Research on structure optimization and motion characteristics of wearable medical robotics based on Improved Particle Swarm Optimization Algorithm

In order to solve the problem of movement coordination and stability between the wearable medical robotics and the wearer, analysis the structure of lower limbs and movement gait of human body, obtains the structure principle and motion characteristics of human lower limbs;Based on anthropomorphic d...

Full description

Saved in:
Bibliographic Details
Published in:Future generation computer systems Vol. 129; pp. 187 - 198
Main Authors: Zheng, Yi, Wang, Youqiang, Liu, Jixin
Format: Journal Article
Language:English
Published: Elsevier B.V 01.04.2022
Subjects:
ISSN:0167-739X, 1872-7115
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract In order to solve the problem of movement coordination and stability between the wearable medical robotics and the wearer, analysis the structure of lower limbs and movement gait of human body, obtains the structure principle and motion characteristics of human lower limbs;Based on anthropomorphic design criteria, proposed a wearable medical robotics, use particle swarm optimization (PSO) to optimize the installation position of the hydraulic cylinder at hip joint and knee joint, The optimal parameters of the hip and knee variables were obtained through optimization. Adopt the idea of passive drive instead of active drive, designed the hydraulic drive system and control signal amplifying circuit, established the mathematical model of the four-way sliding valve with zero opening and analyzed its stability; Use AMESim software to build the model of the hydraulic system, and conducted the motion simulation test of the hydraulic system, the results show that:The working process of the hydraulic cylinder meets the characteristics of lower limbs movement of the wearer; built the experiment platform and conducted the walking attitude experiment, the result shows that:the pressure measured by the pressure sensor modules at both ends of the soles of the feet, and the mean pressure of the soles of the feet will fluctuate between 0 and 800 N with the motion of the man–machine system, the X-axis acceleration, Y-axis acceleration, Z-axis acceleration and the acceleration scalar are all changing within the range of -10 m/s2∼20 m/s2, meeting the requirements of normal human movement. •Using particle swarm optimization (PSO) to optimize the installation position of the hydraulic cylinder at hip joint and knee joint.•Due to the dynamic characteristics of hydraulic actuators affect the stability of hydraulic system in a great extent, established the mathematical model of non-symmetric hydraulic cylinder system of zero-opening four-way slide valve, through Bode diagram and Nyquist curve analyze the stability of hydraulic system; Use AMESim software to build the hydraulic system, and carry on motion simulation.•The hydraulic system reduces the structural complexity and overall quality of the wearable medical robotics driving system and provides an important reference value for the lightweight research of human–machine system.
AbstractList In order to solve the problem of movement coordination and stability between the wearable medical robotics and the wearer, analysis the structure of lower limbs and movement gait of human body, obtains the structure principle and motion characteristics of human lower limbs;Based on anthropomorphic design criteria, proposed a wearable medical robotics, use particle swarm optimization (PSO) to optimize the installation position of the hydraulic cylinder at hip joint and knee joint, The optimal parameters of the hip and knee variables were obtained through optimization. Adopt the idea of passive drive instead of active drive, designed the hydraulic drive system and control signal amplifying circuit, established the mathematical model of the four-way sliding valve with zero opening and analyzed its stability; Use AMESim software to build the model of the hydraulic system, and conducted the motion simulation test of the hydraulic system, the results show that:The working process of the hydraulic cylinder meets the characteristics of lower limbs movement of the wearer; built the experiment platform and conducted the walking attitude experiment, the result shows that:the pressure measured by the pressure sensor modules at both ends of the soles of the feet, and the mean pressure of the soles of the feet will fluctuate between 0 and 800 N with the motion of the man–machine system, the X-axis acceleration, Y-axis acceleration, Z-axis acceleration and the acceleration scalar are all changing within the range of -10 m/s2∼20 m/s2, meeting the requirements of normal human movement. •Using particle swarm optimization (PSO) to optimize the installation position of the hydraulic cylinder at hip joint and knee joint.•Due to the dynamic characteristics of hydraulic actuators affect the stability of hydraulic system in a great extent, established the mathematical model of non-symmetric hydraulic cylinder system of zero-opening four-way slide valve, through Bode diagram and Nyquist curve analyze the stability of hydraulic system; Use AMESim software to build the hydraulic system, and carry on motion simulation.•The hydraulic system reduces the structural complexity and overall quality of the wearable medical robotics driving system and provides an important reference value for the lightweight research of human–machine system.
Author Liu, Jixin
Wang, Youqiang
Zheng, Yi
Author_xml – sequence: 1
  givenname: Yi
  surname: Zheng
  fullname: Zheng, Yi
  email: fwzy2019@163.com
  organization: School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, China
– sequence: 2
  givenname: Youqiang
  orcidid: 0000-0003-1701-1382
  surname: Wang
  fullname: Wang, Youqiang
  email: littlsunny@sdust.edu.cn
  organization: School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao, 266520, China
– sequence: 3
  givenname: Jixin
  surname: Liu
  fullname: Liu, Jixin
  email: 121663260@qq.com
  organization: Institute of Intelligence and Manufacture, Qingdao Huanghai University, Qingdao, 266427, China
BookMark eNqFkM9q3DAQxkVJIZu0b5CDXsCuZNmW3UMhhP4JBFKSFnoT47HU1WJby0ibkD5Gnzja3RxKD-3pG2bm9w3znbGTJSyWsQspSilk-25Tul3akS0rUclSyjLLK7aSna4KLWVzwlZ5TRda9T9O2VmMGyGE1Equ2O87Gy0QrnlYeEy0w70RD9vkZ_8Lks9tWEY-h0OJayDAZMnH5DHy4PhjxmGYLJ_t6BEmTmEIh-EA0Y573-t5S-Eh11-B8iTv3j8Czfz2zyuX089APq3nN-y1gynaty96zr5_-vjt6ktxc_v5-urypkAl2lT0sumwGwEBNdTQ107Vynaurlot0LmmtW7Eoe1Vg0pDPza2ahSC1EMnmqpT56w--iKFGMk6syU_Az0ZKcw-V7Mxx1zNPlcjpcmSsfd_YejT4YVE4Kf_wR-OsM2PPXhLJqK3C-boyGIyY_D_NngG2oqeLw
CitedBy_id crossref_primary_10_1016_j_eswa_2025_127416
crossref_primary_10_1038_s41598_024_64486_7
crossref_primary_10_1007_s43538_023_00185_7
crossref_primary_10_1109_ACCESS_2023_3243942
crossref_primary_10_3390_math12111617
crossref_primary_10_3390_sym16060778
crossref_primary_10_32604_cmc_2024_050596
crossref_primary_10_1080_15376494_2024_2361069
crossref_primary_10_1051_bioconf_202515104005
crossref_primary_10_1007_s11082_024_06820_x
crossref_primary_10_3390_wevj15070306
crossref_primary_10_21062_mft_2024_055
crossref_primary_10_1007_s11082_024_06928_0
crossref_primary_10_1016_j_sna_2024_115034
crossref_primary_10_1016_j_heliyon_2024_e31397
crossref_primary_10_1016_j_mtcomm_2024_109222
crossref_primary_10_1007_s11082_024_06277_y
crossref_primary_10_1016_j_diamond_2024_111228
crossref_primary_10_3390_met14060634
crossref_primary_10_3390_math11081911
crossref_primary_10_1186_s40538_024_00579_9
crossref_primary_10_1007_s11082_024_06805_w
crossref_primary_10_1007_s12346_024_01004_0
crossref_primary_10_1016_j_vacuum_2025_114280
crossref_primary_10_1007_s11082_024_06497_2
crossref_primary_10_1007_s11082_024_07041_y
crossref_primary_10_1007_s12596_024_01979_8
crossref_primary_10_1016_j_istruc_2024_106837
crossref_primary_10_3233_JCM_247286
crossref_primary_10_1088_1742_6596_2581_1_012003
crossref_primary_10_1109_ACCESS_2022_3214850
crossref_primary_10_3389_fbioe_2022_884318
crossref_primary_10_1109_ACCESS_2024_3382195
crossref_primary_10_1142_S0217984924504621
crossref_primary_10_1007_s11071_024_09706_5
crossref_primary_10_3390_electronics13132630
crossref_primary_10_1515_phys_2024_0027
crossref_primary_10_1016_j_isci_2025_112109
crossref_primary_10_1088_1402_4896_ad4d28
Cites_doi 10.1016/j.enconman.2021.114640
10.21595/jve.2017.18459
10.1007/s12555-017-0011-8
10.1589/jpts.30.207
10.1139/tcsme-2016-0053
10.1016/j.ins.2017.09.068
10.1631/FITEE.1800777
10.21595/jve.2016.17397
10.1016/j.future.2021.06.053
10.1109/MRA.2017.2757638
10.1109/JSEN.2019.2937559
10.1016/j.palaeo.2018.07.007
10.1080/15397734.2015.1008013
10.1371/journal.pone.0200193
10.1016/S1672-6529(16)60397-9
10.1299/jbse.16-00595
10.1007/s00521-019-04567-1
10.1109/MCS.2018.2866604
10.1016/j.advengsoft.2014.09.005
10.1108/IR-02-2020-0041
10.1080/10790268.2017.1305036
10.1109/TMECH.2020.3044289
10.1109/LCSYS.2020.3043838
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2021.11.021
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 198
ExternalDocumentID 10_1016_j_future_2021_11_021
S0167739X21004581
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-9158c8dacac7a4a94f343e8f42670cff56efdcb6935c37a9d5e253ca17b805283
ISICitedReferencesCount 42
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000812989400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Tue Nov 18 22:39:01 EST 2025
Sat Nov 29 07:27:57 EST 2025
Fri Feb 23 02:41:34 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Motion characteristics
Improved particle swarm optimization algorithm
Structural optimization
Wearable medical robotics
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-9158c8dacac7a4a94f343e8f42670cff56efdcb6935c37a9d5e253ca17b805283
ORCID 0000-0003-1701-1382
PageCount 12
ParticipantIDs crossref_primary_10_1016_j_future_2021_11_021
crossref_citationtrail_10_1016_j_future_2021_11_021
elsevier_sciencedirect_doi_10_1016_j_future_2021_11_021
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Haung, Cheng, Guo (b25) 2018; 432
Anirban, Haider, Yogesh (b28) 2018; 10
Z. Li, K. Zhao, L. Zhang, et al. Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking, IEEE/ASME Trans. Mechatronics
Omar, Ayonga, Ayush (b26) 2018; 38
Li, Yin (b13) 2018; 16
Huang, Cheng, Guo (b2) 2018; 27
Jafar, Sadjaad (b27) 2019; 11
Zheng, Zhong, Liu, Yang, Yue (b29) 2020; 20
B. Brahmi, M. Saad, S. Youcef, et al. Robust adaptive control for uncertain wearable exoskeleton robot using time delay estimation, Energy Convers. Manage.
Deng, Ma, Wang (b17) 2019; 20
Sado, Yap, Ghazilla (b12) 2018; 13
Chen, Mu, Du (b14) 2017; 19
Shimizu, Kadone, Kubota (b15) 2017; 40
Guo, Mao, Han (b18) 2019; 026
Matsuda, Mataki (b21) 2018; 30
Ghasempour, Menhaj (b24) 2006
Bb, Ieb, Mhl (b31) 2021
.
Zhu, Zhang, Fan (b23) 2016; 40
Zheng, Wang, J. (b9) 2021; 125
Irfan, Giovanni, Gionata (b19) 2017; 1
D.L. Pan, F. Gao, Y.J. Miao, et al. A new study on the relative kinematic accuracy reliability of a novel exoskeleton with series-parallel topology, 43 (4) (2015) 383–406.
Pan, Gao, Miao (b6) 2015; 79
Mooney, Herr (b3) 2016; 13
Clements, Coffin, Lavaud (b1) 2018; 50
Bouteraa, Abdallah, Elmogy (b20) 2020; 47
Long, Du, Chen (b7) 2017; 14
Bandi, Patton (b16) 2017; 15
Li, Xu, Guan (b5) 2016; 18
Prassler, Baroncelli, Lkanovic (b22) 2017; 24
Zheng, Song, Liu (b30) 2019; 32
Park, Park, Kim (b11) 2017; 12
Lin, Divekar, Lv (b10) 2021; 5
10.1016/j.future.2021.11.021_b4
Sado (10.1016/j.future.2021.11.021_b12) 2018; 13
10.1016/j.future.2021.11.021_b8
Zheng (10.1016/j.future.2021.11.021_b9) 2021; 125
Chen (10.1016/j.future.2021.11.021_b14) 2017; 19
Shimizu (10.1016/j.future.2021.11.021_b15) 2017; 40
Li (10.1016/j.future.2021.11.021_b13) 2018; 16
Guo (10.1016/j.future.2021.11.021_b18) 2019; 026
Huang (10.1016/j.future.2021.11.021_b2) 2018; 27
Lin (10.1016/j.future.2021.11.021_b10) 2021; 5
Pan (10.1016/j.future.2021.11.021_b6) 2015; 79
Deng (10.1016/j.future.2021.11.021_b17) 2019; 20
Anirban (10.1016/j.future.2021.11.021_b28) 2018; 10
Haung (10.1016/j.future.2021.11.021_b25) 2018; 432
Zhu (10.1016/j.future.2021.11.021_b23) 2016; 40
Bandi (10.1016/j.future.2021.11.021_b16) 2017; 15
Park (10.1016/j.future.2021.11.021_b11) 2017; 12
Mooney (10.1016/j.future.2021.11.021_b3) 2016; 13
Irfan (10.1016/j.future.2021.11.021_b19) 2017; 1
Li (10.1016/j.future.2021.11.021_b5) 2016; 18
Matsuda (10.1016/j.future.2021.11.021_b21) 2018; 30
Zheng (10.1016/j.future.2021.11.021_b30) 2019; 32
Clements (10.1016/j.future.2021.11.021_b1) 2018; 50
Jafar (10.1016/j.future.2021.11.021_b27) 2019; 11
Zheng (10.1016/j.future.2021.11.021_b29) 2020; 20
Bb (10.1016/j.future.2021.11.021_b31) 2021
10.1016/j.future.2021.11.021_b32
Prassler (10.1016/j.future.2021.11.021_b22) 2017; 24
Ghasempour (10.1016/j.future.2021.11.021_b24) 2006
Omar (10.1016/j.future.2021.11.021_b26) 2018; 38
Long (10.1016/j.future.2021.11.021_b7) 2017; 14
Bouteraa (10.1016/j.future.2021.11.021_b20) 2020; 47
References_xml – volume: 15
  start-page: 331
  year: 2017
  end-page: 332
  ident: b16
  article-title: Introduction to the 2016 HAL White Memorial Lecture
  publication-title: J. Financ. Econom.
– volume: 20
  start-page: 1322
  year: 2019
  end-page: 1330
  ident: b17
  article-title: Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory
  publication-title: Front. Inf. Technol. Electron. Eng.
– volume: 432
  start-page: 584
  year: 2018
  end-page: 595
  ident: b25
  article-title: Hierarchial learning control with physical human-exoskeleton interaction
  publication-title: Inform. Sci.
– volume: 47
  start-page: 489
  year: 2020
  end-page: 501
  ident: b20
  article-title: Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation
  publication-title: Ind. Robot: Int. J. Robot. Res. Appl.
– volume: 30
  start-page: 207
  year: 2018
  end-page: 212
  ident: b21
  article-title: Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb(HAL) for cerebral palsy
  publication-title: J. Phys. Ther. Sci.
– volume: 50
  start-page: 145
  year: 2018
  end-page: 154
  ident: b1
  article-title: Ocean acidification and molluscan shell taphonomy: Can elevated seawater pCO(2) influence taphonomy in a naticid predator–prey system?
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
– reference: D.L. Pan, F. Gao, Y.J. Miao, et al. A new study on the relative kinematic accuracy reliability of a novel exoskeleton with series-parallel topology, 43 (4) (2015) 383–406.
– volume: 32
  start-page: 1869
  year: 2019
  end-page: 1877
  ident: b30
  article-title: Research on motion pattern recognition of exoskeleton robot based on multimodal machine learning model
  publication-title: Neural Comput. Appl.
– volume: 20
  start-page: 11778
  year: 2020
  end-page: 11786
  ident: b29
  article-title: Human Motion Capture System based 3D reconstruction on rehabilitation assistance Stability of lower limb rehabilitation exoskeleton robot Climbing Upstairs Posture
  publication-title: IEEE Sens. J.
– volume: 27
  start-page: 321
  year: 2018
  end-page: 329
  ident: b2
  article-title: Learning virtual impedance for control of a human-coupled lower exoskeleton
  publication-title: J. Univ. Electron. Sci. Technol. China
– volume: 40
  start-page: 456
  year: 2017
  end-page: 462
  ident: b15
  article-title: Actice elbow flexion is possible in C4 quadriplegia using hybrid assistive limb(HAL(R)) technology: A case study
  publication-title: J. Spinal Cord Med.
– volume: 12
  start-page: 1
  year: 2017
  end-page: 9
  ident: b11
  article-title: Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography(sEMG) signals
  publication-title: J. Biomech. Sci. Eng.
– start-page: 85
  year: 2006
  end-page: 92
  ident: b24
  article-title: A new genetic based algorithm for channel assignment problem
  publication-title: Computational Intelligence, Theory and Applications
– volume: 79
  start-page: 36
  year: 2015
  end-page: 46
  ident: b6
  article-title: Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms
  publication-title: Adv. Eng. Softw.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 23
  ident: b19
  article-title: Toward wearable supernumerary robotic fifingers to compensate missing grasping abilities in hemiparetic upper limb
  publication-title: Int. J. Robot. Res.
– volume: 14
  start-page: 272
  year: 2017
  end-page: 283
  ident: b7
  article-title: Development and analysis of an electrically actuated lower extremity assistive exoskeleton
  publication-title: J. Bionic Eng.
– volume: 19
  start-page: 5527
  year: 2017
  end-page: 5539
  ident: b14
  article-title: Biomechanics analysis of human lower limb during walking for exoskeleton design
  publication-title: J. Vibroeng.
– volume: 40
  start-page: 657
  year: 2016
  end-page: 666
  ident: b23
  article-title: Swinging leg control of a lower limb exoskeleton via a shoe with in-sole sensing
  publication-title: Trans. Canad. Soc. Mech. Eng.
– volume: 18
  start-page: 5432
  year: 2016
  end-page: 5439
  ident: b5
  article-title: Optimization of the control scheme for human extremity exoskeleton
  publication-title: J. Vibroeng.
– reference: Z. Li, K. Zhao, L. Zhang, et al. Human-in-the-loop control of a wearable lower limb exoskeleton for stable dynamic walking, IEEE/ASME Trans. Mechatronics
– volume: 026
  start-page: 252
  year: 2019
  end-page: 259
  ident: b18
  article-title: Human–robot interactive information sensing system for gait rehabilitation training robot
  publication-title: Chin. J. Eng. Des.
– reference: B. Brahmi, M. Saad, S. Youcef, et al. Robust adaptive control for uncertain wearable exoskeleton robot using time delay estimation, Energy Convers. Manage.
– volume: 125
  start-page: 352
  year: 2021
  end-page: 363
  ident: b9
  article-title: Analysis and experimental research on stability characteristics of squatting posture of wearable lower limb exoskeleton robot
  publication-title: Future Gener. Comput. Syst.
– volume: 10
  start-page: 1
  year: 2018
  end-page: 11
  ident: b28
  article-title: Online covariate shift detection-based adaptive Brain-Computer interface to trigger hand exoskeleton feedback for Neuro-Rehabilitaion
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– volume: 24
  start-page: 8
  year: 2017
  end-page: 10
  ident: b22
  article-title: Team ReWalk Ranked first in the cybathlon 2016 exoskeleton final
  publication-title: IEEE Robot. Autom. Mag.
– volume: 11
  start-page: 1
  year: 2019
  end-page: 23
  ident: b27
  article-title: Real-time walking pattern generation for a lower limb exoskeleton implemented on the Exoped robot
  publication-title: Robot. Auton. Syst.
– volume: 16
  start-page: 904
  year: 2018
  end-page: 911
  ident: b13
  article-title: Zhang dynamics based tracking control of knee exoskeleton with timedependent inertial and viscous parameters
  publication-title: Int. J. Control Autom. Syst.
– volume: 38
  start-page: 61
  year: 2018
  end-page: 87
  ident: b26
  article-title: Feedback control of an exoskeleton for paraplegics: Toward robustly stable hands-free dynamic walking
  publication-title: IEEE Control Syst. Mag.
– reference: .
– start-page: 1224
  year: 2021
  end-page: 1242
  ident: b31
  article-title: Impedance learning control for physical human–robot cooperative interaction
  publication-title: Math. Comput. Simulation
– volume: 13
  start-page: 1
  year: 2016
  end-page: 12
  ident: b3
  article-title: Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton
  publication-title: J. Neuroeng. Rehabil.
– volume: 13
  start-page: 1
  year: 2018
  end-page: 36
  ident: b12
  article-title: Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter
  publication-title: Plos One
– volume: 5
  start-page: 1711
  year: 2021
  end-page: 1716
  ident: b10
  article-title: Optimal task-invariant energetic control for a Knee-Ankle exoskeleton
  publication-title: IEEE Control Syst. Lett.
– start-page: 1224
  issue: 190
  year: 2021
  ident: 10.1016/j.future.2021.11.021_b31
  article-title: Impedance learning control for physical human–robot cooperative interaction
  publication-title: Math. Comput. Simulation
– ident: 10.1016/j.future.2021.11.021_b8
  doi: 10.1016/j.enconman.2021.114640
– volume: 19
  start-page: 5527
  issue: 7
  year: 2017
  ident: 10.1016/j.future.2021.11.021_b14
  article-title: Biomechanics analysis of human lower limb during walking for exoskeleton design
  publication-title: J. Vibroeng.
  doi: 10.21595/jve.2017.18459
– volume: 16
  start-page: 904
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2021.11.021_b13
  article-title: Zhang dynamics based tracking control of knee exoskeleton with timedependent inertial and viscous parameters
  publication-title: Int. J. Control Autom. Syst.
  doi: 10.1007/s12555-017-0011-8
– volume: 30
  start-page: 207
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2021.11.021_b21
  article-title: Immediate effects of a single session of robot-assisted gait training using Hybrid Assistive Limb(HAL) for cerebral palsy
  publication-title: J. Phys. Ther. Sci.
  doi: 10.1589/jpts.30.207
– volume: 40
  start-page: 657
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2021.11.021_b23
  article-title: Swinging leg control of a lower limb exoskeleton via a shoe with in-sole sensing
  publication-title: Trans. Canad. Soc. Mech. Eng.
  doi: 10.1139/tcsme-2016-0053
– volume: 432
  start-page: 584
  year: 2018
  ident: 10.1016/j.future.2021.11.021_b25
  article-title: Hierarchial learning control with physical human-exoskeleton interaction
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2017.09.068
– volume: 20
  start-page: 1322
  issue: 10
  year: 2019
  ident: 10.1016/j.future.2021.11.021_b17
  article-title: Fall preventive gait trajectory planning of a lower limb rehabilitation exoskeleton based on capture point theory
  publication-title: Front. Inf. Technol. Electron. Eng.
  doi: 10.1631/FITEE.1800777
– volume: 18
  start-page: 5432
  issue: 8
  year: 2016
  ident: 10.1016/j.future.2021.11.021_b5
  article-title: Optimization of the control scheme for human extremity exoskeleton
  publication-title: J. Vibroeng.
  doi: 10.21595/jve.2016.17397
– volume: 27
  start-page: 321
  issue: 3
  year: 2018
  ident: 10.1016/j.future.2021.11.021_b2
  article-title: Learning virtual impedance for control of a human-coupled lower exoskeleton
  publication-title: J. Univ. Electron. Sci. Technol. China
– volume: 125
  start-page: 352
  issue: 7
  year: 2021
  ident: 10.1016/j.future.2021.11.021_b9
  article-title: Analysis and experimental research on stability characteristics of squatting posture of wearable lower limb exoskeleton robot
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.06.053
– start-page: 85
  year: 2006
  ident: 10.1016/j.future.2021.11.021_b24
  article-title: A new genetic based algorithm for channel assignment problem
– volume: 24
  start-page: 8
  issue: 4
  year: 2017
  ident: 10.1016/j.future.2021.11.021_b22
  article-title: Team ReWalk Ranked first in the cybathlon 2016 exoskeleton final
  publication-title: IEEE Robot. Autom. Mag.
  doi: 10.1109/MRA.2017.2757638
– volume: 20
  start-page: 11778
  issue: 20
  year: 2020
  ident: 10.1016/j.future.2021.11.021_b29
  article-title: Human Motion Capture System based 3D reconstruction on rehabilitation assistance Stability of lower limb rehabilitation exoskeleton robot Climbing Upstairs Posture
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2019.2937559
– volume: 50
  start-page: 145
  issue: 7
  year: 2018
  ident: 10.1016/j.future.2021.11.021_b1
  article-title: Ocean acidification and molluscan shell taphonomy: Can elevated seawater pCO(2) influence taphonomy in a naticid predator–prey system?
  publication-title: Palaeogeogr. Palaeoclimatol. Palaeoecol.
  doi: 10.1016/j.palaeo.2018.07.007
– volume: 10
  start-page: 1
  issue: 4
  year: 2018
  ident: 10.1016/j.future.2021.11.021_b28
  article-title: Online covariate shift detection-based adaptive Brain-Computer interface to trigger hand exoskeleton feedback for Neuro-Rehabilitaion
  publication-title: IEEE Trans. Cogn. Dev. Syst.
– ident: 10.1016/j.future.2021.11.021_b4
  doi: 10.1080/15397734.2015.1008013
– volume: 13
  start-page: 1
  issue: 7
  year: 2018
  ident: 10.1016/j.future.2021.11.021_b12
  article-title: Exoskeleton robot control for synchronous walking assistance in repetitive manual handling works based on dual unscented Kalman filter
  publication-title: Plos One
  doi: 10.1371/journal.pone.0200193
– volume: 14
  start-page: 272
  issue: 2
  year: 2017
  ident: 10.1016/j.future.2021.11.021_b7
  article-title: Development and analysis of an electrically actuated lower extremity assistive exoskeleton
  publication-title: J. Bionic Eng.
  doi: 10.1016/S1672-6529(16)60397-9
– volume: 1
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.future.2021.11.021_b19
  article-title: Toward wearable supernumerary robotic fifingers to compensate missing grasping abilities in hemiparetic upper limb
  publication-title: Int. J. Robot. Res.
– volume: 12
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.future.2021.11.021_b11
  article-title: Performance estimation of the lower limb exoskeleton for plantarflexion using surface electromyography(sEMG) signals
  publication-title: J. Biomech. Sci. Eng.
  doi: 10.1299/jbse.16-00595
– volume: 32
  start-page: 1869
  issue: 7
  year: 2019
  ident: 10.1016/j.future.2021.11.021_b30
  article-title: Research on motion pattern recognition of exoskeleton robot based on multimodal machine learning model
  publication-title: Neural Comput. Appl.
  doi: 10.1007/s00521-019-04567-1
– volume: 38
  start-page: 61
  issue: 6
  year: 2018
  ident: 10.1016/j.future.2021.11.021_b26
  article-title: Feedback control of an exoskeleton for paraplegics: Toward robustly stable hands-free dynamic walking
  publication-title: IEEE Control Syst. Mag.
  doi: 10.1109/MCS.2018.2866604
– volume: 79
  start-page: 36
  issue: 8
  year: 2015
  ident: 10.1016/j.future.2021.11.021_b6
  article-title: Co-simulation research of a novel exoskeleton-human robot system on humanoid gaits with fuzzy-PID/PID algorithms
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2014.09.005
– volume: 47
  start-page: 489
  issue: 4
  year: 2020
  ident: 10.1016/j.future.2021.11.021_b20
  article-title: Design and control of an exoskeleton robot with EMG-driven electrical stimulation for upper limb rehabilitation
  publication-title: Ind. Robot: Int. J. Robot. Res. Appl.
  doi: 10.1108/IR-02-2020-0041
– volume: 11
  start-page: 1
  issue: 6
  year: 2019
  ident: 10.1016/j.future.2021.11.021_b27
  article-title: Real-time walking pattern generation for a lower limb exoskeleton implemented on the Exoped robot
  publication-title: Robot. Auton. Syst.
– volume: 40
  start-page: 456
  issue: 4
  year: 2017
  ident: 10.1016/j.future.2021.11.021_b15
  article-title: Actice elbow flexion is possible in C4 quadriplegia using hybrid assistive limb(HAL(R)) technology: A case study
  publication-title: J. Spinal Cord Med.
  doi: 10.1080/10790268.2017.1305036
– volume: 15
  start-page: 331
  issue: 3
  year: 2017
  ident: 10.1016/j.future.2021.11.021_b16
  article-title: Introduction to the 2016 HAL White Memorial Lecture
  publication-title: J. Financ. Econom.
– ident: 10.1016/j.future.2021.11.021_b32
  doi: 10.1109/TMECH.2020.3044289
– volume: 13
  start-page: 1
  issue: 4
  year: 2016
  ident: 10.1016/j.future.2021.11.021_b3
  article-title: Biomechanical walking mechanisms underlying the metabolic reduction caused by an autonomous exoskeleton
  publication-title: J. Neuroeng. Rehabil.
– volume: 026
  start-page: 252
  issue: 003
  year: 2019
  ident: 10.1016/j.future.2021.11.021_b18
  article-title: Human–robot interactive information sensing system for gait rehabilitation training robot
  publication-title: Chin. J. Eng. Des.
– volume: 5
  start-page: 1711
  issue: 5
  year: 2021
  ident: 10.1016/j.future.2021.11.021_b10
  article-title: Optimal task-invariant energetic control for a Knee-Ankle exoskeleton
  publication-title: IEEE Control Syst. Lett.
  doi: 10.1109/LCSYS.2020.3043838
SSID ssj0001731
Score 2.5258348
Snippet In order to solve the problem of movement coordination and stability between the wearable medical robotics and the wearer, analysis the structure of lower...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 187
SubjectTerms Improved particle swarm optimization algorithm
Motion characteristics
Structural optimization
Wearable medical robotics
Title Research on structure optimization and motion characteristics of wearable medical robotics based on Improved Particle Swarm Optimization Algorithm
URI https://dx.doi.org/10.1016/j.future.2021.11.021
Volume 129
WOSCitedRecordID wos000812989400017&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bT9swFLYq2MNetrGLxi7ID3tDqRISx8ljhUDbNDGksanbS-Q4NgS1CXQF-jv4GfxKju3jNMDExsNeosip7bTn67n5XAj5EEZVInImgrAEFpikZRjkYRoGVaU5B41cp7aLwo8vfG8vG4_z_cHgyufCnE9402SLRX7yX0kNY0Bskzr7AHJ3i8IA3APR4Qpkh-s_Ed7H0pljAFcd1pwRtMAapphzaQ8MXPsek_h7o2Az6I4XMN0mVE3xEGfWlq19aEReZdZ1rgi438cX2Px2IWbTza_9XUaTw3ZWz4-mfQV419YwMY2bFWJPYl8JLCrd6fi_jpTjQz_rpdcfR9qzU4D1YRdNVJ9ZNNYLrCOObgywgJfRL-jZBI7NY9tXd8ma0RvimGuEotnJ6ch1r74jApw34njoarIMYa9oaOq0ukTsmxW3b0nCLj7Rh74dF26VwqwCxlIRmpoFq1uc5cBBV0efdsafO7kfcex-iV_EJ2raaMK7b_NnRain3Bw8I0_QKqEjR8w1MlDNc_LUd_ygKABekEsPLto2tAMX7YOLArioAxe9BS7aaurBRRFc1IOLWnCZdT24qAcXteCifXDRDlwvyffdnYPtjwF29QgkmKdzkK4sk1klpJBcAJ9IdJzEKtOgKvJQas1SpStZpnnMZMxFXjG1xWIpIl6a9htZ_IqsNG2jXhMKpg5jmuc6SaokTGQWxRo0UJBSpVAlC9dJ7H_iQmLJe9N5ZVLcR-B1EnSzTlzJl798nnvqFai2OnW0AEjeO_PNA3d6Sx4v_zrvyAqQWb0nj-T5vP4920A8XgNE68Vx
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Research+on+structure+optimization+and+motion+characteristics+of+wearable+medical+robotics+based+on+Improved+Particle+Swarm+Optimization+Algorithm&rft.jtitle=Future+generation+computer+systems&rft.au=Zheng%2C+Yi&rft.au=Wang%2C+Youqiang&rft.au=Liu%2C+Jixin&rft.date=2022-04-01&rft.issn=0167-739X&rft.volume=129&rft.spage=187&rft.epage=198&rft_id=info:doi/10.1016%2Fj.future.2021.11.021&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2021_11_021
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon