artificial neural network for classification
  publication-title: Intelligent Technologies and Applications: 4th International Conference
– year: 2019
  ident: b38
  article-title: Binary sine cosine algorithms for feature selection from medical data
– volume: 32
  start-page: 454
  year: 2020
  end-page: 464
  ident: b39
  article-title: An improved sine cosine algorithm to select features for text categorization
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– year: 2019
  ident: b47
  article-title: Problem Definitions and Evaluation Criteria for the CEC 2020 Special Session and Competition on Single Objective Bound Constrained Numerical Optimization
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: b57
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 33
  start-page: 13667
  year: 2021
  end-page: 13691
  ident: b7
  article-title: A hybrid artificial bee colony with whale optimization algorithm for improved breast cancer diagnosis
  publication-title: Neural Comput. Appl.
– volume: 20
  start-page: 1
  year: 2019
  end-page: 17
  ident: b15
  article-title: FeatureSelect: A software for feature selection based on machine learning approaches
  publication-title: BMC Bioinform.
– volume: 23
  start-page: 322
  year: 2016
  end-page: 336
  ident: b16
  article-title: Deep feature selection: Theory and application to identify enhancers and promoters
  publication-title: J. Comput. Biol.
– year: 2004
  ident: b24
  publication-title: Learning Bayesian Networks
– volume: 28
  start-page: 2947
  year: 2017
  end-page: 2958
  ident: b36
  article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput. Appl.
– volume: vol. 293
  start-page: 175
  year: 2005
  end-page: 182
  ident: b2
  article-title: Data mining for fault diagnosis and machine learning for rotating machinery
  publication-title: Key Engineering Materials
– volume: 313
  start-page: 504
  year: 2006
  end-page: 507
  ident: b22
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 25
  start-page: 2369
  year: 2022
  end-page: 2387
  ident: b31
  article-title: An efficient malware detection approach with feature weighting based on Harris Hawks optimization
  publication-title: Cluster Comput.
– start-page: 197
  year: 2022
  end-page: 209
  ident: b48
  article-title: Artificial Neural Network (ANN) trained by a novel arithmetic optimization algorithm (AOA) for short term forecasting of wind power
  publication-title: Intelligent Technologies and Applications: 4th International Conference
– volume: 182
  year: 2021
  ident: b5
  article-title: A parallel metaheuristic approach for ensemble feature selection based on multi-core architectures
  publication-title: Expert Syst. Appl.
– volume: 25
  start-page: 663
  year: 2014
  end-page: 681
  ident: b55
  article-title: Binary bat algorithm
  publication-title: Neural Comput. Appl.
– year: 2013
  ident: b27
  article-title: A brief review of nature-inspired algorithms for optimization
– volume: 48
  start-page: 195
  year: 2013
  end-page: 202
  ident: b43
  article-title: Investigating memetic algorithm in solving rough set attribute reduction
  publication-title: Int. J. Comput. Appl. Technol.
– year: 2015
  ident: b3
  article-title: Introduction to Evolutionary Computing
– volume: 32
  start-page: 1
  year: 2020
  end-page: 17
  ident: b8
  article-title: An optimal pruning algorithm of classifier ensembles: dynamic programming approach
  publication-title: Neural Comput. Appl.
– reference: L. Yu, H. Liu, Feature selection for high-dimensional data: A fast correlation-based filter solution, in: Proceedings of the 20th International Conference on Machine Learning, ICML-03, 2003, pp. 856–863.
– volume: 116
  year: 2021
  ident: b56
  article-title: A two-stage hybrid ant colony optimization for high-dimensional feature selection
  publication-title: Pattern Recognit.
– volume: 17
  start-page: 266
  year: 2014
  end-page: 271
  ident: b33
  article-title: Ant-cuckoo colony optimization for feature selection in digital mammogram
  publication-title: Pakistan J. Biol. Sci.: PJBS
– volume: 43
  start-page: 117
  year: 2016
  end-page: 130
  ident: b34
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Appl. Soft Comput.
– volume: 49
  start-page: 248
  year: 2016
  end-page: 258
  ident: b32
  article-title: A feature selection method based on modified binary coded ant colony optimization algorithm
  publication-title: Appl. Soft Comput.
– volume: 58
  start-page: 267
  year: 1996
  end-page: 288
  ident: b18
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
– volume: 97
  start-page: 273
  year: 1997
  end-page: 324
  ident: b14
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
– volume: 34
  start-page: 2062
  year: 2022
  end-page: 2071
  ident: b10
  article-title: Data privacy preservation in MAC aware internet of things with optimized key generation
  publication-title: J. King Saud Univ.-Comput. and Inf. Sci.
– start-page: 1
  year: 2021
  end-page: 6
  ident: b49
  article-title: A novel Artificial Neural Network (ANN) using the mayfly algorithm for classification
  publication-title: 2021 International Conference on Digital Futures and Transformative Technologies (ICoDT2)
– volume: 14
  start-page: 6017
  year: 2023
  end-page: 6025
  ident: b51
  article-title: Artificial Neural Networks training algorithm integrating invasive weed optimization with differential evolutionary model
  publication-title: J. Ambient Intell. Humaniz. Comput.
– volume: 3
  start-page: 117
  year: 2021
  ident: b6
  article-title: A hybrid algorithm based on PSO and GA for feature selection
  publication-title: J. Cybersecurity
– volume: 40
  start-page: 16
  year: 2014
  end-page: 28
  ident: b20
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
– reference: S. Pathak, et al., A New Salp Swarm Algorithm for the Numerical Optimization Problems Based on An Elite Opposition-based Learning, in: 2021 Asian Conference on Innovation in Technology, ASIANCON, 2021, pp. 1–6.
– year: 2009
  ident: b13
  publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 23
  start-page: 2507
  year: 2007
  end-page: 2517
  ident: b4
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
– volume: 143
  start-page: 197
  year: 2014
  end-page: 207
  ident: b11
  article-title: Improved seeker optimization algorithm hybridized with firefly algorithm for constrained optimization problems
  publication-title: Neurocomputing
– volume: 8
  start-page: 200953
  year: 2020
  end-page: 200970
  ident: b41
  article-title: A hybrid meta-heuristic feature selection method using golden ratio and equilibrium optimization algorithms for speech emotion recognition
  publication-title: IEEE Access
– volume: 35
  start-page: 19427
  year: 2023
  end-page: 19451
  ident: b58
  article-title: Binary improved white shark algorithm for intrusion detection systems
  publication-title: Neural Comput. Appl.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b17
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: vol. 2
  start-page: II
  year: 2008
  end-page: 923
  ident: b30
  article-title: Ant colony optimization algorithm for feature selection and classification of multispectral remote sensing image
  publication-title: IGARSS 2008-2008 IEEE International Geoscience and Remote Sensing Symposium
– volume: 96
  start-page: 120
  year: 2016
  end-page: 133
  ident: b45
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
– reference: R. Kommadath, J. Dondeti, P. Kotecha, Benchmarking Jaya and sine cosine algorithm on real parameter bound constrained single objective optimization problems, in: Proceedings of the 2017 International Conference on Intelligent Systems, cec2016, 2017, pp. 31–34.
– volume: 15
  start-page: 76
  year: 2018
  end-page: 86
  ident: b9
  article-title: Consensus-based combining method for classifier ensembles
  publication-title: Int. Arab J. Inf. Technol.
– year: 2018
  ident: b28
  article-title: Computational Intelligence for Multimedia Big Data on the Cloud with Engineering Applications
– year: 2023
  ident: b52
  article-title: UCI archives
– volume: 140
  start-page: 189
  year: 2005
  end-page: 213
  ident: b26
  article-title: Metaheuristics in combinatorial optimization
  publication-title: Ann. Oper. Res.
– volume: 23
  start-page: 303
  year: 2017
  end-page: 313
  ident: b23
  article-title: Learning in high-dimensional multimedia data: The state of the art
  publication-title: Multimedia Syst.
– volume: 124
  start-page: 587
  year: 2017
  end-page: 590
  ident: b35
  article-title: A hybrid differential evolution and particle swarm optimization algorithm for numerical kinematics solution of remote maintenance manipulators
  publication-title: Fusion Eng. Des.
– volume: 58
  start-page: 3601
  year: 2020
  end-page: 3618
  ident: b40
  article-title: Multiobjective hyperspectral feature selection based on discrete sine cosine algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 69
  start-page: 46
  year: 2014
  end-page: 61
  ident: b53
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
– volume: 100
  year: 2022
  ident: b1
  article-title: End2end unstructured data processing, confidential data structuring & storage using image processing, nlp, machine learning, and blockchain
  publication-title: J. Theoret. Appl. Inf. Technol.
– volume: 120
  year: 2021
  ident: b25
  article-title: Manifold learning with structured subspace for multi-label feature selection
  publication-title: Pattern Recognit.
– volume: 37
  start-page: 3777
  year: 2022
  end-page: 3814
  ident: b37
  article-title: Pneumonia detection from lung X-ray images using local search aided sine cosine algorithm based deep feature selection method
  publication-title: Int. J. Intell. Syst.
– start-page: 346
  year: 2019
  end-page: 356
  ident: b21
  article-title: Investigating random undersampling and feature selection on bioinformatics big data
  publication-title: 2019 IEEE Fifth International Conference on Big Data Computing Service and Applications
– start-page: 141
  year: 2014
  end-page: 154
  ident: b29
  article-title: A binary cuckoo search and its application for feature selection
  publication-title: Cuckoo Search and Firefly Algorithm: Theory and Applications
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b19
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 43
  start-page: 4041
  year: 2018
  end-page: 4056
  ident: b59
  article-title: A new binary variant of Sine–cosine algorithm: Development and application to solve profit-based unit commitment problem
  publication-title: Arab. J. Sci. Eng.
– year: 2015
  ident: 10.1016/j.future.2024.02.017_b3
– volume: vol. 4
  start-page: 1942
  year: 1995
  ident: 10.1016/j.future.2024.02.017_b54
  article-title: Particle swarm optimization
– year: 2013
  ident: 10.1016/j.future.2024.02.017_b27
– volume: 69
  start-page: 46
  year: 2014
  ident: 10.1016/j.future.2024.02.017_b53
  article-title: Grey Wolf Optimizer
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 43
  start-page: 117
  year: 2016
  ident: 10.1016/j.future.2024.02.017_b34
  article-title: A hybrid particle swarm optimization for feature subset selection by integrating a novel local search strategy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.01.044
– volume: 15
  start-page: 76
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2024.02.017_b9
  article-title: Consensus-based combining method for classifier ensembles
  publication-title: Int. Arab J. Inf. Technol.
– start-page: 1
  year: 2022
  ident: 10.1016/j.future.2024.02.017_b44
  article-title: Fire Hawk optimizer: A novel metaheuristic algorithm
  publication-title: Artif. Intell. Rev.
– volume: 35
  start-page: 19427
  year: 2023
  ident: 10.1016/j.future.2024.02.017_b58
  article-title: Binary improved white shark algorithm for intrusion detection systems
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-023-08772-x
– start-page: 141
  year: 2014
  ident: 10.1016/j.future.2024.02.017_b29
  article-title: A binary cuckoo search and its application for feature selection
– volume: 48
  start-page: 195
  issue: 3
  year: 2013
  ident: 10.1016/j.future.2024.02.017_b43
  article-title: Investigating memetic algorithm in solving rough set attribute reduction
  publication-title: Int. J. Comput. Appl. Technol.
  doi: 10.1504/IJCAT.2013.056915
– volume: 82
  start-page: 87
  year: 2016
  ident: 10.1016/j.future.2024.02.017_b42
  article-title: Hybrid Tabu search-simulated annealing method to solve optimal reactive power problem
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2016.03.007
– volume: 33
  start-page: 13667
  issue: 20
  year: 2021
  ident: 10.1016/j.future.2024.02.017_b7
  article-title: A hybrid artificial bee colony with whale optimization algorithm for improved breast cancer diagnosis
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-021-05997-6
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.future.2024.02.017_b19
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 23
  start-page: 2507
  issue: 19
  year: 2007
  ident: 10.1016/j.future.2024.02.017_b4
  article-title: A review of feature selection techniques in bioinformatics
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm344
– volume: 23
  start-page: 303
  year: 2017
  ident: 10.1016/j.future.2024.02.017_b23
  article-title: Learning in high-dimensional multimedia data: The state of the art
  publication-title: Multimedia Syst.
  doi: 10.1007/s00530-015-0494-1
– ident: 10.1016/j.future.2024.02.017_b60
  doi: 10.1109/ASIANCON51346.2021.9544105
– volume: 143
  start-page: 197
  year: 2014
  ident: 10.1016/j.future.2024.02.017_b11
  article-title: Improved seeker optimization algorithm hybridized with firefly algorithm for constrained optimization problems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.06.006
– volume: 58
  start-page: 267
  issue: 1
  year: 1996
  ident: 10.1016/j.future.2024.02.017_b18
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J. R. Stat. Soc. Ser. B Stat. Methodol.
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– volume: 97
  start-page: 273
  issue: 1–2
  year: 1997
  ident: 10.1016/j.future.2024.02.017_b14
  article-title: Wrappers for feature subset selection
  publication-title: Artif. Intell.
  doi: 10.1016/S0004-3702(97)00043-X
– ident: 10.1016/j.future.2024.02.017_b46
  doi: 10.1145/3059336.3059363
– volume: 37
  start-page: 3777
  issue: 7
  year: 2022
  ident: 10.1016/j.future.2024.02.017_b37
  article-title: Pneumonia detection from lung X-ray images using local search aided sine cosine algorithm based deep feature selection method
  publication-title: Int. J. Intell. Syst.
  doi: 10.1002/int.22703
– volume: 32
  start-page: 454
  issue: 4
  year: 2020
  ident: 10.1016/j.future.2024.02.017_b39
  article-title: An improved sine cosine algorithm to select features for text categorization
  publication-title: J. King Saud Univ.-Comput. Inf. Sci.
– volume: 96
  start-page: 120
  year: 2016
  ident: 10.1016/j.future.2024.02.017_b45
  article-title: SCA: A sine cosine algorithm for solving optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.022
– volume: 116
  year: 2021
  ident: 10.1016/j.future.2024.02.017_b56
  article-title: A two-stage hybrid ant colony optimization for high-dimensional feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.107933
– volume: 32
  start-page: 1
  year: 2020
  ident: 10.1016/j.future.2024.02.017_b8
  article-title: An optimal pruning algorithm of classifier ensembles: dynamic programming approach
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-020-04761-6
– volume: 49
  start-page: 248
  year: 2016
  ident: 10.1016/j.future.2024.02.017_b32
  article-title: A feature selection method based on modified binary coded ant colony optimization algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2016.08.011
– year: 2023
  ident: 10.1016/j.future.2024.02.017_b52
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.future.2024.02.017_b57
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 14
  start-page: 6017
  year: 2023
  ident: 10.1016/j.future.2024.02.017_b51
  article-title: Artificial Neural Networks training algorithm integrating invasive weed optimization with differential evolutionary model
  publication-title: J. Ambient Intell. Humaniz. Comput.
  doi: 10.1007/s12652-020-02623-6
– year: 2018
  ident: 10.1016/j.future.2024.02.017_b28
– volume: 20
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.future.2024.02.017_b15
  article-title: FeatureSelect: A software for feature selection based on machine learning approaches
  publication-title: BMC Bioinform.
  doi: 10.1186/s12859-019-2754-0
– volume: 25
  start-page: 663
  year: 2014
  ident: 10.1016/j.future.2024.02.017_b55
  article-title: Binary bat algorithm
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-013-1525-5
– year: 2019
  ident: 10.1016/j.future.2024.02.017_b47
– start-page: 58
  year: 2022
  ident: 10.1016/j.future.2024.02.017_b50
  article-title: A novel group teaching optimization algorithm based artificial neural network for classification
– ident: 10.1016/j.future.2024.02.017_b12
– volume: 8
  start-page: 200953
  year: 2020
  ident: 10.1016/j.future.2024.02.017_b41
  article-title: A hybrid meta-heuristic feature selection method using golden ratio and equilibrium optimization algorithms for speech emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3035531
– start-page: 197
  year: 2022
  ident: 10.1016/j.future.2024.02.017_b48
  article-title: Artificial Neural Network (ANN) trained by a novel arithmetic optimization algorithm (AOA) for short term forecasting of wind power
– volume: 17
  start-page: 266
  issue: 2
  year: 2014
  ident: 10.1016/j.future.2024.02.017_b33
  article-title: Ant-cuckoo colony optimization for feature selection in digital mammogram
  publication-title: Pakistan J. Biol. Sci.: PJBS
  doi: 10.3923/pjbs.2014.266.271
– volume: 43
  start-page: 4041
  year: 2018
  ident: 10.1016/j.future.2024.02.017_b59
  article-title: A new binary variant of Sine–cosine algorithm: Development and application to solve profit-based unit commitment problem
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-017-2790-x
– volume: 34
  start-page: 2062
  issue: 5
  year: 2022
  ident: 10.1016/j.future.2024.02.017_b10
  article-title: Data privacy preservation in MAC aware internet of things with optimized key generation
  publication-title: J. King Saud Univ.-Comput. and Inf. Sci.
– volume: 182
  year: 2021
  ident: 10.1016/j.future.2024.02.017_b5
  article-title: A parallel metaheuristic approach for ensemble feature selection based on multi-core architectures
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115290
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.future.2024.02.017_b17
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– volume: vol. 2
  start-page: II
  year: 2008
  ident: 10.1016/j.future.2024.02.017_b30
  article-title: Ant colony optimization algorithm for feature selection and classification of multispectral remote sensing image
– volume: 120
  year: 2021
  ident: 10.1016/j.future.2024.02.017_b25
  article-title: Manifold learning with structured subspace for multi-label feature selection
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108169
– year: 2009
  ident: 10.1016/j.future.2024.02.017_b13
– volume: 124
  start-page: 587
  year: 2017
  ident: 10.1016/j.future.2024.02.017_b35
  article-title: A hybrid differential evolution and particle swarm optimization algorithm for numerical kinematics solution of remote maintenance manipulators
  publication-title: Fusion Eng. Des.
  doi: 10.1016/j.fusengdes.2017.03.042
– start-page: 346
  year: 2019
  ident: 10.1016/j.future.2024.02.017_b21
  article-title: Investigating random undersampling and feature selection on bioinformatics big data
– volume: 58
  start-page: 3601
  issue: 5
  year: 2020
  ident: 10.1016/j.future.2024.02.017_b40
  article-title: Multiobjective hyperspectral feature selection based on discrete sine cosine algorithm
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2019.2958812
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 10.1016/j.future.2024.02.017_b20
  article-title: A survey on feature selection methods
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2013.11.024
– volume: 140
  start-page: 189
  year: 2005
  ident: 10.1016/j.future.2024.02.017_b26
  article-title: Metaheuristics in combinatorial optimization
  publication-title: Ann. Oper. Res.
  doi: 10.1007/s10479-005-3971-7
– year: 2004
  ident: 10.1016/j.future.2024.02.017_b24
– volume: 25
  start-page: 2369
  year: 2022
  ident: 10.1016/j.future.2024.02.017_b31
  article-title: An efficient malware detection approach with feature weighting based on Harris Hawks optimization
  publication-title: Cluster Comput.
  doi: 10.1007/s10586-021-03459-1
– year: 2019
  ident: 10.1016/j.future.2024.02.017_b38
– volume: vol. 293
  start-page: 175
  year: 2005
  ident: 10.1016/j.future.2024.02.017_b2
  article-title: Data mining for fault diagnosis and machine learning for rotating machinery
– volume: 23
  start-page: 322
  issue: 5
  year: 2016
  ident: 10.1016/j.future.2024.02.017_b16
  article-title: Deep feature selection: Theory and application to identify enhancers and promoters
  publication-title: J. Comput. Biol.
  doi: 10.1089/cmb.2015.0189
– volume: 3
  start-page: 117
  issue: 2
  year: 2021
  ident: 10.1016/j.future.2024.02.017_b6
  article-title: A hybrid algorithm based on PSO and GA for feature selection
  publication-title: J. Cybersecurity
– start-page: 1
  year: 2021
  ident: 10.1016/j.future.2024.02.017_b49
  article-title: A novel Artificial Neural Network (ANN) using the mayfly algorithm for classification
– volume: 28
  start-page: 2947
  year: 2017
  ident: 10.1016/j.future.2024.02.017_b36
  article-title: Sine–cosine algorithm for feature selection with elitism strategy and new updating mechanism
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-017-2837-7
– volume: 100
  issue: 13
  year: 2022
  ident: 10.1016/j.future.2024.02.017_b1
  article-title: End2end unstructured data processing, confidential data structuring & storage using image processing, nlp, machine learning, and blockchain
  publication-title: J. Theoret. Appl. Inf. Technol.
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  ident: 10.1016/j.future.2024.02.017_b22
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
  doi: 10.1126/science.1127647
SSID ssj0001731
Score 2.4647985
Snippet Feature selection plays a pivotal role in preprocessing data for machine learning (ML) models. It entails choosing a subset of pertinent features to enhance...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 272
SubjectTerms Classification
Dataset variance optimization
Feature selection
Hybrid Sine Cosine Firehawk Algorithm
Machine learning
Metaheuristic algorithms
Optimization algorithms
Title Feature selection based on dataset variance optimization using Hybrid Sine Cosine – Firehawk Algorithm (HSCFHA)
URI https://dx.doi.org/10.1016/j.future.2024.02.017
Volume 155
WOSCitedRecordID wos001188860600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtNAFB2FlgUb3ojy0ixYgCxXyTgT20srahQQVIgUFLGxZjzjJiW1S-yGhhX_wL_wQXwJd16OoajQBRvLsuzxOPdk7rl37gOhpzQa5DJiXT8bSA4GSj_yo2DAfRpTwkAhi0C3A3r_Ktzfj6bT-E2n893lwqwWYVFEZ2fxyX8VNVwDYavU2UuIuxkULsA5CB2OIHY4_pPgFalTuwKV7nCjpKs0lVC7AioctJK1twIDWacKlLBgHNtMTO9Uuw3Ga5XD5U0U-xyWlSahNiAi8EawQM7Y549esjgsl_N6dqwY6ngyHI0T51NwPT91sRLVoVlakGW2gYStHt2Q-ddlWbGVjiqYrGGiKup7vfDesi-NypgwBnPX69isFUWUcDbXCP2gc8A2eyw6clDO2y4N0t-EXjkvJ6zeYaB77G6WaUrbC61p-GN1NjHltM-pA-OZONo19Vl21bt0hVaTLvpr9e3ftGITq-jC4I5SM0qqRkm7JIVRrqBtEtIYFMJ28mJv-rLhAL3QdsK0H-KSNnVk4fnZ_JkUtYjOwU103VooODHIuoU6sriNbrjuH9gqgzvokwUaboCGNdAwnFigYQc03AYa1kDDBmhYAQ0boOEfX79hBzHcQAw_MwB7fhe9G-0dDMe-beDhZ2CJ1n5MpGDAkGQkcxGSXjcTcZgTKmJJMio5GKsi4GGPRTnnrK88aqKbqa3aoMdVk857aKsoC3kfYZKB3R1HIqJMAgcVcAvleZ9lOe1yHogdFLhfMM1sdXvVZGWRXiS_HeQ3T52Y6i5_uT90wkktQzXMMwXEXfjkg0u-6SG6tvlnPEJb9fJUPkZXs1U9r5ZPLNx-AvJ-trA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Feature+selection+based+on+dataset+variance+optimization+using+Hybrid+Sine+Cosine+%E2%80%93+Firehawk+Algorithm+%28HSCFHA%29&rft.jtitle=Future+generation+computer+systems&rft.au=Moosavi%2C+Syed+Kumayl+Raza&rft.au=Saadat%2C+Ahsan&rft.au=Abaid%2C+Zainab&rft.au=Ni%2C+Wei&rft.date=2024-06-01&rft.issn=0167-739X&rft.volume=155&rft.spage=272&rft.epage=286&rft_id=info:doi/10.1016%2Fj.future.2024.02.017&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2024_02_017
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon