Recurrent context layered radial basis function neural network for the identification of nonlinear dynamical systems
This paper proposes a novel recurrent context layered radial basis function neural network (RCLRBFNN) for the identification of nonlinear dynamical systems. The proposed model consists of an additional context layer in which the nodes represent the unit-delayed outputs of the hidden layer radial cen...
Uložené v:
| Vydané v: | Neurocomputing (Amsterdam) Ročník 580; s. 127524 |
|---|---|
| Hlavný autor: | |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.05.2024
|
| Predmet: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | This paper proposes a novel recurrent context layered radial basis function neural network (RCLRBFNN) for the identification of nonlinear dynamical systems. The proposed model consists of an additional context layer in which the nodes represent the unit-delayed outputs of the hidden layer radial centers. These delayed outputs undergo a nonlinear transformation by applying a tangent hyperbolic function. These transformed signals connect to the output layer neuron through the adjustable context layered weights. To tune the parameters of the proposed model the update equations are derived using the dynamic back-propagation algorithm. Further, an adaptive learning rate scheme is proposed to improve the performance of the learning algorithm. In the simulation experiment, a total of two examples are considered to test the efficacy and performance of the proposed model. The performance comparison is made with the conventional structure of the radial basis function neural network (RBFNN), Jordan Recurrent neural network (JRNN), and the feed-forward neural network (FFNN) (which is nothing but a single-layered multi-layered perceptron). Both the disturbance signal as well as system’s uncertainty scenarios are considered to test the robustness shown by the proposed model. The results showed that the proposed model has delivered a better identification accuracy as compared to the other neural models. |
|---|---|
| AbstractList | This paper proposes a novel recurrent context layered radial basis function neural network (RCLRBFNN) for the identification of nonlinear dynamical systems. The proposed model consists of an additional context layer in which the nodes represent the unit-delayed outputs of the hidden layer radial centers. These delayed outputs undergo a nonlinear transformation by applying a tangent hyperbolic function. These transformed signals connect to the output layer neuron through the adjustable context layered weights. To tune the parameters of the proposed model the update equations are derived using the dynamic back-propagation algorithm. Further, an adaptive learning rate scheme is proposed to improve the performance of the learning algorithm. In the simulation experiment, a total of two examples are considered to test the efficacy and performance of the proposed model. The performance comparison is made with the conventional structure of the radial basis function neural network (RBFNN), Jordan Recurrent neural network (JRNN), and the feed-forward neural network (FFNN) (which is nothing but a single-layered multi-layered perceptron). Both the disturbance signal as well as system’s uncertainty scenarios are considered to test the robustness shown by the proposed model. The results showed that the proposed model has delivered a better identification accuracy as compared to the other neural models. |
| ArticleNumber | 127524 |
| Author | Kumar, Rajesh |
| Author_xml | – sequence: 1 givenname: Rajesh orcidid: 0000-0001-7172-1081 surname: Kumar fullname: Kumar, Rajesh email: rajeshmahindru23@nitkkr.ac.in, rajeshmahindru23@gmail.com organization: Department of Electrical Engineering, National Institute of Technology Kurukshetra, Kurukshetra 136119, India |
| BookMark | eNqFkM9KAzEQxoNUsK2-gYe8wNYku5t2PQhS_AcFQfQcspMJpm4TSVJ1395t68mDngZm5vtmvt-EjHzwSMg5ZzPOuLxYzzxuIWxmgolqxsW8FtURGfPFXBQLsZAjMmaNqAtRcnFCJimtGeNzLpoxyU8I2xjRZwrBZ_zKtNM9RjQ0auN0R1udXKJ26yG74OlwKQ5dj_kzxDdqQ6T5Fakzg4WzDvR-K1g6_Ng5jzpS03u9GSYdTX3KuEmn5NjqLuHZT52Sl9ub5-V9sXq8e1herwoomcxFI0RtBUpoS8baxugGhbbMMAm2lXMorWRVC7bGVmDdGgDJFlWtS9k2nLG6nJLq4AsxpBTRqvfoNjr2ijO1I6fW6kBO7cipA7lBdvlLBi7vc-WoXfef-OogxiHYh8OoEjj0gMZFhKxMcH8bfANnjZKK |
| CitedBy_id | crossref_primary_10_1002_adc2_70026 crossref_primary_10_3788_COL202523_031401 crossref_primary_10_1007_s12555_024_0712_8 crossref_primary_10_1007_s10489_024_06195_2 crossref_primary_10_1080_00207721_2024_2428839 crossref_primary_10_1007_s40435_024_01528_y crossref_primary_10_1007_s13369_025_10203_z crossref_primary_10_1016_j_neucom_2024_128602 crossref_primary_10_1080_20550324_2024_2367181 crossref_primary_10_1016_j_knosys_2025_114445 crossref_primary_10_1016_j_neucom_2024_129314 crossref_primary_10_1007_s13369_024_09629_8 crossref_primary_10_1109_TASE_2025_3579737 crossref_primary_10_1007_s12555_024_0450_y crossref_primary_10_1051_e3sconf_202458306014 crossref_primary_10_1016_j_engappai_2025_111030 crossref_primary_10_1080_0952813X_2025_2513989 crossref_primary_10_1002_acs_4000 crossref_primary_10_1002_rob_22605 crossref_primary_10_1016_j_neucom_2025_129869 crossref_primary_10_1016_j_knosys_2025_113367 crossref_primary_10_1002_acs_4042 crossref_primary_10_1016_j_eswa_2024_125380 crossref_primary_10_1016_j_neunet_2024_107079 crossref_primary_10_1007_s13369_024_09522_4 crossref_primary_10_1049_ell2_70125 crossref_primary_10_1016_j_jprocont_2025_103431 |
| Cites_doi | 10.1016/j.jprocont.2023.103005 10.1016/j.neucom.2023.126328 10.1016/j.asoc.2019.105990 10.1016/j.isatra.2014.05.009 10.1016/j.knosys.2022.109274 10.1016/S0954-1810(98)00013-2 10.1016/j.isatra.2010.04.005 10.1016/j.isatra.2021.12.044 10.1016/j.neucom.2021.10.065 10.1016/j.neucom.2019.11.031 10.1016/j.asoc.2020.106777 10.1016/j.eswa.2014.12.003 10.1016/j.isatra.2013.08.012 10.1109/TNNLS.2014.2361267 10.1016/j.jprocont.2009.01.001 10.1007/s11063-021-10471-4 10.12928/telkomnika.v9i2.696 10.1016/j.chaos.2023.113971 10.1016/j.jai.2023.07.001 10.1016/j.asoc.2013.01.006 10.1109/72.80202 10.1016/j.asoc.2014.02.027 10.1016/S0169-7439(97)00061-0 10.1109/TNNLS.2015.2404823 10.1016/j.automatica.2023.111092 10.1016/j.engappai.2019.02.002 10.1016/j.neunet.2009.12.009 10.1016/j.neunet.2016.04.006 10.1016/j.asoc.2011.10.011 10.1016/j.neucom.2017.05.065 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier B.V. |
| Copyright_xml | – notice: 2024 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.neucom.2024.127524 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-8286 |
| ExternalDocumentID | 10_1016_j_neucom_2024_127524 S0925231224002959 |
| GroupedDBID | --- --K --M .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXLA AAXUO AAYFN ABBOA ABCQJ ABFNM ABJNI ABMAC ABYKQ ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE AEBSH AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD AXJTR BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W KOM MO0 MOBAO N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSN SSV SSZ T5K ZMT ~G- 29N 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HLZ HVGLF HZ~ LG9 M41 R2- SBC WUQ XPP ~HD |
| ID | FETCH-LOGICAL-c306t-9225f2e6cb300b9da9e2af0d06cfb67c3f604bcf5eb2e5bdcc60845a36b910053 |
| ISICitedReferencesCount | 32 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001202569500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0925-2312 |
| IngestDate | Sat Nov 29 07:17:55 EST 2025 Tue Nov 18 19:44:09 EST 2025 Sat Mar 30 16:20:01 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Adaptive learning rate Feed-forward and Jordan recurrent neural network Back-propagation algorithm Recurrent radial basis function neural network Nonlinear system identification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-9225f2e6cb300b9da9e2af0d06cfb67c3f604bcf5eb2e5bdcc60845a36b910053 |
| ORCID | 0000-0001-7172-1081 |
| ParticipantIDs | crossref_primary_10_1016_j_neucom_2024_127524 crossref_citationtrail_10_1016_j_neucom_2024_127524 elsevier_sciencedirect_doi_10_1016_j_neucom_2024_127524 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-05-01 2024-05-00 |
| PublicationDateYYYYMMDD | 2024-05-01 |
| PublicationDate_xml | – month: 05 year: 2024 text: 2024-05-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Neurocomputing (Amsterdam) |
| PublicationYear | 2024 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jalal, Grasley, Gurganus, Bullard (b1) 2022 Chen, Li, Wu, Liao (b20) 2020; 381 Chandra (b28) 2015; 26 Beyhan, Alcı (b33) 2010; 49 Xu, Wu (b14) 2023 Kumpati, Kannan (b7) 1990; 1 Pandey, Hindoliya, Mod (b24) 2012; 12 Janakiraman, Nguyen, Assanis (b25) 2013; 13 Mohanty (b8) 2009; 19 Fu, Li, Fairbank, Wunsch, Alonso (b22) 2014; 26 Zheng, Hu, Wang, Wu (b5) 2023; 128 Ayala, Habineza, Rakotondrabe, dos Santos Coelho (b19) 2020; 87 Jiang, Wang (b31) 2020; 2020 Luitel, Venayagamoorthy (b27) 2010; 23 Han, Lin, Qiao (b36) 2017; 266 Qiao, Guo, Li (b21) 2020; 97 Svozil, Kvasnicka, Pospichal (b35) 1997; 39 Merabet, Kanukollu, Al-Durra, El-Saadany (b11) 2023; 2 Wang, Li, Chao, Lin, Yang, Zhou, Chang, Shang, Shen (b13) 2022; 251 Rather, Agarwal, Sastry (b26) 2015; 42 Wang, Luo, Wang (b18) 2019; 81 Han, Lee (b3) 2014; 53 Feng, Song, Ma, Ma, Yin, Cao, Yu (b17) 2022; 129 Song, Li, Pedrycz (b15) 2023; 546 Yang, Ren, Xie (b2) 2014; 53 Pearlmutter (b9) 1989 Ku, Lee (b10) 1992 Sun, Zhang, Yao (b12) 2023; 175 Zheng, Huang, Na, Shi (b16) 2023 Tanoto, Ongsakul, Marpaung (b23) 2011; 9 Silva Filho, Souza, Prudêncio (b29) 2016; 80 Han, Ma, Yang, Qiao (b32) 2022; 469 El-Sousy (b30) 2014; 21 Forgione, Muni, Piga, Gallieri (b4) 2023; 155 Pham, Karaboga (b6) 1999; 13 Das, Das, Pal, Jaypuria, Pratihar, Roy (b34) 2021; 53 Han (10.1016/j.neucom.2024.127524_b3) 2014; 53 Pearlmutter (10.1016/j.neucom.2024.127524_b9) 1989 Song (10.1016/j.neucom.2024.127524_b15) 2023; 546 Merabet (10.1016/j.neucom.2024.127524_b11) 2023; 2 Qiao (10.1016/j.neucom.2024.127524_b21) 2020; 97 Pham (10.1016/j.neucom.2024.127524_b6) 1999; 13 Beyhan (10.1016/j.neucom.2024.127524_b33) 2010; 49 Jalal (10.1016/j.neucom.2024.127524_b1) 2022 Das (10.1016/j.neucom.2024.127524_b34) 2021; 53 Chandra (10.1016/j.neucom.2024.127524_b28) 2015; 26 Pandey (10.1016/j.neucom.2024.127524_b24) 2012; 12 Mohanty (10.1016/j.neucom.2024.127524_b8) 2009; 19 Ayala (10.1016/j.neucom.2024.127524_b19) 2020; 87 Janakiraman (10.1016/j.neucom.2024.127524_b25) 2013; 13 Rather (10.1016/j.neucom.2024.127524_b26) 2015; 42 Silva Filho (10.1016/j.neucom.2024.127524_b29) 2016; 80 Wang (10.1016/j.neucom.2024.127524_b18) 2019; 81 Ku (10.1016/j.neucom.2024.127524_b10) 1992 Luitel (10.1016/j.neucom.2024.127524_b27) 2010; 23 Zheng (10.1016/j.neucom.2024.127524_b5) 2023; 128 Xu (10.1016/j.neucom.2024.127524_b14) 2023 Yang (10.1016/j.neucom.2024.127524_b2) 2014; 53 Svozil (10.1016/j.neucom.2024.127524_b35) 1997; 39 El-Sousy (10.1016/j.neucom.2024.127524_b30) 2014; 21 Feng (10.1016/j.neucom.2024.127524_b17) 2022; 129 Sun (10.1016/j.neucom.2024.127524_b12) 2023; 175 Chen (10.1016/j.neucom.2024.127524_b20) 2020; 381 Wang (10.1016/j.neucom.2024.127524_b13) 2022; 251 Jiang (10.1016/j.neucom.2024.127524_b31) 2020; 2020 Kumpati (10.1016/j.neucom.2024.127524_b7) 1990; 1 Fu (10.1016/j.neucom.2024.127524_b22) 2014; 26 Zheng (10.1016/j.neucom.2024.127524_b16) 2023 Han (10.1016/j.neucom.2024.127524_b36) 2017; 266 Forgione (10.1016/j.neucom.2024.127524_b4) 2023; 155 Tanoto (10.1016/j.neucom.2024.127524_b23) 2011; 9 Han (10.1016/j.neucom.2024.127524_b32) 2022; 469 |
| References_xml | – volume: 42 start-page: 3234 year: 2015 end-page: 3241 ident: b26 article-title: Recurrent neural network and a hybrid model for prediction of stock returns publication-title: Expert Syst. Appl. – volume: 128 year: 2023 ident: b5 article-title: Physics-informed recurrent neural network modeling for predictive control of nonlinear processes publication-title: J. Process Control – start-page: 545 year: 1992 end-page: 549 ident: b10 article-title: System identification and control using diagonal recurrent neural networks publication-title: 1992 American Control Conference – volume: 81 start-page: 79 year: 2019 end-page: 93 ident: b18 article-title: Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy LSTM-neural network publication-title: Eng. Appl. Artif. Intell. – volume: 80 start-page: 19 year: 2016 end-page: 33 ident: b29 article-title: A swarm-trained k-nearest prototypes adaptive classifier with automatic feature selection for interval data publication-title: Neural Netw. – volume: 53 start-page: 33 year: 2014 end-page: 43 ident: b3 article-title: Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems publication-title: ISA Trans. – volume: 21 start-page: 509 year: 2014 end-page: 532 ident: b30 article-title: Adaptive hybrid control system using a recurrent RBFN-based self-evolving fuzzy-neural-network for PMSM servo drives publication-title: Appl. Soft Comput. – volume: 9 start-page: 256 year: 2011 end-page: 266 ident: b23 article-title: Levenberg-Marquardt recurrent networks for long-term electricity peak load forecasting publication-title: TELKOMNIKA (Telecommunication Computing Electronics and Control) – volume: 155 year: 2023 ident: b4 article-title: On the adaptation of recurrent neural networks for system identification publication-title: Automatica – volume: 175 year: 2023 ident: b12 article-title: Chaotic time series prediction of nonlinear systems based on various neural network models publication-title: Chaos Solitons Fractals – volume: 251 year: 2022 ident: b13 article-title: A type 2 wavelet brain emotional learning network with double recurrent loops based controller for nonlinear systems publication-title: Knowl.-Based Syst. – volume: 546 year: 2023 ident: b15 article-title: Time series prediction with granular neural networks publication-title: Neurocomputing – volume: 53 start-page: 1647 year: 2021 end-page: 1663 ident: b34 article-title: Meta-heuristic algorithms-tuned Elman vs. Jordan recurrent neural networks for modeling of electron beam welding process publication-title: Neural Process. Lett. – volume: 266 start-page: 566 year: 2017 end-page: 578 ident: b36 article-title: Modeling of nonlinear systems using the self-organizing fuzzy neural network with adaptive gradient algorithm publication-title: Neurocomputing – volume: 23 start-page: 583 year: 2010 end-page: 586 ident: b27 article-title: Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO learning systems publication-title: Neural Netw. – volume: 53 start-page: 994 year: 2014 end-page: 999 ident: b2 article-title: New delay dependent stability criteria for recurrent neural networks with interval time-varying delay publication-title: ISA Trans. – volume: 469 start-page: 1 year: 2022 end-page: 12 ident: b32 article-title: Self-organizing radial basis function neural network using accelerated second-order learning algorithm publication-title: Neurocomputing – volume: 49 start-page: 510 year: 2010 end-page: 518 ident: b33 article-title: Stable modeling based control methods using a new RBF network publication-title: ISA Trans. – volume: 87 year: 2020 ident: b19 article-title: Nonlinear black-box system identification through coevolutionary algorithms and radial basis function artificial neural networks publication-title: Appl. Soft Comput. – volume: 2 start-page: 119 year: 2023 end-page: 129 ident: b11 article-title: Adaptive recurrent neural network for uncertainties estimation in feedback control system publication-title: J. Automat. Intell. – volume: 39 start-page: 43 year: 1997 end-page: 62 ident: b35 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemometrics Intell. Lab. Syst. – year: 2023 ident: b16 article-title: Adaptive neural identification and non-singular control of pure-feedback nonlinear systems publication-title: ISA Trans. – volume: 381 start-page: 282 year: 2020 end-page: 297 ident: b20 article-title: Simultaneous identification, tracking control and disturbance rejection of uncertain nonlinear dynamics systems: A unified neural approach publication-title: Neurocomputing – volume: 13 start-page: 107 year: 1999 end-page: 117 ident: b6 article-title: Training Elman and Jordan networks for system identification using genetic algorithms publication-title: Artif. Intell. Eng. – volume: 1 start-page: 4 year: 1990 end-page: 27 ident: b7 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. – volume: 2020 start-page: 1 year: 2020 end-page: 12 ident: b31 article-title: Optimization of online teaching quality evaluation model based on hierarchical PSO-BP neural network publication-title: Complexity – volume: 13 start-page: 2375 year: 2013 end-page: 2389 ident: b25 article-title: Nonlinear identification of a gasoline HCCI engine using neural networks coupled with principal component analysis publication-title: Appl. Soft Comput. – start-page: 365 year: 1989 end-page: 372 ident: b9 article-title: Learning state space trajectories in recurrent neural networks publication-title: International 1989 Joint Conference on Neural Networks – volume: 129 start-page: 472 year: 2022 end-page: 484 ident: b17 article-title: A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system publication-title: ISA Trans. – volume: 97 year: 2020 ident: b21 article-title: An online self-organizing modular neural network for nonlinear system modeling publication-title: Appl. Soft Comput. – start-page: 1 year: 2022 end-page: 18 ident: b1 article-title: A new nonlinear formulation-based prediction approach using artificial neural network (ANN) model for rubberized cement composite publication-title: Eng. Comput. – volume: 12 start-page: 1214 year: 2012 end-page: 1226 ident: b24 article-title: Artificial neural networks for predicting indoor temperature using roof passive cooling techniques in buildings in different climatic conditions publication-title: Appl. Soft Comput. – volume: 26 start-page: 1900 year: 2014 end-page: 1912 ident: b22 article-title: Training recurrent neural networks with the Levenberg–Marquardt algorithm for optimal control of a grid-connected converter publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 19 start-page: 991 year: 2009 end-page: 999 ident: b8 article-title: Artificial neural network based system identification and model predictive control of a flotation column publication-title: J. Process Control – volume: 26 start-page: 3123 year: 2015 end-page: 3136 ident: b28 article-title: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. – year: 2023 ident: b14 article-title: Adaptive learning control of robot manipulators via incremental hybrid neural network publication-title: Neurocomputing – volume: 128 year: 2023 ident: 10.1016/j.neucom.2024.127524_b5 article-title: Physics-informed recurrent neural network modeling for predictive control of nonlinear processes publication-title: J. Process Control doi: 10.1016/j.jprocont.2023.103005 – volume: 546 year: 2023 ident: 10.1016/j.neucom.2024.127524_b15 article-title: Time series prediction with granular neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.126328 – start-page: 1 year: 2022 ident: 10.1016/j.neucom.2024.127524_b1 article-title: A new nonlinear formulation-based prediction approach using artificial neural network (ANN) model for rubberized cement composite publication-title: Eng. Comput. – start-page: 365 year: 1989 ident: 10.1016/j.neucom.2024.127524_b9 article-title: Learning state space trajectories in recurrent neural networks – volume: 87 year: 2020 ident: 10.1016/j.neucom.2024.127524_b19 article-title: Nonlinear black-box system identification through coevolutionary algorithms and radial basis function artificial neural networks publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2019.105990 – year: 2023 ident: 10.1016/j.neucom.2024.127524_b14 article-title: Adaptive learning control of robot manipulators via incremental hybrid neural network publication-title: Neurocomputing – volume: 53 start-page: 994 issue: 4 year: 2014 ident: 10.1016/j.neucom.2024.127524_b2 article-title: New delay dependent stability criteria for recurrent neural networks with interval time-varying delay publication-title: ISA Trans. doi: 10.1016/j.isatra.2014.05.009 – volume: 2020 start-page: 1 year: 2020 ident: 10.1016/j.neucom.2024.127524_b31 article-title: Optimization of online teaching quality evaluation model based on hierarchical PSO-BP neural network publication-title: Complexity – start-page: 545 year: 1992 ident: 10.1016/j.neucom.2024.127524_b10 article-title: System identification and control using diagonal recurrent neural networks – volume: 251 year: 2022 ident: 10.1016/j.neucom.2024.127524_b13 article-title: A type 2 wavelet brain emotional learning network with double recurrent loops based controller for nonlinear systems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2022.109274 – volume: 13 start-page: 107 issue: 2 year: 1999 ident: 10.1016/j.neucom.2024.127524_b6 article-title: Training Elman and Jordan networks for system identification using genetic algorithms publication-title: Artif. Intell. Eng. doi: 10.1016/S0954-1810(98)00013-2 – volume: 49 start-page: 510 issue: 4 year: 2010 ident: 10.1016/j.neucom.2024.127524_b33 article-title: Stable modeling based control methods using a new RBF network publication-title: ISA Trans. doi: 10.1016/j.isatra.2010.04.005 – volume: 129 start-page: 472 year: 2022 ident: 10.1016/j.neucom.2024.127524_b17 article-title: A new adaptive sliding mode controller based on the RBF neural network for an electro-hydraulic servo system publication-title: ISA Trans. doi: 10.1016/j.isatra.2021.12.044 – volume: 469 start-page: 1 year: 2022 ident: 10.1016/j.neucom.2024.127524_b32 article-title: Self-organizing radial basis function neural network using accelerated second-order learning algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2021.10.065 – volume: 381 start-page: 282 year: 2020 ident: 10.1016/j.neucom.2024.127524_b20 article-title: Simultaneous identification, tracking control and disturbance rejection of uncertain nonlinear dynamics systems: A unified neural approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.11.031 – volume: 97 year: 2020 ident: 10.1016/j.neucom.2024.127524_b21 article-title: An online self-organizing modular neural network for nonlinear system modeling publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106777 – volume: 42 start-page: 3234 issue: 6 year: 2015 ident: 10.1016/j.neucom.2024.127524_b26 article-title: Recurrent neural network and a hybrid model for prediction of stock returns publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.12.003 – volume: 53 start-page: 33 issue: 1 year: 2014 ident: 10.1016/j.neucom.2024.127524_b3 article-title: Recurrent fuzzy neural network backstepping control for the prescribed output tracking performance of nonlinear dynamic systems publication-title: ISA Trans. doi: 10.1016/j.isatra.2013.08.012 – volume: 26 start-page: 1900 issue: 9 year: 2014 ident: 10.1016/j.neucom.2024.127524_b22 article-title: Training recurrent neural networks with the Levenberg–Marquardt algorithm for optimal control of a grid-connected converter publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2014.2361267 – volume: 19 start-page: 991 issue: 6 year: 2009 ident: 10.1016/j.neucom.2024.127524_b8 article-title: Artificial neural network based system identification and model predictive control of a flotation column publication-title: J. Process Control doi: 10.1016/j.jprocont.2009.01.001 – volume: 53 start-page: 1647 year: 2021 ident: 10.1016/j.neucom.2024.127524_b34 article-title: Meta-heuristic algorithms-tuned Elman vs. Jordan recurrent neural networks for modeling of electron beam welding process publication-title: Neural Process. Lett. doi: 10.1007/s11063-021-10471-4 – volume: 9 start-page: 256 issue: 2 year: 2011 ident: 10.1016/j.neucom.2024.127524_b23 article-title: Levenberg-Marquardt recurrent networks for long-term electricity peak load forecasting publication-title: TELKOMNIKA (Telecommunication Computing Electronics and Control) doi: 10.12928/telkomnika.v9i2.696 – volume: 175 year: 2023 ident: 10.1016/j.neucom.2024.127524_b12 article-title: Chaotic time series prediction of nonlinear systems based on various neural network models publication-title: Chaos Solitons Fractals doi: 10.1016/j.chaos.2023.113971 – volume: 2 start-page: 119 issue: 3 year: 2023 ident: 10.1016/j.neucom.2024.127524_b11 article-title: Adaptive recurrent neural network for uncertainties estimation in feedback control system publication-title: J. Automat. Intell. doi: 10.1016/j.jai.2023.07.001 – volume: 13 start-page: 2375 issue: 5 year: 2013 ident: 10.1016/j.neucom.2024.127524_b25 article-title: Nonlinear identification of a gasoline HCCI engine using neural networks coupled with principal component analysis publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.01.006 – volume: 1 start-page: 4 issue: 1 year: 1990 ident: 10.1016/j.neucom.2024.127524_b7 article-title: Identification and control of dynamical systems using neural networks publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.80202 – volume: 21 start-page: 509 year: 2014 ident: 10.1016/j.neucom.2024.127524_b30 article-title: Adaptive hybrid control system using a recurrent RBFN-based self-evolving fuzzy-neural-network for PMSM servo drives publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2014.02.027 – volume: 39 start-page: 43 issue: 1 year: 1997 ident: 10.1016/j.neucom.2024.127524_b35 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemometrics Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 – volume: 26 start-page: 3123 issue: 12 year: 2015 ident: 10.1016/j.neucom.2024.127524_b28 article-title: Competition and collaboration in cooperative coevolution of Elman recurrent neural networks for time-series prediction publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2015.2404823 – volume: 155 year: 2023 ident: 10.1016/j.neucom.2024.127524_b4 article-title: On the adaptation of recurrent neural networks for system identification publication-title: Automatica doi: 10.1016/j.automatica.2023.111092 – volume: 81 start-page: 79 year: 2019 ident: 10.1016/j.neucom.2024.127524_b18 article-title: Synchronization and identification of nonlinear systems by using a novel self-evolving interval type-2 fuzzy LSTM-neural network publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2019.02.002 – year: 2023 ident: 10.1016/j.neucom.2024.127524_b16 article-title: Adaptive neural identification and non-singular control of pure-feedback nonlinear systems publication-title: ISA Trans. – volume: 23 start-page: 583 issue: 5 year: 2010 ident: 10.1016/j.neucom.2024.127524_b27 article-title: Quantum inspired PSO for the optimization of simultaneous recurrent neural networks as MIMO learning systems publication-title: Neural Netw. doi: 10.1016/j.neunet.2009.12.009 – volume: 80 start-page: 19 year: 2016 ident: 10.1016/j.neucom.2024.127524_b29 article-title: A swarm-trained k-nearest prototypes adaptive classifier with automatic feature selection for interval data publication-title: Neural Netw. doi: 10.1016/j.neunet.2016.04.006 – volume: 12 start-page: 1214 issue: 3 year: 2012 ident: 10.1016/j.neucom.2024.127524_b24 article-title: Artificial neural networks for predicting indoor temperature using roof passive cooling techniques in buildings in different climatic conditions publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2011.10.011 – volume: 266 start-page: 566 year: 2017 ident: 10.1016/j.neucom.2024.127524_b36 article-title: Modeling of nonlinear systems using the self-organizing fuzzy neural network with adaptive gradient algorithm publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.05.065 |
| SSID | ssj0017129 |
| Score | 2.5449326 |
| Snippet | This paper proposes a novel recurrent context layered radial basis function neural network (RCLRBFNN) for the identification of nonlinear dynamical systems.... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 127524 |
| SubjectTerms | Adaptive learning rate Back-propagation algorithm Feed-forward and Jordan recurrent neural network Nonlinear system identification Recurrent radial basis function neural network |
| Title | Recurrent context layered radial basis function neural network for the identification of nonlinear dynamical systems |
| URI | https://dx.doi.org/10.1016/j.neucom.2024.127524 |
| Volume | 580 |
| WOSCitedRecordID | wos001202569500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-8286 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017129 issn: 0925-2312 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1Li9swEIBFmu2hl75Lty_m0Fvw4pVt2TqGsqUPWEq7hdyMJEs0IesuSXbZ_vvOeGRv2ix9QS8mCMsy-uTRaDIPIV46VJJDcGWiVZ5SSE6VmLxRiQuykXmhU2tsV2yiPD6uZjP9YTR638fCXCzLtq0uL_XZf0WNbQibQmf_AvfwUGzA3wgdr4gdr38E_iNZ0LucS-SGjrJ3sjTfqCLnZGW6KBHcuObrCW1oHXvKaImtLfuDD26H8yb6EQ06ZctZNcxq0nAZewo12Up4vugTQZ3jptgVi4hmiOkpZWNoaOld49ptFn79Zdv4IPMrVz-2iO1ExbBpURYJ6o0sZT0L1qqUXcj6tuQtuIjTjhRng8LiACeAXHpo4ANKRM_R1j_lx_5Ew9Fo5A0rdaFviD28V1djsTd9ezR7N_ypVB5KTr0YX6-PpOzc_XbHul5T2dI-Tu6K2_HYAFPGfU-MfHtf3OlLckCU0A_EZqAPkT5E-sD0oaMPPX1g-hDpA9IHpA8_0oevAQb6MNCHSP-h-Pz66OTVmyQW1kgcnhA3iUYhHqRXzmZpanVjtJcmpE2qXLCqdFlQaW5dKLyVvrCNcyqt8sJkyqJ2iWL7kRjjqP6xgBLPw7hlWKe8y20mta8qTwZqPKeqcKj2RdZPYu1i1nkqfrKse_fCRc1TX9PU1zz1-yIZep1x1pXf3F_2fOqoObJGWOOS-mXPJ__c86m4dfVFPBPjzercPxc33cVmvl69iGvvO51Nmc0 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recurrent+context+layered+radial+basis+function+neural+network+for+the+identification+of+nonlinear+dynamical+systems&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Kumar%2C+Rajesh&rft.date=2024-05-01&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=580&rft_id=info:doi/10.1016%2Fj.neucom.2024.127524&rft.externalDocID=S0925231224002959 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon |