Robust deep fuzzy K-means clustering for image data

Image clustering is a difficult task with important application value in computer vision. The key to this task is the quality of images features. Most of current clustering methods encounter the challenge. That is, the process of feature learning and clustering operates independently. To address thi...

Full description

Saved in:
Bibliographic Details
Published in:Pattern recognition Vol. 153; p. 110504
Main Authors: Wu, Xiaoling, Yu, Yu-Feng, Chen, Long, Ding, Weiping, Wang, Yingxu
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2024
Subjects:
ISSN:0031-3203, 1873-5142
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Image clustering is a difficult task with important application value in computer vision. The key to this task is the quality of images features. Most of current clustering methods encounter the challenge. That is, the process of feature learning and clustering operates independently. To address this problem, several researchers have been dedicated to performing feature learning and deep clustering together. However, the obtained features lack discriminability to address high-dimensional data successfully. To deal with this issue, we propose a novel model named as robust deep fuzzy K-means clustering (RD-FKC), which efficiently projects image samples into a representative embedding space and precisely learns membership degrees into a combined framework. Specifically, RD-FKC introduces Laplacian regularization technique to preserve locality properties of data. Moreover, by using an adaptive loss function, the model becomes more robust to diverse types of outliers. Furthermore, to avoid the latent space being distorted and make the extracted features retain the original information as much as possible, the model introduces reconstruction error and adds regularization to network parameters. Finally, an effective algorithm is derived to solve the optimization model. Numerous experiments have been conducted, illustrating the advantages and superiority of RD-FKC over existing clustering approaches. •Embedding clustering into deep convolutional autoencoder to learn compact and representative features.•Designing the Laplacian regularization to constrain the membership matrix for locality preserving.•Introducing the adaptive loss function to enhance the clustering robustness.•Presenting an effective algorithm to optimize the proposed model.
AbstractList Image clustering is a difficult task with important application value in computer vision. The key to this task is the quality of images features. Most of current clustering methods encounter the challenge. That is, the process of feature learning and clustering operates independently. To address this problem, several researchers have been dedicated to performing feature learning and deep clustering together. However, the obtained features lack discriminability to address high-dimensional data successfully. To deal with this issue, we propose a novel model named as robust deep fuzzy K-means clustering (RD-FKC), which efficiently projects image samples into a representative embedding space and precisely learns membership degrees into a combined framework. Specifically, RD-FKC introduces Laplacian regularization technique to preserve locality properties of data. Moreover, by using an adaptive loss function, the model becomes more robust to diverse types of outliers. Furthermore, to avoid the latent space being distorted and make the extracted features retain the original information as much as possible, the model introduces reconstruction error and adds regularization to network parameters. Finally, an effective algorithm is derived to solve the optimization model. Numerous experiments have been conducted, illustrating the advantages and superiority of RD-FKC over existing clustering approaches. •Embedding clustering into deep convolutional autoencoder to learn compact and representative features.•Designing the Laplacian regularization to constrain the membership matrix for locality preserving.•Introducing the adaptive loss function to enhance the clustering robustness.•Presenting an effective algorithm to optimize the proposed model.
ArticleNumber 110504
Author Chen, Long
Yu, Yu-Feng
Ding, Weiping
Wu, Xiaoling
Wang, Yingxu
Author_xml – sequence: 1
  givenname: Xiaoling
  surname: Wu
  fullname: Wu, Xiaoling
  organization: Department of Statistics, Guangzhou University, Guangzhou, China
– sequence: 2
  givenname: Yu-Feng
  orcidid: 0000-0002-8207-0496
  surname: Yu
  fullname: Yu, Yu-Feng
  email: yufengyu@gzhu.edu.cn
  organization: Department of Statistics, Guangzhou University, Guangzhou, China
– sequence: 3
  givenname: Long
  surname: Chen
  fullname: Chen, Long
  organization: Department of Computer and Information Science, University of Macau, Macau, China
– sequence: 4
  givenname: Weiping
  surname: Ding
  fullname: Ding, Weiping
  email: ding.wp@ntu.edu.cn
  organization: School of Information Science and Technology, Nantong University, Nantong, China
– sequence: 5
  givenname: Yingxu
  surname: Wang
  fullname: Wang, Yingxu
  organization: Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, University of Jinan, Jinan, China
BookMark eNqFz81KAzEUhuEgFWyrd-AiNzBj_mfqQpDiHxYE0XVIk5OS0k5Kkgrt1TtlXLnQ1Vkc3g-eCRp1sQOErimpKaHqZl3vTLFxVTPCRE0pkUScoTFtG15JKtgIjQnhtOKM8As0yXlNCG36xxjx97jc54IdwA77_fF4wK_VFkyXsd30D0ihW2EfEw5bswLsTDGX6NybTYarnztFn48PH_PnavH29DK_X1SWE1WqGVWzRhKlnFfCe9U6Ia2yLfXSW-EbT4n10rUgvGg8a5bCMbk00klwLXOKT9HtsGtTzDmB1zYUU0LsSjJhoynRJ75e64GvT3w98PtY_Ip3qSekw3_Z3ZBBD_sKkHS2AToLLiSwRbsY_h74BuqpeCY
CitedBy_id crossref_primary_10_1016_j_bspc_2025_108278
crossref_primary_10_1016_j_patcog_2025_111650
crossref_primary_10_1016_j_knosys_2024_112537
crossref_primary_10_1007_s10115_024_02221_4
crossref_primary_10_1016_j_jclepro_2025_145704
crossref_primary_10_1016_j_neucom_2025_131324
crossref_primary_10_1109_JSTARS_2025_3584838
crossref_primary_10_1007_s11042_025_20848_5
crossref_primary_10_1007_s10586_025_05417_7
Cites_doi 10.1109/ICCV.2015.123
10.1016/j.ins.2023.118994
10.1016/j.patcog.2012.12.007
10.1023/A:1026039313770
10.1016/0098-3004(84)90020-7
10.1016/j.eswa.2021.115729
10.1016/j.ins.2022.07.093
10.1016/j.patcog.2021.108386
10.1109/TNNLS.2012.2234134
10.1016/j.ins.2018.12.036
10.1016/j.patcog.2021.108440
10.1007/s12559-019-09637-z
10.1016/j.patcog.2022.109077
10.1109/TFUZZ.2019.2945232
10.1109/TIP.2018.2882925
10.1109/TKDE.2020.2995748
10.1016/j.patcog.2022.108611
10.1109/TPAMI.2013.50
10.1016/j.neucom.2016.12.038
10.1109/TCYB.2018.2833843
10.1016/j.patrec.2020.07.028
10.1109/ICIP.2019.8803051
10.1016/j.patcog.2023.109388
10.1016/j.patcog.2020.107748
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2024.110504
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2024_110504
S0031320324002553
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-916975066df64ff68d45c6c81f5fc4f7f10cf5d8e4f47f27b4d25ba5d5ed82d63
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001235187600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 03:52:39 EST 2025
Tue Nov 18 21:44:04 EST 2025
Sat Jun 01 15:41:37 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Locality preserving
Laplacian regularization
Deep convolutional autoencoder
Unsupervised image clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-916975066df64ff68d45c6c81f5fc4f7f10cf5d8e4f47f27b4d25ba5d5ed82d63
ORCID 0000-0002-8207-0496
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2024_110504
crossref_primary_10_1016_j_patcog_2024_110504
elsevier_sciencedirect_doi_10_1016_j_patcog_2024_110504
PublicationCentury 2000
PublicationDate September 2024
2024-09-00
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: September 2024
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Liu, Wang, Liu, Zeng, Liu, Alsaadi (b18) 2017; 234
Li, Tao (b8) 2013; 24
F. Nie, H. Wang, H. Huang, C. Ding, Adaptive loss minimization for semi-supervised elastic embedding, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013, pp. 1565–1571.
Zhang, Nie, Guo, Wei, Li (b32) 2018; 28
J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1967, pp. 281–297.
A. Ng, M. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an Algorithm, in: Advances in Neural Information Processing Systems, Vol. 2, 2001, pp. 849–856.
Zhi, Yu, Bi, Li (b14) 2021; 50
L. Wang, D.Q. Huynh, M.R. Mansour, Loss Switching Fusion with Similarity Search for Video Classification, in: 2019 IEEE International Conference on Image Processing, ICIP, 2019, pp. 974–978.
Park, Jeon, Rosen (b9) 2003; 43
Bezdek, Ehrlich, Full (b4) 1984; 10
Jia, Zhu, Huang, Mao, Wang, Song (b7) 2023; 138
Hastie, Tibshirani, Friedman, Friedman (b10) 2009
Masci, Meier, Ciresan, Schmidhuber (b30) 2011
Xie, Girshick, Farhadi (b22) 2016
Zhou, Pedrycz, Yue, Gao, Lai, Wan (b17) 2021; 113
Cai, Wang, Guo (b27) 2021; 186
Li, Wang, Guo, Zhu (b20) 2023; 134
Yang, Fu, Sidiropoulos, Hong (b35) 2017
Chang, Guo, Wang, Meng, Xiang, Pan (b28) 2019
Cai, Wang, Xu, Guo (b24) 2022; 123
Zhang, Li, Zhang, Nie (b36) 2019; 28
K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
Zhang, Li, Ning, Chen, Liu (b1) 2021; 121
bin Zhi, lun Fan, Zhao (b11) 2013; 46
D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: International Conference on Learning Representations, ICLR, 2015.
J. Xu, J. Han, K. Xiong, F. Nie, Robust and sparse fuzzy k-means clustering, in: IJCAI, 2016, pp. 2224–2230.
Ma, Liu, Tao, Zhou (b40) 2019; 11
Wang, Chen, Zhou, Li, Yu (b6) 2023; 638
Belkin, Niyogi (b31) 2001; 14
Hou, Nie, Yi, Tao (b12) 2014; 26
Ma, Tu, Luo, Wang (b2) 2022; 124
Liu, Cao, Liang (b23) 2022; 609
Liu, Ma, Zhou, Tao, Cheng (b39) 2019; 49
Bengio, Courville, Vincent (b21) 2013; 35
Nie, Zhao, Wang, Li, Li (b13) 2020; 34
He, Niyogi (b16) 2003; 16
Lu, Chen, Wei, Ma, Jiang, Wang (b19) 2022; 127
van der Maaten, Hinton (b38) 2008; 9
Deng, Wang, Li, Horng, Zhu (b15) 2019; 480
Moradi Fard, Thonet, Gaussier (b25) 2020; 138
Jia (10.1016/j.patcog.2024.110504_b7) 2023; 138
Cai (10.1016/j.patcog.2024.110504_b24) 2022; 123
Ma (10.1016/j.patcog.2024.110504_b2) 2022; 124
10.1016/j.patcog.2024.110504_b3
Nie (10.1016/j.patcog.2024.110504_b13) 2020; 34
Liu (10.1016/j.patcog.2024.110504_b39) 2019; 49
Li (10.1016/j.patcog.2024.110504_b20) 2023; 134
Hastie (10.1016/j.patcog.2024.110504_b10) 2009
Zhang (10.1016/j.patcog.2024.110504_b32) 2018; 28
Deng (10.1016/j.patcog.2024.110504_b15) 2019; 480
Zhang (10.1016/j.patcog.2024.110504_b36) 2019; 28
Park (10.1016/j.patcog.2024.110504_b9) 2003; 43
10.1016/j.patcog.2024.110504_b37
Moradi Fard (10.1016/j.patcog.2024.110504_b25) 2020; 138
Liu (10.1016/j.patcog.2024.110504_b23) 2022; 609
10.1016/j.patcog.2024.110504_b5
10.1016/j.patcog.2024.110504_b33
Zhang (10.1016/j.patcog.2024.110504_b1) 2021; 121
10.1016/j.patcog.2024.110504_b34
Lu (10.1016/j.patcog.2024.110504_b19) 2022; 127
Li (10.1016/j.patcog.2024.110504_b8) 2013; 24
Masci (10.1016/j.patcog.2024.110504_b30) 2011
Xie (10.1016/j.patcog.2024.110504_b22) 2016
Ma (10.1016/j.patcog.2024.110504_b40) 2019; 11
Cai (10.1016/j.patcog.2024.110504_b27) 2021; 186
Bezdek (10.1016/j.patcog.2024.110504_b4) 1984; 10
Chang (10.1016/j.patcog.2024.110504_b28) 2019
Liu (10.1016/j.patcog.2024.110504_b18) 2017; 234
Hou (10.1016/j.patcog.2024.110504_b12) 2014; 26
Wang (10.1016/j.patcog.2024.110504_b6) 2023; 638
Zhi (10.1016/j.patcog.2024.110504_b14) 2021; 50
Bengio (10.1016/j.patcog.2024.110504_b21) 2013; 35
Yang (10.1016/j.patcog.2024.110504_b35) 2017
van der Maaten (10.1016/j.patcog.2024.110504_b38) 2008; 9
10.1016/j.patcog.2024.110504_b29
10.1016/j.patcog.2024.110504_b26
Belkin (10.1016/j.patcog.2024.110504_b31) 2001; 14
He (10.1016/j.patcog.2024.110504_b16) 2003; 16
Zhou (10.1016/j.patcog.2024.110504_b17) 2021; 113
bin Zhi (10.1016/j.patcog.2024.110504_b11) 2013; 46
References_xml – year: 2019
  ident: b28
  article-title: Deep discriminative clustering analysis
– start-page: 52
  year: 2011
  end-page: 59
  ident: b30
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
  publication-title: International Conference on Artificial Neural Networks
– reference: D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, in: International Conference on Learning Representations, ICLR, 2015.
– volume: 480
  start-page: 211
  year: 2019
  end-page: 221
  ident: b15
  article-title: Linear discriminant analysis guided by unsupervised ensemble learning
  publication-title: Inform. Sci.
– volume: 16
  start-page: 153
  year: 2003
  end-page: 160
  ident: b16
  article-title: Locality preserving projections
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 49
  start-page: 2927
  year: 2019
  end-page: 2940
  ident: b39
  article-title: -Laplacian regularization for scene recognition
  publication-title: IEEE Trans. Cybern.
– volume: 134
  year: 2023
  ident: b20
  article-title: Deep graph clustering with multi-level subspace fusion
  publication-title: Pattern Recognit.
– reference: A. Ng, M. Jordan, Y. Weiss, On Spectral Clustering: Analysis and an Algorithm, in: Advances in Neural Information Processing Systems, Vol. 2, 2001, pp. 849–856.
– reference: K. He, X. Zhang, S. Ren, J. Sun, Delving deep into rectifiers: Surpassing human-level performance on imagenet classification, in: Proceedings of the IEEE International Conference on Computer Vision, 2015, pp. 1026–1034.
– volume: 138
  year: 2023
  ident: b7
  article-title: Global and local structure preserving nonnegative subspace clustering
  publication-title: Pattern Recognit.
– volume: 186
  year: 2021
  ident: b27
  article-title: Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder
  publication-title: Expert Syst. Appl.
– year: 2009
  ident: b10
  publication-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction
– volume: 43
  start-page: 427
  year: 2003
  end-page: 448
  ident: b9
  article-title: Lower dimensional representation of text data based on centroids and least squares
  publication-title: BIT
– volume: 28
  start-page: 2152
  year: 2018
  end-page: 2162
  ident: b32
  article-title: Joint learning of fuzzy k-means and nonnegative spectral clustering with side information
  publication-title: IEEE Trans. Image Process.
– volume: 124
  year: 2022
  ident: b2
  article-title: Semantic clustering based deduction learning for image recognition and classification
  publication-title: Pattern Recognit.
– volume: 46
  start-page: 1604
  year: 2013
  end-page: 1615
  ident: b11
  article-title: Fuzzy Linear Discriminant Analysis-guided maximum entropy fuzzy clustering algorithm
  publication-title: Pattern Recognit.
– reference: J. Xu, J. Han, K. Xiong, F. Nie, Robust and sparse fuzzy k-means clustering, in: IJCAI, 2016, pp. 2224–2230.
– start-page: 478
  year: 2016
  end-page: 487
  ident: b22
  article-title: Unsupervised deep embedding for clustering analysis
  publication-title: International Conference on Machine Learning
– volume: 11
  start-page: 1
  year: 2019
  end-page: 14
  ident: b40
  article-title: Ensemble p-Laplacian regularization for scene image recognition
  publication-title: Cogn. Comput.
– volume: 113
  year: 2021
  ident: b17
  article-title: Projected fuzzy C-means clustering with locality preservation
  publication-title: Pattern Recognit.
– volume: 123
  year: 2022
  ident: b24
  article-title: Unsupervised deep clustering via contractive feature representation and focal loss
  publication-title: Pattern Recognit.
– volume: 138
  start-page: 185
  year: 2020
  end-page: 192
  ident: b25
  article-title: Deep k-Means: Jointly clustering with k-Means and learning representations
  publication-title: Pattern Recognit. Lett.
– volume: 35
  start-page: 1798
  year: 2013
  end-page: 1828
  ident: b21
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 28
  start-page: 2814
  year: 2019
  end-page: 2824
  ident: b36
  article-title: Deep fuzzy k-means with adaptive loss and entropy regularization
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 121
  year: 2021
  ident: b1
  article-title: Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation
  publication-title: Pattern Recognit.
– volume: 34
  start-page: 1221
  year: 2020
  end-page: 1230
  ident: b13
  article-title: Fuzzy K-means clustering with discriminative embedding
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 9
  start-page: 2579
  year: 2008
  end-page: 2605
  ident: b38
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 1
  year: 2021
  end-page: 16
  ident: b14
  article-title: Noise-insensitive discriminative subspace fuzzy clustering
  publication-title: J. Appl. Stat.
– volume: 609
  start-page: 876
  year: 2022
  end-page: 896
  ident: b23
  article-title: Centroids-guided deep multi-view K-means clustering
  publication-title: Inform. Sci.
– volume: 26
  start-page: 1287
  year: 2014
  end-page: 1299
  ident: b12
  article-title: Discriminative embedded clustering: A framework for grouping high-dimensional data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 10
  start-page: 191
  year: 1984
  end-page: 203
  ident: b4
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
– start-page: 3861
  year: 2017
  end-page: 3870
  ident: b35
  article-title: Towards k-means-friendly spaces: Simultaneous deep learning and clustering
  publication-title: International Conference on Machine Learning
– volume: 638
  year: 2023
  ident: b6
  article-title: Pairwise constraints-based semi-supervised fuzzy clustering with multi-manifold regularization
  publication-title: Inform. Sci.
– reference: F. Nie, H. Wang, H. Huang, C. Ding, Adaptive loss minimization for semi-supervised elastic embedding, in: Twenty-Third International Joint Conference on Artificial Intelligence, 2013, pp. 1565–1571.
– reference: J. MacQueen, et al., Some methods for classification and analysis of multivariate observations, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. 1, 1967, pp. 281–297.
– volume: 234
  start-page: 11
  year: 2017
  end-page: 26
  ident: b18
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
– volume: 14
  start-page: 585
  year: 2001
  end-page: 591
  ident: b31
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Adv. Neural Inf. Process. Syst.
– reference: L. Wang, D.Q. Huynh, M.R. Mansour, Loss Switching Fusion with Similarity Search for Video Classification, in: 2019 IEEE International Conference on Image Processing, ICIP, 2019, pp. 974–978.
– volume: 127
  year: 2022
  ident: b19
  article-title: Improved deep convolutional embedded clustering with re-selectable sample training
  publication-title: Pattern Recognit.
– volume: 24
  start-page: 485
  year: 2013
  end-page: 497
  ident: b8
  article-title: Simple exponential family PCA
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– ident: 10.1016/j.patcog.2024.110504_b37
  doi: 10.1109/ICCV.2015.123
– volume: 638
  year: 2023
  ident: 10.1016/j.patcog.2024.110504_b6
  article-title: Pairwise constraints-based semi-supervised fuzzy clustering with multi-manifold regularization
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2023.118994
– volume: 46
  start-page: 1604
  issue: 6
  year: 2013
  ident: 10.1016/j.patcog.2024.110504_b11
  article-title: Fuzzy Linear Discriminant Analysis-guided maximum entropy fuzzy clustering algorithm
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.12.007
– volume: 43
  start-page: 427
  year: 2003
  ident: 10.1016/j.patcog.2024.110504_b9
  article-title: Lower dimensional representation of text data based on centroids and least squares
  publication-title: BIT
  doi: 10.1023/A:1026039313770
– volume: 10
  start-page: 191
  issue: 2–3
  year: 1984
  ident: 10.1016/j.patcog.2024.110504_b4
  article-title: FCM: The fuzzy c-means clustering algorithm
  publication-title: Comput. Geosci.
  doi: 10.1016/0098-3004(84)90020-7
– volume: 186
  year: 2021
  ident: 10.1016/j.patcog.2024.110504_b27
  article-title: Unsupervised embedded feature learning for deep clustering with stacked sparse auto-encoder
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.115729
– volume: 14
  start-page: 585
  year: 2001
  ident: 10.1016/j.patcog.2024.110504_b31
  article-title: Laplacian eigenmaps and spectral techniques for embedding and clustering
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3861
  year: 2017
  ident: 10.1016/j.patcog.2024.110504_b35
  article-title: Towards k-means-friendly spaces: Simultaneous deep learning and clustering
– volume: 609
  start-page: 876
  year: 2022
  ident: 10.1016/j.patcog.2024.110504_b23
  article-title: Centroids-guided deep multi-view K-means clustering
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.07.093
– volume: 123
  year: 2022
  ident: 10.1016/j.patcog.2024.110504_b24
  article-title: Unsupervised deep clustering via contractive feature representation and focal loss
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108386
– volume: 24
  start-page: 485
  issue: 3
  year: 2013
  ident: 10.1016/j.patcog.2024.110504_b8
  article-title: Simple exponential family PCA
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2012.2234134
– volume: 16
  start-page: 153
  year: 2003
  ident: 10.1016/j.patcog.2024.110504_b16
  article-title: Locality preserving projections
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 480
  start-page: 211
  year: 2019
  ident: 10.1016/j.patcog.2024.110504_b15
  article-title: Linear discriminant analysis guided by unsupervised ensemble learning
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2018.12.036
– volume: 124
  year: 2022
  ident: 10.1016/j.patcog.2024.110504_b2
  article-title: Semantic clustering based deduction learning for image recognition and classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108440
– ident: 10.1016/j.patcog.2024.110504_b34
– volume: 121
  year: 2021
  ident: 10.1016/j.patcog.2024.110504_b1
  article-title: Novel fuzzy clustering algorithm with variable multi-pixel fitting spatial information for image segmentation
  publication-title: Pattern Recognit.
– volume: 11
  start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2024.110504_b40
  article-title: Ensemble p-Laplacian regularization for scene image recognition
  publication-title: Cogn. Comput.
  doi: 10.1007/s12559-019-09637-z
– volume: 50
  start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2024.110504_b14
  article-title: Noise-insensitive discriminative subspace fuzzy clustering
  publication-title: J. Appl. Stat.
– ident: 10.1016/j.patcog.2024.110504_b5
– ident: 10.1016/j.patcog.2024.110504_b3
– volume: 134
  year: 2023
  ident: 10.1016/j.patcog.2024.110504_b20
  article-title: Deep graph clustering with multi-level subspace fusion
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.109077
– volume: 28
  start-page: 2814
  issue: 11
  year: 2019
  ident: 10.1016/j.patcog.2024.110504_b36
  article-title: Deep fuzzy k-means with adaptive loss and entropy regularization
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2019.2945232
– volume: 26
  start-page: 1287
  issue: 6
  year: 2014
  ident: 10.1016/j.patcog.2024.110504_b12
  article-title: Discriminative embedded clustering: A framework for grouping high-dimensional data
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 28
  start-page: 2152
  issue: 5
  year: 2018
  ident: 10.1016/j.patcog.2024.110504_b32
  article-title: Joint learning of fuzzy k-means and nonnegative spectral clustering with side information
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2882925
– volume: 34
  start-page: 1221
  issue: 3
  year: 2020
  ident: 10.1016/j.patcog.2024.110504_b13
  article-title: Fuzzy K-means clustering with discriminative embedding
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2020.2995748
– ident: 10.1016/j.patcog.2024.110504_b29
– volume: 127
  year: 2022
  ident: 10.1016/j.patcog.2024.110504_b19
  article-title: Improved deep convolutional embedded clustering with re-selectable sample training
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2022.108611
– start-page: 478
  year: 2016
  ident: 10.1016/j.patcog.2024.110504_b22
  article-title: Unsupervised deep embedding for clustering analysis
– start-page: 52
  year: 2011
  ident: 10.1016/j.patcog.2024.110504_b30
  article-title: Stacked convolutional auto-encoders for hierarchical feature extraction
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  ident: 10.1016/j.patcog.2024.110504_b21
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2013.50
– ident: 10.1016/j.patcog.2024.110504_b33
– year: 2019
  ident: 10.1016/j.patcog.2024.110504_b28
– volume: 234
  start-page: 11
  year: 2017
  ident: 10.1016/j.patcog.2024.110504_b18
  article-title: A survey of deep neural network architectures and their applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.12.038
– volume: 9
  start-page: 2579
  year: 2008
  ident: 10.1016/j.patcog.2024.110504_b38
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– year: 2009
  ident: 10.1016/j.patcog.2024.110504_b10
– volume: 49
  start-page: 2927
  issue: 8
  year: 2019
  ident: 10.1016/j.patcog.2024.110504_b39
  article-title: p -Laplacian regularization for scene recognition
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2833843
– volume: 138
  start-page: 185
  year: 2020
  ident: 10.1016/j.patcog.2024.110504_b25
  article-title: Deep k-Means: Jointly clustering with k-Means and learning representations
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2020.07.028
– ident: 10.1016/j.patcog.2024.110504_b26
  doi: 10.1109/ICIP.2019.8803051
– volume: 138
  year: 2023
  ident: 10.1016/j.patcog.2024.110504_b7
  article-title: Global and local structure preserving nonnegative subspace clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2023.109388
– volume: 113
  year: 2021
  ident: 10.1016/j.patcog.2024.110504_b17
  article-title: Projected fuzzy C-means clustering with locality preservation
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107748
SSID ssj0017142
Score 2.5019312
Snippet Image clustering is a difficult task with important application value in computer vision. The key to this task is the quality of images features. Most of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110504
SubjectTerms Deep convolutional autoencoder
Laplacian regularization
Locality preserving
Unsupervised image clustering
Title Robust deep fuzzy K-means clustering for image data
URI https://dx.doi.org/10.1016/j.patcog.2024.110504
Volume 153
WOSCitedRecordID wos001235187600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ1JT9wwFICt6dBDL92rUijyobfIoyx2nBwRBZVFCFVUTE9RvI0GDZkRTBDl1_McO8lQKloOvVjRU-xE_qzn5-QtCH1hsdKSGUVkKBmhnDEiUkVJmkkQl3DKVU2e2SN-fJyNx_nJYLDfxsJcz3hVZTc3-eK_ogYZwLahs0_A3Q0KArgG6NACdmj_Cfz3uaivloHSehGY-vb2V3AYkAsNW1IgZ7XNi9A6T04vrMOOj07rTNSTJuOmjXLxrkX9j_qz2hIZT0tb6WfSKYxG-rMmMA2dcMdHfRzNe9lXXz_lTNuC2ZPVDw4x7TyqOiWaRCSJw-SeEmXJihoEm4K5qsIPNLT7WHA-WsBOM5-M7ANG_e33E2L_tlF17oOtZ9p54UYp7CiFG-UZWos5y7MhWtve3x0fdL-UeERd6nj_9m0cZePs9_Bt_mynrNgep6_RS39owNsO9hs00NVb9KotyIG9fn6HqGOPLXvcsMeH2LHHPXsM7HHDHlv279GPvd3TnW_El8UgEs53S9ie0hzsvDRVJqXGpJmiTKYyiwwzkhpuolAapjJNDeUm5oKqmImSKaZVFqs0-YCG1bzSHxGOTCh0XsbcZiGKSiUMS6gRyggtchaadZS0k1BInzPeli6ZFY8hWEek67VwOVP-cj9v57fwdp-z5wpYNI_2_PTEJ22gF_2K3kTD5WWtP6Pn8no5vbrc8ivmDmcHeTM
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+deep+fuzzy+K+-means+clustering+for+image+data&rft.jtitle=Pattern+recognition&rft.au=Wu%2C+Xiaoling&rft.au=Yu%2C+Yu-Feng&rft.au=Chen%2C+Long&rft.au=Ding%2C+Weiping&rft.date=2024-09-01&rft.issn=0031-3203&rft.volume=153&rft.spage=110504&rft_id=info:doi/10.1016%2Fj.patcog.2024.110504&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2024_110504
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon