A general framework based on dynamic multi-objective evolutionary algorithms for handling feature drifts on data streams
This paper proposes a new and efficient framework to deal with the classification of data streams when exhibiting feature drifts. The first building block of the framework is a dynamic multi-objective evolutionary algorithm called Dynamic Filter-Based Feature Selection (DFBFS) algorithm, which handl...
Gespeichert in:
| Veröffentlicht in: | Future generation computer systems Jg. 102; S. 42 - 52 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier B.V
01.01.2020
|
| Schlagworte: | |
| ISSN: | 0167-739X, 1872-7115 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!