Robust deep fuzzy K-means clustering for image data
Image clustering is a difficult task with important application value in computer vision. The key to this task is the quality of images features. Most of current clustering methods encounter the challenge. That is, the process of feature learning and clustering operates independently. To address thi...
Saved in:
| Published in: | Pattern recognition Vol. 153; p. 110504 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.09.2024
|
| Subjects: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Image clustering is a difficult task with important application value in computer vision. The key to this task is the quality of images features. Most of current clustering methods encounter the challenge. That is, the process of feature learning and clustering operates independently. To address this problem, several researchers have been dedicated to performing feature learning and deep clustering together. However, the obtained features lack discriminability to address high-dimensional data successfully. To deal with this issue, we propose a novel model named as robust deep fuzzy K-means clustering (RD-FKC), which efficiently projects image samples into a representative embedding space and precisely learns membership degrees into a combined framework. Specifically, RD-FKC introduces Laplacian regularization technique to preserve locality properties of data. Moreover, by using an adaptive loss function, the model becomes more robust to diverse types of outliers. Furthermore, to avoid the latent space being distorted and make the extracted features retain the original information as much as possible, the model introduces reconstruction error and adds regularization to network parameters. Finally, an effective algorithm is derived to solve the optimization model. Numerous experiments have been conducted, illustrating the advantages and superiority of RD-FKC over existing clustering approaches.
•Embedding clustering into deep convolutional autoencoder to learn compact and representative features.•Designing the Laplacian regularization to constrain the membership matrix for locality preserving.•Introducing the adaptive loss function to enhance the clustering robustness.•Presenting an effective algorithm to optimize the proposed model. |
|---|---|
| AbstractList | Image clustering is a difficult task with important application value in computer vision. The key to this task is the quality of images features. Most of current clustering methods encounter the challenge. That is, the process of feature learning and clustering operates independently. To address this problem, several researchers have been dedicated to performing feature learning and deep clustering together. However, the obtained features lack discriminability to address high-dimensional data successfully. To deal with this issue, we propose a novel model named as robust deep fuzzy K-means clustering (RD-FKC), which efficiently projects image samples into a representative embedding space and precisely learns membership degrees into a combined framework. Specifically, RD-FKC introduces Laplacian regularization technique to preserve locality properties of data. Moreover, by using an adaptive loss function, the model becomes more robust to diverse types of outliers. Furthermore, to avoid the latent space being distorted and make the extracted features retain the original information as much as possible, the model introduces reconstruction error and adds regularization to network parameters. Finally, an effective algorithm is derived to solve the optimization model. Numerous experiments have been conducted, illustrating the advantages and superiority of RD-FKC over existing clustering approaches.
•Embedding clustering into deep convolutional autoencoder to learn compact and representative features.•Designing the Laplacian regularization to constrain the membership matrix for locality preserving.•Introducing the adaptive loss function to enhance the clustering robustness.•Presenting an effective algorithm to optimize the proposed model. |
| ArticleNumber | 110504 |
| Author | Chen, Long Yu, Yu-Feng Ding, Weiping Wu, Xiaoling Wang, Yingxu |
| Author_xml | – sequence: 1 givenname: Xiaoling surname: Wu fullname: Wu, Xiaoling organization: Department of Statistics, Guangzhou University, Guangzhou, China – sequence: 2 givenname: Yu-Feng orcidid: 0000-0002-8207-0496 surname: Yu fullname: Yu, Yu-Feng email: yufengyu@gzhu.edu.cn organization: Department of Statistics, Guangzhou University, Guangzhou, China – sequence: 3 givenname: Long surname: Chen fullname: Chen, Long organization: Department of Computer and Information Science, University of Macau, Macau, China – sequence: 4 givenname: Weiping surname: Ding fullname: Ding, Weiping email: ding.wp@ntu.edu.cn organization: School of Information Science and Technology, Nantong University, Nantong, China – sequence: 5 givenname: Yingxu surname: Wang fullname: Wang, Yingxu organization: Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, University of Jinan, Jinan, China |
| BookMark | eNqFz81KAzEUhuEgFWyrd-AiNzBj_mfqQpDiHxYE0XVIk5OS0k5Kkgrt1TtlXLnQ1Vkc3g-eCRp1sQOErimpKaHqZl3vTLFxVTPCRE0pkUScoTFtG15JKtgIjQnhtOKM8As0yXlNCG36xxjx97jc54IdwA77_fF4wK_VFkyXsd30D0ihW2EfEw5bswLsTDGX6NybTYarnztFn48PH_PnavH29DK_X1SWE1WqGVWzRhKlnFfCe9U6Ia2yLfXSW-EbT4n10rUgvGg8a5bCMbk00klwLXOKT9HtsGtTzDmB1zYUU0LsSjJhoynRJ75e64GvT3w98PtY_Ip3qSekw3_Z3ZBBD_sKkHS2AToLLiSwRbsY_h74BuqpeCY |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_108278 crossref_primary_10_1016_j_patcog_2025_111650 crossref_primary_10_1016_j_knosys_2024_112537 crossref_primary_10_1007_s10115_024_02221_4 crossref_primary_10_1016_j_jclepro_2025_145704 crossref_primary_10_1016_j_neucom_2025_131324 crossref_primary_10_1109_JSTARS_2025_3584838 crossref_primary_10_1007_s11042_025_20848_5 crossref_primary_10_1007_s10586_025_05417_7 |
| Cites_doi | 10.1109/ICCV.2015.123 10.1016/j.ins.2023.118994 10.1016/j.patcog.2012.12.007 10.1023/A:1026039313770 10.1016/0098-3004(84)90020-7 10.1016/j.eswa.2021.115729 10.1016/j.ins.2022.07.093 10.1016/j.patcog.2021.108386 10.1109/TNNLS.2012.2234134 10.1016/j.ins.2018.12.036 10.1016/j.patcog.2021.108440 10.1007/s12559-019-09637-z 10.1016/j.patcog.2022.109077 10.1109/TFUZZ.2019.2945232 10.1109/TIP.2018.2882925 10.1109/TKDE.2020.2995748 10.1016/j.patcog.2022.108611 10.1109/TPAMI.2013.50 10.1016/j.neucom.2016.12.038 10.1109/TCYB.2018.2833843 10.1016/j.patrec.2020.07.028 10.1109/ICIP.2019.8803051 10.1016/j.patcog.2023.109388 10.1016/j.patcog.2020.107748 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2024.110504 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2024_110504 S0031320324002553 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c306t-916975066df64ff68d45c6c81f5fc4f7f10cf5d8e4f47f27b4d25ba5d5ed82d63 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235187600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 03:52:39 EST 2025 Tue Nov 18 21:44:04 EST 2025 Sat Jun 01 15:41:37 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Locality preserving Laplacian regularization Deep convolutional autoencoder Unsupervised image clustering |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-916975066df64ff68d45c6c81f5fc4f7f10cf5d8e4f47f27b4d25ba5d5ed82d63 |
| ORCID | 0000-0002-8207-0496 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2024_110504 crossref_primary_10_1016_j_patcog_2024_110504 elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110504 |
| PublicationCentury | 2000 |
| PublicationDate | September 2024 2024-09-00 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: September 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Liu, Wang, Liu, Zeng, Liu, Alsaadi (b18) 2017; 234 Li, Tao (b8) 2013; 24 F. Nie, H. Wang, H. Huang, C. Ding, Adaptive loss minimization for semi-supervised elastic embedding, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013, pp. 1565–1571. Zhang, Nie, Guo, Wei, Li (b32) 2018; 28 J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1967, pp. 281–297. A. Ng, M. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an Algorithm, in: Advances in Neural Information Processing Systems, Vol. 2, 2001, pp. 849–856. Zhi, Yu, Bi, Li (b14) 2021; 50 L. Wang, D.Q. Huynh, M.R. Mansour, Loss Switching Fusion with Similarity Search for Video Classification, in: 2019 IEEE International Conference on Image Processing, ICIP, 2019, pp. 974–978. Park, Jeon, Rosen (b9) 2003; 43 Bezdek, Ehrlich, Full (b4) 1984; 10 Jia, Zhu, Huang, Mao, Wang, Song (b7) 2023; 138 Hastie, Tibshirani, Friedman, Friedman (b10) 2009 Masci, Meier, Ciresan, Schmidhuber (b30) 2011 Xie, Girshick, Farhadi (b22) 2016 Zhou, Pedrycz, Yue, Gao, Lai, Wan (b17) 2021; 113 Cai, Wang, Guo (b27) 2021; 186 Li, Wang, Guo, Zhu (b20) 2023; 134 Yang, Fu, Sidiropoulos, Hong (b35) 2017 Chang, Guo, Wang, Meng, Xiang, Pan (b28) 2019 Cai, Wang, Xu, Guo (b24) 2022; 123 Zhang, Li, Zhang, Nie (b36) 2019; 28 K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. Zhang, Li, Ning, Chen, Liu (b1) 2021; 121 bin Zhi, lun Fan, Zhao (b11) 2013; 46 D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: International Conference on Learning Representations, ICLR, 2015. J. Xu, J. Han, K. Xiong, F. Nie, Robust and sparse fuzzy k-means clustering, in: IJCAI, 2016, pp. 2224–2230. Ma, Liu, Tao, Zhou (b40) 2019; 11 Wang, Chen, Zhou, Li, Yu (b6) 2023; 638 Belkin, Niyogi (b31) 2001; 14 Hou, Nie, Yi, Tao (b12) 2014; 26 Ma, Tu, Luo, Wang (b2) 2022; 124 Liu, Cao, Liang (b23) 2022; 609 Liu, Ma, Zhou, Tao, Cheng (b39) 2019; 49 Bengio, Courville, Vincent (b21) 2013; 35 Nie, Zhao, Wang, Li, Li (b13) 2020; 34 He, Niyogi (b16) 2003; 16 Lu, Chen, Wei, Ma, Jiang, Wang (b19) 2022; 127 van der Maaten, Hinton (b38) 2008; 9 Deng, Wang, Li, Horng, Zhu (b15) 2019; 480 Moradi Fard, Thonet, Gaussier (b25) 2020; 138 Jia (10.1016/j.patcog.2024.110504_b7) 2023; 138 Cai (10.1016/j.patcog.2024.110504_b24) 2022; 123 Ma (10.1016/j.patcog.2024.110504_b2) 2022; 124 10.1016/j.patcog.2024.110504_b3 Nie (10.1016/j.patcog.2024.110504_b13) 2020; 34 Liu (10.1016/j.patcog.2024.110504_b39) 2019; 49 Li (10.1016/j.patcog.2024.110504_b20) 2023; 134 Hastie (10.1016/j.patcog.2024.110504_b10) 2009 Zhang (10.1016/j.patcog.2024.110504_b32) 2018; 28 Deng (10.1016/j.patcog.2024.110504_b15) 2019; 480 Zhang (10.1016/j.patcog.2024.110504_b36) 2019; 28 Park (10.1016/j.patcog.2024.110504_b9) 2003; 43 10.1016/j.patcog.2024.110504_b37 Moradi Fard (10.1016/j.patcog.2024.110504_b25) 2020; 138 Liu (10.1016/j.patcog.2024.110504_b23) 2022; 609 10.1016/j.patcog.2024.110504_b5 10.1016/j.patcog.2024.110504_b33 Zhang (10.1016/j.patcog.2024.110504_b1) 2021; 121 10.1016/j.patcog.2024.110504_b34 Lu (10.1016/j.patcog.2024.110504_b19) 2022; 127 Li (10.1016/j.patcog.2024.110504_b8) 2013; 24 Masci (10.1016/j.patcog.2024.110504_b30) 2011 Xie (10.1016/j.patcog.2024.110504_b22) 2016 Ma (10.1016/j.patcog.2024.110504_b40) 2019; 11 Cai (10.1016/j.patcog.2024.110504_b27) 2021; 186 Bezdek (10.1016/j.patcog.2024.110504_b4) 1984; 10 Chang (10.1016/j.patcog.2024.110504_b28) 2019 Liu (10.1016/j.patcog.2024.110504_b18) 2017; 234 Hou (10.1016/j.patcog.2024.110504_b12) 2014; 26 Wang (10.1016/j.patcog.2024.110504_b6) 2023; 638 Zhi (10.1016/j.patcog.2024.110504_b14) 2021; 50 Bengio (10.1016/j.patcog.2024.110504_b21) 2013; 35 Yang (10.1016/j.patcog.2024.110504_b35) 2017 van der Maaten (10.1016/j.patcog.2024.110504_b38) 2008; 9 10.1016/j.patcog.2024.110504_b29 10.1016/j.patcog.2024.110504_b26 Belkin (10.1016/j.patcog.2024.110504_b31) 2001; 14 He (10.1016/j.patcog.2024.110504_b16) 2003; 16 Zhou (10.1016/j.patcog.2024.110504_b17) 2021; 113 bin Zhi (10.1016/j.patcog.2024.110504_b11) 2013; 46 |
| References_xml | – year: 2019 ident: b28 article-title: Deep discriminative clustering analysis – start-page: 52 year: 2011 end-page: 59 ident: b30 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction publication-title: International Conference on Artificial Neural Networks – reference: D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: International Conference on Learning Representations, ICLR, 2015. – volume: 480 start-page: 211 year: 2019 end-page: 221 ident: b15 article-title: Linear discriminant analysis guided by unsupervised ensemble learning publication-title: Inform. Sci. – volume: 16 start-page: 153 year: 2003 end-page: 160 ident: b16 article-title: Locality preserving projections publication-title: Adv. Neural Inf. Process. Syst. – volume: 49 start-page: 2927 year: 2019 end-page: 2940 ident: b39 article-title: -Laplacian regularization for scene recognition publication-title: IEEE Trans. Cybern. – volume: 134 year: 2023 ident: b20 article-title: Deep graph clustering with multi-level subspace fusion publication-title: Pattern Recognit. – reference: A. Ng, M. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an Algorithm, in: Advances in Neural Information Processing Systems, Vol. 2, 2001, pp. 849–856. – reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034. – volume: 138 year: 2023 ident: b7 article-title: Global and local structure preserving nonnegative subspace clustering publication-title: Pattern Recognit. – volume: 186 year: 2021 ident: b27 article-title: Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder publication-title: Expert Syst. Appl. – year: 2009 ident: b10 publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction – volume: 43 start-page: 427 year: 2003 end-page: 448 ident: b9 article-title: Lower dimensional representation of text data based on centroids and least squares publication-title: BIT – volume: 28 start-page: 2152 year: 2018 end-page: 2162 ident: b32 article-title: Joint learning of fuzzy k-means and nonnegative spectral clustering with side information publication-title: IEEE Trans. Image Process. – volume: 124 year: 2022 ident: b2 article-title: Semantic clustering based deduction learning for image recognition and classification publication-title: Pattern Recognit. – volume: 46 start-page: 1604 year: 2013 end-page: 1615 ident: b11 article-title: Fuzzy Linear Discriminant Analysis-guided maximum entropy fuzzy clustering algorithm publication-title: Pattern Recognit. – reference: J. Xu, J. Han, K. Xiong, F. Nie, Robust and sparse fuzzy k-means clustering, in: IJCAI, 2016, pp. 2224–2230. – start-page: 478 year: 2016 end-page: 487 ident: b22 article-title: Unsupervised deep embedding for clustering analysis publication-title: International Conference on Machine Learning – volume: 11 start-page: 1 year: 2019 end-page: 14 ident: b40 article-title: Ensemble p-Laplacian regularization for scene image recognition publication-title: Cogn. Comput. – volume: 113 year: 2021 ident: b17 article-title: Projected fuzzy C-means clustering with locality preservation publication-title: Pattern Recognit. – volume: 123 year: 2022 ident: b24 article-title: Unsupervised deep clustering via contractive feature representation and focal loss publication-title: Pattern Recognit. – volume: 138 start-page: 185 year: 2020 end-page: 192 ident: b25 article-title: Deep k-Means: Jointly clustering with k-Means and learning representations publication-title: Pattern Recognit. Lett. – volume: 35 start-page: 1798 year: 2013 end-page: 1828 ident: b21 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 28 start-page: 2814 year: 2019 end-page: 2824 ident: b36 article-title: Deep fuzzy k-means with adaptive loss and entropy regularization publication-title: IEEE Trans. Fuzzy Syst. – volume: 121 year: 2021 ident: b1 article-title: Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation publication-title: Pattern Recognit. – volume: 34 start-page: 1221 year: 2020 end-page: 1230 ident: b13 article-title: Fuzzy K-means clustering with discriminative embedding publication-title: IEEE Trans. Knowl. Data Eng. – volume: 9 start-page: 2579 year: 2008 end-page: 2605 ident: b38 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 50 start-page: 1 year: 2021 end-page: 16 ident: b14 article-title: Noise-insensitive discriminative subspace fuzzy clustering publication-title: J. Appl. Stat. – volume: 609 start-page: 876 year: 2022 end-page: 896 ident: b23 article-title: Centroids-guided deep multi-view K-means clustering publication-title: Inform. Sci. – volume: 26 start-page: 1287 year: 2014 end-page: 1299 ident: b12 article-title: Discriminative embedded clustering: A framework for grouping high-dimensional data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 10 start-page: 191 year: 1984 end-page: 203 ident: b4 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. – start-page: 3861 year: 2017 end-page: 3870 ident: b35 article-title: Towards k-means-friendly spaces: Simultaneous deep learning and clustering publication-title: International Conference on Machine Learning – volume: 638 year: 2023 ident: b6 article-title: Pairwise constraints-based semi-supervised fuzzy clustering with multi-manifold regularization publication-title: Inform. Sci. – reference: F. Nie, H. Wang, H. Huang, C. Ding, Adaptive loss minimization for semi-supervised elastic embedding, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013, pp. 1565–1571. – reference: J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1967, pp. 281–297. – volume: 234 start-page: 11 year: 2017 end-page: 26 ident: b18 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing – volume: 14 start-page: 585 year: 2001 end-page: 591 ident: b31 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Adv. Neural Inf. Process. Syst. – reference: L. Wang, D.Q. Huynh, M.R. Mansour, Loss Switching Fusion with Similarity Search for Video Classification, in: 2019 IEEE International Conference on Image Processing, ICIP, 2019, pp. 974–978. – volume: 127 year: 2022 ident: b19 article-title: Improved deep convolutional embedded clustering with re-selectable sample training publication-title: Pattern Recognit. – volume: 24 start-page: 485 year: 2013 end-page: 497 ident: b8 article-title: Simple exponential family PCA publication-title: IEEE Trans. Neural Netw. Learn. Syst. – ident: 10.1016/j.patcog.2024.110504_b37 doi: 10.1109/ICCV.2015.123 – volume: 638 year: 2023 ident: 10.1016/j.patcog.2024.110504_b6 article-title: Pairwise constraints-based semi-supervised fuzzy clustering with multi-manifold regularization publication-title: Inform. Sci. doi: 10.1016/j.ins.2023.118994 – volume: 46 start-page: 1604 issue: 6 year: 2013 ident: 10.1016/j.patcog.2024.110504_b11 article-title: Fuzzy Linear Discriminant Analysis-guided maximum entropy fuzzy clustering algorithm publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.12.007 – volume: 43 start-page: 427 year: 2003 ident: 10.1016/j.patcog.2024.110504_b9 article-title: Lower dimensional representation of text data based on centroids and least squares publication-title: BIT doi: 10.1023/A:1026039313770 – volume: 10 start-page: 191 issue: 2–3 year: 1984 ident: 10.1016/j.patcog.2024.110504_b4 article-title: FCM: The fuzzy c-means clustering algorithm publication-title: Comput. Geosci. doi: 10.1016/0098-3004(84)90020-7 – volume: 186 year: 2021 ident: 10.1016/j.patcog.2024.110504_b27 article-title: Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.115729 – volume: 14 start-page: 585 year: 2001 ident: 10.1016/j.patcog.2024.110504_b31 article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering publication-title: Adv. Neural Inf. Process. Syst. – start-page: 3861 year: 2017 ident: 10.1016/j.patcog.2024.110504_b35 article-title: Towards k-means-friendly spaces: Simultaneous deep learning and clustering – volume: 609 start-page: 876 year: 2022 ident: 10.1016/j.patcog.2024.110504_b23 article-title: Centroids-guided deep multi-view K-means clustering publication-title: Inform. Sci. doi: 10.1016/j.ins.2022.07.093 – volume: 123 year: 2022 ident: 10.1016/j.patcog.2024.110504_b24 article-title: Unsupervised deep clustering via contractive feature representation and focal loss publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108386 – volume: 24 start-page: 485 issue: 3 year: 2013 ident: 10.1016/j.patcog.2024.110504_b8 article-title: Simple exponential family PCA publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2012.2234134 – volume: 16 start-page: 153 year: 2003 ident: 10.1016/j.patcog.2024.110504_b16 article-title: Locality preserving projections publication-title: Adv. Neural Inf. Process. Syst. – volume: 480 start-page: 211 year: 2019 ident: 10.1016/j.patcog.2024.110504_b15 article-title: Linear discriminant analysis guided by unsupervised ensemble learning publication-title: Inform. Sci. doi: 10.1016/j.ins.2018.12.036 – volume: 124 year: 2022 ident: 10.1016/j.patcog.2024.110504_b2 article-title: Semantic clustering based deduction learning for image recognition and classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108440 – ident: 10.1016/j.patcog.2024.110504_b34 – volume: 121 year: 2021 ident: 10.1016/j.patcog.2024.110504_b1 article-title: Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation publication-title: Pattern Recognit. – volume: 11 start-page: 1 year: 2019 ident: 10.1016/j.patcog.2024.110504_b40 article-title: Ensemble p-Laplacian regularization for scene image recognition publication-title: Cogn. Comput. doi: 10.1007/s12559-019-09637-z – volume: 50 start-page: 1 year: 2021 ident: 10.1016/j.patcog.2024.110504_b14 article-title: Noise-insensitive discriminative subspace fuzzy clustering publication-title: J. Appl. Stat. – ident: 10.1016/j.patcog.2024.110504_b5 – ident: 10.1016/j.patcog.2024.110504_b3 – volume: 134 year: 2023 ident: 10.1016/j.patcog.2024.110504_b20 article-title: Deep graph clustering with multi-level subspace fusion publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.109077 – volume: 28 start-page: 2814 issue: 11 year: 2019 ident: 10.1016/j.patcog.2024.110504_b36 article-title: Deep fuzzy k-means with adaptive loss and entropy regularization publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2019.2945232 – volume: 26 start-page: 1287 issue: 6 year: 2014 ident: 10.1016/j.patcog.2024.110504_b12 article-title: Discriminative embedded clustering: A framework for grouping high-dimensional data publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 28 start-page: 2152 issue: 5 year: 2018 ident: 10.1016/j.patcog.2024.110504_b32 article-title: Joint learning of fuzzy k-means and nonnegative spectral clustering with side information publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2882925 – volume: 34 start-page: 1221 issue: 3 year: 2020 ident: 10.1016/j.patcog.2024.110504_b13 article-title: Fuzzy K-means clustering with discriminative embedding publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2020.2995748 – ident: 10.1016/j.patcog.2024.110504_b29 – volume: 127 year: 2022 ident: 10.1016/j.patcog.2024.110504_b19 article-title: Improved deep convolutional embedded clustering with re-selectable sample training publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2022.108611 – start-page: 478 year: 2016 ident: 10.1016/j.patcog.2024.110504_b22 article-title: Unsupervised deep embedding for clustering analysis – start-page: 52 year: 2011 ident: 10.1016/j.patcog.2024.110504_b30 article-title: Stacked convolutional auto-encoders for hierarchical feature extraction – volume: 35 start-page: 1798 issue: 8 year: 2013 ident: 10.1016/j.patcog.2024.110504_b21 article-title: Representation learning: A review and new perspectives publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2013.50 – ident: 10.1016/j.patcog.2024.110504_b33 – year: 2019 ident: 10.1016/j.patcog.2024.110504_b28 – volume: 234 start-page: 11 year: 2017 ident: 10.1016/j.patcog.2024.110504_b18 article-title: A survey of deep neural network architectures and their applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.12.038 – volume: 9 start-page: 2579 year: 2008 ident: 10.1016/j.patcog.2024.110504_b38 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – year: 2009 ident: 10.1016/j.patcog.2024.110504_b10 – volume: 49 start-page: 2927 issue: 8 year: 2019 ident: 10.1016/j.patcog.2024.110504_b39 article-title: p -Laplacian regularization for scene recognition publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2833843 – volume: 138 start-page: 185 year: 2020 ident: 10.1016/j.patcog.2024.110504_b25 article-title: Deep k-Means: Jointly clustering with k-Means and learning representations publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2020.07.028 – ident: 10.1016/j.patcog.2024.110504_b26 doi: 10.1109/ICIP.2019.8803051 – volume: 138 year: 2023 ident: 10.1016/j.patcog.2024.110504_b7 article-title: Global and local structure preserving nonnegative subspace clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2023.109388 – volume: 113 year: 2021 ident: 10.1016/j.patcog.2024.110504_b17 article-title: Projected fuzzy C-means clustering with locality preservation publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107748 |
| SSID | ssj0017142 |
| Score | 2.5019312 |
| Snippet | Image clustering is a difficult task with important application value in computer vision. The key to this task is the quality of images features. Most of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110504 |
| SubjectTerms | Deep convolutional autoencoder Laplacian regularization Locality preserving Unsupervised image clustering |
| Title | Robust deep fuzzy K-means clustering for image data |
| URI | https://dx.doi.org/10.1016/j.patcog.2024.110504 |
| Volume | 153 |
| WOSCitedRecordID | wos001235187600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1JT9wwFICt6dBDL92rUijyobfIoyx2nBwRBZVFCFVUTE9RvI0GDZkRTBDl1_McO8lQKloOvVjRU-xE_qzn5-QtCH1hsdKSGUVkKBmhnDEiUkVJmkkQl3DKVU2e2SN-fJyNx_nJYLDfxsJcz3hVZTc3-eK_ogYZwLahs0_A3Q0KArgG6NACdmj_Cfz3uaivloHSehGY-vb2V3AYkAsNW1IgZ7XNi9A6T04vrMOOj07rTNSTJuOmjXLxrkX9j_qz2hIZT0tb6WfSKYxG-rMmMA2dcMdHfRzNe9lXXz_lTNuC2ZPVDw4x7TyqOiWaRCSJw-SeEmXJihoEm4K5qsIPNLT7WHA-WsBOM5-M7ANG_e33E2L_tlF17oOtZ9p54UYp7CiFG-UZWos5y7MhWtve3x0fdL-UeERd6nj_9m0cZePs9_Bt_mynrNgep6_RS39owNsO9hs00NVb9KotyIG9fn6HqGOPLXvcsMeH2LHHPXsM7HHDHlv279GPvd3TnW_El8UgEs53S9ie0hzsvDRVJqXGpJmiTKYyiwwzkhpuolAapjJNDeUm5oKqmImSKaZVFqs0-YCG1bzSHxGOTCh0XsbcZiGKSiUMS6gRyggtchaadZS0k1BInzPeli6ZFY8hWEek67VwOVP-cj9v57fwdp-z5wpYNI_2_PTEJ22gF_2K3kTD5WWtP6Pn8no5vbrc8ivmDmcHeTM |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+deep+fuzzy+K+-means+clustering+for+image+data&rft.jtitle=Pattern+recognition&rft.au=Wu%2C+Xiaoling&rft.au=Yu%2C+Yu-Feng&rft.au=Chen%2C+Long&rft.au=Ding%2C+Weiping&rft.date=2024-09-01&rft.issn=0031-3203&rft.volume=153&rft.spage=110504&rft_id=info:doi/10.1016%2Fj.patcog.2024.110504&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2024_110504 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |