Research on structure optimization and motion characteristics of wearable medical robotics based on Improved Particle Swarm Optimization Algorithm
In order to solve the problem of movement coordination and stability between the wearable medical robotics and the wearer, analysis the structure of lower limbs and movement gait of human body, obtains the structure principle and motion characteristics of human lower limbs;Based on anthropomorphic d...
Uložené v:
| Vydané v: | Future generation computer systems Ročník 129; s. 187 - 198 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.04.2022
|
| Predmet: | |
| ISSN: | 0167-739X, 1872-7115 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In order to solve the problem of movement coordination and stability between the wearable medical robotics and the wearer, analysis the structure of lower limbs and movement gait of human body, obtains the structure principle and motion characteristics of human lower limbs;Based on anthropomorphic design criteria, proposed a wearable medical robotics, use particle swarm optimization (PSO) to optimize the installation position of the hydraulic cylinder at hip joint and knee joint, The optimal parameters of the hip and knee variables were obtained through optimization. Adopt the idea of passive drive instead of active drive, designed the hydraulic drive system and control signal amplifying circuit, established the mathematical model of the four-way sliding valve with zero opening and analyzed its stability; Use AMESim software to build the model of the hydraulic system, and conducted the motion simulation test of the hydraulic system, the results show that:The working process of the hydraulic cylinder meets the characteristics of lower limbs movement of the wearer; built the experiment platform and conducted the walking attitude experiment, the result shows that:the pressure measured by the pressure sensor modules at both ends of the soles of the feet, and the mean pressure of the soles of the feet will fluctuate between 0 and 800 N with the motion of the man–machine system, the X-axis acceleration, Y-axis acceleration, Z-axis acceleration and the acceleration scalar are all changing within the range of -10 m/s2∼20 m/s2, meeting the requirements of normal human movement.
•Using particle swarm optimization (PSO) to optimize the installation position of the hydraulic cylinder at hip joint and knee joint.•Due to the dynamic characteristics of hydraulic actuators affect the stability of hydraulic system in a great extent, established the mathematical model of non-symmetric hydraulic cylinder system of zero-opening four-way slide valve, through Bode diagram and Nyquist curve analyze the stability of hydraulic system; Use AMESim software to build the hydraulic system, and carry on motion simulation.•The hydraulic system reduces the structural complexity and overall quality of the wearable medical robotics driving system and provides an important reference value for the lightweight research of human–machine system. |
|---|---|
| AbstractList | In order to solve the problem of movement coordination and stability between the wearable medical robotics and the wearer, analysis the structure of lower limbs and movement gait of human body, obtains the structure principle and motion characteristics of human lower limbs;Based on anthropomorphic design criteria, proposed a wearable medical robotics, use particle swarm optimization (PSO) to optimize the installation position of the hydraulic cylinder at hip joint and knee joint, The optimal parameters of the hip and knee variables were obtained through optimization. Adopt the idea of passive drive instead of active drive, designed the hydraulic drive system and control signal amplifying circuit, established the mathematical model of the four-way sliding valve with zero opening and analyzed its stability; Use AMESim software to build the model of the hydraulic system, and conducted the motion simulation test of the hydraulic system, the results show that:The working process of the hydraulic cylinder meets the characteristics of lower limbs movement of the wearer; built the experiment platform and conducted the walking attitude experiment, the result shows that:the pressure measured by the pressure sensor modules at both ends of the soles of the feet, and the mean pressure of the soles of the feet will fluctuate between 0 and 800 N with the motion of the man–machine system, the X-axis acceleration, Y-axis acceleration, Z-axis acceleration and the acceleration scalar are all changing within the range of -10 m/s2∼20 m/s2, meeting the requirements of normal human movement.
•Using particle swarm optimization (PSO) to optimize the installation position of the hydraulic cylinder at hip joint and knee joint.•Due to the dynamic characteristics of hydraulic actuators affect the stability of hydraulic system in a great extent, established the mathematical model of non-symmetric hydraulic cylinder system of zero-opening four-way slide valve, through Bode diagram and Nyquist curve analyze the stability of hydraulic system; Use AMESim software to build the hydraulic system, and carry on motion simulation.•The hydraulic system reduces the structural complexity and overall quality of the wearable medical robotics driving system and provides an important reference value for the lightweight research of human–machine system. |
| Author | Liu, Jixin Wang, Youqiang Zheng, Yi |
| Author_xml | – sequence: 1 givenname: Yi surname: Zheng fullname: Zheng, Yi email: fwzy2019@163.com organization: School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, China – sequence: 2 givenname: Youqiang orcidid: 0000-0003-1701-1382 surname: Wang fullname: Wang, Youqiang email: littlsunny@sdust.edu.cn organization: School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, China – sequence: 3 givenname: Jixin surname: Liu fullname: Liu, Jixin email: 121663260@qq.com organization: Institute of Intelligence and Manufacture, Qingdao Huanghai University, Qingdao, 266427, China |
| BookMark | eNqFkM9q3DAQxkVJIZu0b5CDXsCuZNmW3UMhhP4JBFKSFnoT47HU1WJby0ibkD5Gnzja3RxKD-3pG2bm9w3znbGTJSyWsQspSilk-25Tul3akS0rUclSyjLLK7aSna4KLWVzwlZ5TRda9T9O2VmMGyGE1Equ2O87Gy0QrnlYeEy0w70RD9vkZ_8Lks9tWEY-h0OJayDAZMnH5DHy4PhjxmGYLJ_t6BEmTmEIh-EA0Y573-t5S-Eh11-B8iTv3j8Czfz2zyuX089APq3nN-y1gynaty96zr5_-vjt6ktxc_v5-urypkAl2lT0sumwGwEBNdTQ107Vynaurlot0LmmtW7Eoe1Vg0pDPza2ahSC1EMnmqpT56w--iKFGMk6syU_Az0ZKcw-V7Mxx1zNPlcjpcmSsfd_YejT4YVE4Kf_wR-OsM2PPXhLJqK3C-boyGIyY_D_NngG2oqeLw |
| CitedBy_id | crossref_primary_10_1016_j_eswa_2025_127416 crossref_primary_10_1038_s41598_024_64486_7 crossref_primary_10_1007_s43538_023_00185_7 crossref_primary_10_1109_ACCESS_2023_3243942 crossref_primary_10_3390_math12111617 crossref_primary_10_3390_sym16060778 crossref_primary_10_32604_cmc_2024_050596 crossref_primary_10_1080_15376494_2024_2361069 crossref_primary_10_1051_bioconf_202515104005 crossref_primary_10_1007_s11082_024_06820_x crossref_primary_10_3390_wevj15070306 crossref_primary_10_21062_mft_2024_055 crossref_primary_10_1007_s11082_024_06928_0 crossref_primary_10_1016_j_sna_2024_115034 crossref_primary_10_1016_j_heliyon_2024_e31397 crossref_primary_10_1016_j_mtcomm_2024_109222 crossref_primary_10_1007_s11082_024_06277_y crossref_primary_10_1016_j_diamond_2024_111228 crossref_primary_10_3390_met14060634 crossref_primary_10_3390_math11081911 crossref_primary_10_1186_s40538_024_00579_9 crossref_primary_10_1007_s11082_024_06805_w crossref_primary_10_1007_s12346_024_01004_0 crossref_primary_10_1016_j_vacuum_2025_114280 crossref_primary_10_1007_s11082_024_06497_2 crossref_primary_10_1007_s11082_024_07041_y crossref_primary_10_1007_s12596_024_01979_8 crossref_primary_10_1016_j_istruc_2024_106837 crossref_primary_10_3233_JCM_247286 crossref_primary_10_1088_1742_6596_2581_1_012003 crossref_primary_10_1109_ACCESS_2022_3214850 crossref_primary_10_3389_fbioe_2022_884318 crossref_primary_10_1109_ACCESS_2024_3382195 crossref_primary_10_1142_S0217984924504621 crossref_primary_10_1007_s11071_024_09706_5 crossref_primary_10_3390_electronics13132630 crossref_primary_10_1515_phys_2024_0027 crossref_primary_10_1016_j_isci_2025_112109 crossref_primary_10_1088_1402_4896_ad4d28 |
| Cites_doi | 10.1016/j.enconman.2021.114640 10.21595/jve.2017.18459 10.1007/s12555-017-0011-8 10.1589/jpts.30.207 10.1139/tcsme-2016-0053 10.1016/j.ins.2017.09.068 10.1631/FITEE.1800777 10.21595/jve.2016.17397 10.1016/j.future.2021.06.053 10.1109/MRA.2017.2757638 10.1109/JSEN.2019.2937559 10.1016/j.palaeo.2018.07.007 10.1080/15397734.2015.1008013 10.1371/journal.pone.0200193 10.1016/S1672-6529(16)60397-9 10.1299/jbse.16-00595 10.1007/s00521-019-04567-1 10.1109/MCS.2018.2866604 10.1016/j.advengsoft.2014.09.005 10.1108/IR-02-2020-0041 10.1080/10790268.2017.1305036 10.1109/TMECH.2020.3044289 10.1109/LCSYS.2020.3043838 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.future.2021.11.021 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7115 |
| EndPage | 198 |
| ExternalDocumentID | 10_1016_j_future_2021_11_021 S0167739X21004581 |
| GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29H 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD AEBSH AEKER AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W KOM LG9 M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 R2- RIG ROL RPZ SBC SDF SDG SES SEW SPC SPCBC SSV SSZ T5K UHS WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ADNMO AEIPS AFJKZ AGQPQ AIIUN ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-9158c8dacac7a4a94f343e8f42670cff56efdcb6935c37a9d5e253ca17b805283 |
| ISICitedReferencesCount | 42 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812989400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0167-739X |
| IngestDate | Tue Nov 18 22:39:01 EST 2025 Sat Nov 29 07:27:57 EST 2025 Fri Feb 23 02:41:34 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Motion characteristics Improved particle swarm optimization algorithm Structural optimization Wearable medical robotics |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-9158c8dacac7a4a94f343e8f42670cff56efdcb6935c37a9d5e253ca17b805283 |
| ORCID | 0000-0003-1701-1382 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1016_j_future_2021_11_021 crossref_citationtrail_10_1016_j_future_2021_11_021 elsevier_sciencedirect_doi_10_1016_j_future_2021_11_021 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Future generation computer systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Haung, Cheng, Guo (b25) 2018; 432 Anirban, Haider, Yogesh (b28) 2018; 10 Z. Li, K. Zhao, L. Zhang, et al. Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking, IEEE/ASME Trans. Mechatronics Omar, Ayonga, Ayush (b26) 2018; 38 Li, Yin (b13) 2018; 16 Huang, Cheng, Guo (b2) 2018; 27 Jafar, Sadjaad (b27) 2019; 11 Zheng, Zhong, Liu, Yang, Yue (b29) 2020; 20 B. Brahmi, M. Saad, S. Youcef, et al. Robust adaptive control for uncertain wearable exoskeleton robot using time delay estimation, Energy Convers. Manage. Deng, Ma, Wang (b17) 2019; 20 Sado, Yap, Ghazilla (b12) 2018; 13 Chen, Mu, Du (b14) 2017; 19 Shimizu, Kadone, Kubota (b15) 2017; 40 Guo, Mao, Han (b18) 2019; 026 Matsuda, Mataki (b21) 2018; 30 Ghasempour, Menhaj (b24) 2006 Bb, Ieb, Mhl (b31) 2021 . Zhu, Zhang, Fan (b23) 2016; 40 Zheng, Wang, J. (b9) 2021; 125 Irfan, Giovanni, Gionata (b19) 2017; 1 D.L. Pan, F. Gao, Y.J. Miao, et al. A new study on the relative kinematic accuracy reliability of a novel exoskeleton with series-parallel topology, 43 (4) (2015) 383–406. Pan, Gao, Miao (b6) 2015; 79 Mooney, Herr (b3) 2016; 13 Clements, Coffin, Lavaud (b1) 2018; 50 Bouteraa, Abdallah, Elmogy (b20) 2020; 47 Long, Du, Chen (b7) 2017; 14 Bandi, Patton (b16) 2017; 15 Li, Xu, Guan (b5) 2016; 18 Prassler, Baroncelli, Lkanovic (b22) 2017; 24 Zheng, Song, Liu (b30) 2019; 32 Park, Park, Kim (b11) 2017; 12 Lin, Divekar, Lv (b10) 2021; 5 10.1016/j.future.2021.11.021_b4 Sado (10.1016/j.future.2021.11.021_b12) 2018; 13 10.1016/j.future.2021.11.021_b8 Zheng (10.1016/j.future.2021.11.021_b9) 2021; 125 Chen (10.1016/j.future.2021.11.021_b14) 2017; 19 Shimizu (10.1016/j.future.2021.11.021_b15) 2017; 40 Li (10.1016/j.future.2021.11.021_b13) 2018; 16 Guo (10.1016/j.future.2021.11.021_b18) 2019; 026 Huang (10.1016/j.future.2021.11.021_b2) 2018; 27 Lin (10.1016/j.future.2021.11.021_b10) 2021; 5 Pan (10.1016/j.future.2021.11.021_b6) 2015; 79 Deng (10.1016/j.future.2021.11.021_b17) 2019; 20 Anirban (10.1016/j.future.2021.11.021_b28) 2018; 10 Haung (10.1016/j.future.2021.11.021_b25) 2018; 432 Zhu (10.1016/j.future.2021.11.021_b23) 2016; 40 Bandi (10.1016/j.future.2021.11.021_b16) 2017; 15 Park (10.1016/j.future.2021.11.021_b11) 2017; 12 Mooney (10.1016/j.future.2021.11.021_b3) 2016; 13 Irfan (10.1016/j.future.2021.11.021_b19) 2017; 1 Li (10.1016/j.future.2021.11.021_b5) 2016; 18 Matsuda (10.1016/j.future.2021.11.021_b21) 2018; 30 Zheng (10.1016/j.future.2021.11.021_b30) 2019; 32 Clements (10.1016/j.future.2021.11.021_b1) 2018; 50 Jafar (10.1016/j.future.2021.11.021_b27) 2019; 11 Zheng (10.1016/j.future.2021.11.021_b29) 2020; 20 Bb (10.1016/j.future.2021.11.021_b31) 2021 10.1016/j.future.2021.11.021_b32 Prassler (10.1016/j.future.2021.11.021_b22) 2017; 24 Ghasempour (10.1016/j.future.2021.11.021_b24) 2006 Omar (10.1016/j.future.2021.11.021_b26) 2018; 38 Long (10.1016/j.future.2021.11.021_b7) 2017; 14 Bouteraa (10.1016/j.future.2021.11.021_b20) 2020; 47 |
| References_xml | – volume: 15 start-page: 331 year: 2017 end-page: 332 ident: b16 article-title: Introduction to the 2016 HAL White Memorial Lecture publication-title: J. Financ. Econom. – volume: 20 start-page: 1322 year: 2019 end-page: 1330 ident: b17 article-title: Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory publication-title: Front. Inf. Technol. Electron. Eng. – volume: 432 start-page: 584 year: 2018 end-page: 595 ident: b25 article-title: Hierarchial learning control with physical human-exoskeleton interaction publication-title: Inform. Sci. – volume: 47 start-page: 489 year: 2020 end-page: 501 ident: b20 article-title: Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation publication-title: Ind. Robot: Int. J. Robot. Res. Appl. – volume: 30 start-page: 207 year: 2018 end-page: 212 ident: b21 article-title: Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb(HAL) for cerebral palsy publication-title: J. Phys. Ther. Sci. – volume: 50 start-page: 145 year: 2018 end-page: 154 ident: b1 article-title: Ocean acidification and molluscan shell taphonomy: Can elevated seawater pCO(2) influence taphonomy in a naticid predator–prey system? publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. – reference: D.L. Pan, F. Gao, Y.J. Miao, et al. A new study on the relative kinematic accuracy reliability of a novel exoskeleton with series-parallel topology, 43 (4) (2015) 383–406. – volume: 32 start-page: 1869 year: 2019 end-page: 1877 ident: b30 article-title: Research on motion pattern recognition of exoskeleton robot based on multimodal machine learning model publication-title: Neural Comput. Appl. – volume: 20 start-page: 11778 year: 2020 end-page: 11786 ident: b29 article-title: Human Motion Capture System based 3D reconstruction on rehabilitation assistance Stability of lower limb rehabilitation exoskeleton robot Climbing Upstairs Posture publication-title: IEEE Sens. J. – volume: 27 start-page: 321 year: 2018 end-page: 329 ident: b2 article-title: Learning virtual impedance for control of a human-coupled lower exoskeleton publication-title: J. Univ. Electron. Sci. Technol. China – volume: 40 start-page: 456 year: 2017 end-page: 462 ident: b15 article-title: Actice elbow flexion is possible in C4 quadriplegia using hybrid assistive limb(HAL(R)) technology: A case study publication-title: J. Spinal Cord Med. – volume: 12 start-page: 1 year: 2017 end-page: 9 ident: b11 article-title: Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography(sEMG) signals publication-title: J. Biomech. Sci. Eng. – start-page: 85 year: 2006 end-page: 92 ident: b24 article-title: A new genetic based algorithm for channel assignment problem publication-title: Computational Intelligence, Theory and Applications – volume: 79 start-page: 36 year: 2015 end-page: 46 ident: b6 article-title: Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms publication-title: Adv. Eng. Softw. – volume: 1 start-page: 1 year: 2017 end-page: 23 ident: b19 article-title: Toward wearable supernumerary robotic fifingers to compensate missing grasping abilities in hemiparetic upper limb publication-title: Int. J. Robot. Res. – volume: 14 start-page: 272 year: 2017 end-page: 283 ident: b7 article-title: Development and analysis of an electrically actuated lower extremity assistive exoskeleton publication-title: J. Bionic Eng. – volume: 19 start-page: 5527 year: 2017 end-page: 5539 ident: b14 article-title: Biomechanics analysis of human lower limb during walking for exoskeleton design publication-title: J. Vibroeng. – volume: 40 start-page: 657 year: 2016 end-page: 666 ident: b23 article-title: Swinging leg control of a lower limb exoskeleton via a shoe with in-sole sensing publication-title: Trans. Canad. Soc. Mech. Eng. – volume: 18 start-page: 5432 year: 2016 end-page: 5439 ident: b5 article-title: Optimization of the control scheme for human extremity exoskeleton publication-title: J. Vibroeng. – reference: Z. Li, K. Zhao, L. Zhang, et al. Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking, IEEE/ASME Trans. Mechatronics – volume: 026 start-page: 252 year: 2019 end-page: 259 ident: b18 article-title: Human–robot interactive information sensing system for gait rehabilitation training robot publication-title: Chin. J. Eng. Des. – reference: B. Brahmi, M. Saad, S. Youcef, et al. Robust adaptive control for uncertain wearable exoskeleton robot using time delay estimation, Energy Convers. Manage. – volume: 125 start-page: 352 year: 2021 end-page: 363 ident: b9 article-title: Analysis and experimental research on stability characteristics of squatting posture of wearable lower limb exoskeleton robot publication-title: Future Gener. Comput. Syst. – volume: 10 start-page: 1 year: 2018 end-page: 11 ident: b28 article-title: Online covariate shift detection-based adaptive Brain-Computer interface to trigger hand exoskeleton feedback for Neuro-Rehabilitaion publication-title: IEEE Trans. Cogn. Dev. Syst. – volume: 24 start-page: 8 year: 2017 end-page: 10 ident: b22 article-title: Team ReWalk Ranked first in the cybathlon 2016 exoskeleton final publication-title: IEEE Robot. Autom. Mag. – volume: 11 start-page: 1 year: 2019 end-page: 23 ident: b27 article-title: Real-time walking pattern generation for a lower limb exoskeleton implemented on the Exoped robot publication-title: Robot. Auton. Syst. – volume: 16 start-page: 904 year: 2018 end-page: 911 ident: b13 article-title: Zhang dynamics based tracking control of knee exoskeleton with timedependent inertial and viscous parameters publication-title: Int. J. Control Autom. Syst. – volume: 38 start-page: 61 year: 2018 end-page: 87 ident: b26 article-title: Feedback control of an exoskeleton for paraplegics: Toward robustly stable hands-free dynamic walking publication-title: IEEE Control Syst. Mag. – reference: . – start-page: 1224 year: 2021 end-page: 1242 ident: b31 article-title: Impedance learning control for physical human–robot cooperative interaction publication-title: Math. Comput. Simulation – volume: 13 start-page: 1 year: 2016 end-page: 12 ident: b3 article-title: Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton publication-title: J. Neuroeng. Rehabil. – volume: 13 start-page: 1 year: 2018 end-page: 36 ident: b12 article-title: Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter publication-title: Plos One – volume: 5 start-page: 1711 year: 2021 end-page: 1716 ident: b10 article-title: Optimal task-invariant energetic control for a Knee-Ankle exoskeleton publication-title: IEEE Control Syst. Lett. – start-page: 1224 issue: 190 year: 2021 ident: 10.1016/j.future.2021.11.021_b31 article-title: Impedance learning control for physical human–robot cooperative interaction publication-title: Math. Comput. Simulation – ident: 10.1016/j.future.2021.11.021_b8 doi: 10.1016/j.enconman.2021.114640 – volume: 19 start-page: 5527 issue: 7 year: 2017 ident: 10.1016/j.future.2021.11.021_b14 article-title: Biomechanics analysis of human lower limb during walking for exoskeleton design publication-title: J. Vibroeng. doi: 10.21595/jve.2017.18459 – volume: 16 start-page: 904 issue: 2 year: 2018 ident: 10.1016/j.future.2021.11.021_b13 article-title: Zhang dynamics based tracking control of knee exoskeleton with timedependent inertial and viscous parameters publication-title: Int. J. Control Autom. Syst. doi: 10.1007/s12555-017-0011-8 – volume: 30 start-page: 207 issue: 2 year: 2018 ident: 10.1016/j.future.2021.11.021_b21 article-title: Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb(HAL) for cerebral palsy publication-title: J. Phys. Ther. Sci. doi: 10.1589/jpts.30.207 – volume: 40 start-page: 657 issue: 4 year: 2016 ident: 10.1016/j.future.2021.11.021_b23 article-title: Swinging leg control of a lower limb exoskeleton via a shoe with in-sole sensing publication-title: Trans. Canad. Soc. Mech. Eng. doi: 10.1139/tcsme-2016-0053 – volume: 432 start-page: 584 year: 2018 ident: 10.1016/j.future.2021.11.021_b25 article-title: Hierarchial learning control with physical human-exoskeleton interaction publication-title: Inform. Sci. doi: 10.1016/j.ins.2017.09.068 – volume: 20 start-page: 1322 issue: 10 year: 2019 ident: 10.1016/j.future.2021.11.021_b17 article-title: Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory publication-title: Front. Inf. Technol. Electron. Eng. doi: 10.1631/FITEE.1800777 – volume: 18 start-page: 5432 issue: 8 year: 2016 ident: 10.1016/j.future.2021.11.021_b5 article-title: Optimization of the control scheme for human extremity exoskeleton publication-title: J. Vibroeng. doi: 10.21595/jve.2016.17397 – volume: 27 start-page: 321 issue: 3 year: 2018 ident: 10.1016/j.future.2021.11.021_b2 article-title: Learning virtual impedance for control of a human-coupled lower exoskeleton publication-title: J. Univ. Electron. Sci. Technol. China – volume: 125 start-page: 352 issue: 7 year: 2021 ident: 10.1016/j.future.2021.11.021_b9 article-title: Analysis and experimental research on stability characteristics of squatting posture of wearable lower limb exoskeleton robot publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.06.053 – start-page: 85 year: 2006 ident: 10.1016/j.future.2021.11.021_b24 article-title: A new genetic based algorithm for channel assignment problem – volume: 24 start-page: 8 issue: 4 year: 2017 ident: 10.1016/j.future.2021.11.021_b22 article-title: Team ReWalk Ranked first in the cybathlon 2016 exoskeleton final publication-title: IEEE Robot. Autom. Mag. doi: 10.1109/MRA.2017.2757638 – volume: 20 start-page: 11778 issue: 20 year: 2020 ident: 10.1016/j.future.2021.11.021_b29 article-title: Human Motion Capture System based 3D reconstruction on rehabilitation assistance Stability of lower limb rehabilitation exoskeleton robot Climbing Upstairs Posture publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2019.2937559 – volume: 50 start-page: 145 issue: 7 year: 2018 ident: 10.1016/j.future.2021.11.021_b1 article-title: Ocean acidification and molluscan shell taphonomy: Can elevated seawater pCO(2) influence taphonomy in a naticid predator–prey system? publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol. doi: 10.1016/j.palaeo.2018.07.007 – volume: 10 start-page: 1 issue: 4 year: 2018 ident: 10.1016/j.future.2021.11.021_b28 article-title: Online covariate shift detection-based adaptive Brain-Computer interface to trigger hand exoskeleton feedback for Neuro-Rehabilitaion publication-title: IEEE Trans. Cogn. Dev. Syst. – ident: 10.1016/j.future.2021.11.021_b4 doi: 10.1080/15397734.2015.1008013 – volume: 13 start-page: 1 issue: 7 year: 2018 ident: 10.1016/j.future.2021.11.021_b12 article-title: Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter publication-title: Plos One doi: 10.1371/journal.pone.0200193 – volume: 14 start-page: 272 issue: 2 year: 2017 ident: 10.1016/j.future.2021.11.021_b7 article-title: Development and analysis of an electrically actuated lower extremity assistive exoskeleton publication-title: J. Bionic Eng. doi: 10.1016/S1672-6529(16)60397-9 – volume: 1 start-page: 1 issue: 1 year: 2017 ident: 10.1016/j.future.2021.11.021_b19 article-title: Toward wearable supernumerary robotic fifingers to compensate missing grasping abilities in hemiparetic upper limb publication-title: Int. J. Robot. Res. – volume: 12 start-page: 1 issue: 2 year: 2017 ident: 10.1016/j.future.2021.11.021_b11 article-title: Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography(sEMG) signals publication-title: J. Biomech. Sci. Eng. doi: 10.1299/jbse.16-00595 – volume: 32 start-page: 1869 issue: 7 year: 2019 ident: 10.1016/j.future.2021.11.021_b30 article-title: Research on motion pattern recognition of exoskeleton robot based on multimodal machine learning model publication-title: Neural Comput. Appl. doi: 10.1007/s00521-019-04567-1 – volume: 38 start-page: 61 issue: 6 year: 2018 ident: 10.1016/j.future.2021.11.021_b26 article-title: Feedback control of an exoskeleton for paraplegics: Toward robustly stable hands-free dynamic walking publication-title: IEEE Control Syst. Mag. doi: 10.1109/MCS.2018.2866604 – volume: 79 start-page: 36 issue: 8 year: 2015 ident: 10.1016/j.future.2021.11.021_b6 article-title: Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2014.09.005 – volume: 47 start-page: 489 issue: 4 year: 2020 ident: 10.1016/j.future.2021.11.021_b20 article-title: Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation publication-title: Ind. Robot: Int. J. Robot. Res. Appl. doi: 10.1108/IR-02-2020-0041 – volume: 11 start-page: 1 issue: 6 year: 2019 ident: 10.1016/j.future.2021.11.021_b27 article-title: Real-time walking pattern generation for a lower limb exoskeleton implemented on the Exoped robot publication-title: Robot. Auton. Syst. – volume: 40 start-page: 456 issue: 4 year: 2017 ident: 10.1016/j.future.2021.11.021_b15 article-title: Actice elbow flexion is possible in C4 quadriplegia using hybrid assistive limb(HAL(R)) technology: A case study publication-title: J. Spinal Cord Med. doi: 10.1080/10790268.2017.1305036 – volume: 15 start-page: 331 issue: 3 year: 2017 ident: 10.1016/j.future.2021.11.021_b16 article-title: Introduction to the 2016 HAL White Memorial Lecture publication-title: J. Financ. Econom. – ident: 10.1016/j.future.2021.11.021_b32 doi: 10.1109/TMECH.2020.3044289 – volume: 13 start-page: 1 issue: 4 year: 2016 ident: 10.1016/j.future.2021.11.021_b3 article-title: Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton publication-title: J. Neuroeng. Rehabil. – volume: 026 start-page: 252 issue: 003 year: 2019 ident: 10.1016/j.future.2021.11.021_b18 article-title: Human–robot interactive information sensing system for gait rehabilitation training robot publication-title: Chin. J. Eng. Des. – volume: 5 start-page: 1711 issue: 5 year: 2021 ident: 10.1016/j.future.2021.11.021_b10 article-title: Optimal task-invariant energetic control for a Knee-Ankle exoskeleton publication-title: IEEE Control Syst. Lett. doi: 10.1109/LCSYS.2020.3043838 |
| SSID | ssj0001731 |
| Score | 2.5258348 |
| Snippet | In order to solve the problem of movement coordination and stability between the wearable medical robotics and the wearer, analysis the structure of lower... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 187 |
| SubjectTerms | Improved particle swarm optimization algorithm Motion characteristics Structural optimization Wearable medical robotics |
| Title | Research on structure optimization and motion characteristics of wearable medical robotics based on Improved Particle Swarm Optimization Algorithm |
| URI | https://dx.doi.org/10.1016/j.future.2021.11.021 |
| Volume | 129 |
| WOSCitedRecordID | wos000812989400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1872-7115 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001731 issn: 0167-739X databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1PT9swFLcq2GGXjf3T2Njkw24oVdIkdXysEGjbgSGNSd0uke3aENQm0BXo5-Bj8Cl5tp_TABMbh12iyK3ttO-X957fX0I-xTI3SaxkJHSiokzZV0oyDQQRxrrxQOkQrtkE298vxmN-0Otdh1yYiymr62K55Kf_ldQwBsS2qbOPIHe7KAzAPRAdrkB2uP4T4UMsnXUD-Oqw1kfQAGuYYc6lcxj49j028fdWwWbQHS9hukuomqETZ97Ixn1oRd7ErutNEXB_gA-w_f1SzGfb37q7jKZHzbxaHM-6CvCeq2FiGzdrxJ7CvhJYVLrV8X8da8-HflYrqz-ONOdnAOujNpqoOndorJZYRxzNGHACXkW_oGUTODZLXV_dFWtGa4hnrgmKZi-nE9-9-p4I8NaIk76vydKHvZK-rdPqE7FvV9y-Iwnb-MQQ-nZS-lVKuwoclsrY1ixYH7CcAwddH33ZHX9t5X7CsPsl_pCQqOmiCe8_zZ8VoY5yc7hBnuGphI48MV-Qnq5fkueh4wdFAfCKXAVw0aamLbhoF1wUwEU9uOgdcNHG0AAuiuCiAVzUgcuuG8BFA7ioAxftgou24HpNfuztHu58jrCrR6TgeLoA6ZoXqpgIJRQTmeCZSbNUFwZURRYrY_KhNhMlhzzNVcoEn-R6kKdKJEza9htF-oas1U2t3xIq40SKwmafD9MsNolUsZGZlgMuCy043yRp-ItLhSXvbeeVafkQgTdJ1M469SVf_vJ9FqhXotrq1dESIPngzHeP3Ok9ebp6dbbIGpBZfyBP1MWi-j3_iHi8Adcqxt4 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+structure+optimization+and+motion+characteristics+of+wearable+medical+robotics+based+on+Improved+Particle+Swarm+Optimization+Algorithm&rft.jtitle=Future+generation+computer+systems&rft.au=Zheng%2C+Yi&rft.au=Wang%2C+Youqiang&rft.au=Liu%2C+Jixin&rft.date=2022-04-01&rft.issn=0167-739X&rft.volume=129&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1016%2Fj.future.2021.11.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2021_11_021 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon |