Learning to construct a solution for UAV path planning problem with positioning error correction

Unmanned aerial vehicles (UAVs) are advanced flight systems. However, their positioning systems cause distance-dependent errors during flight. This study seeks to solve the UAV path planning problem with positioning error correction (UPEC) with an end-to-end method. Traditional methods struggle to b...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Knowledge-based systems Ročník 304; s. 112569
Hlavní autoři: Chun, Jie, Chen, Ming, Liu, Xiaolu, Xiang, Shang, Du, Yonghao, Wu, Guohua, Xing, Lining
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 25.11.2024
Témata:
ISSN:0950-7051
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Unmanned aerial vehicles (UAVs) are advanced flight systems. However, their positioning systems cause distance-dependent errors during flight. This study seeks to solve the UAV path planning problem with positioning error correction (UPEC) with an end-to-end method. Traditional methods struggle to balance solution quality and computational overload, and often have limited utilisation of scenario information. To overcome these issues, we propose a path planning model (PPM) based on deep reinforcement learning to solve the UPEC. The model has a complete structure that includes a mathematical model, feature engineering, solution process, neural policy network, scenario generation, training process, and test solution mechanism. Specifically, we first establish a Markov decision process (MDP) for UPEC and apply feature engineering with effective features to support decision-making. We then introduce a path planning neural network (PPNN) to represent the MDP policy. Based on the dataset generated from the multi-rule combination validation, we train the PPNN using the proposed RL algorithm with storage pool. Furthermore, we propose a backtracking mechanism to guarantee solution feasibility during the construction process. Extensive experiments demonstrate that the proposed PPM outperforms existing state-of-the-art algorithms in terms of solution quality and timeliness, and the backtracking mechanism effectively improves the scenario completion rate. The model study indicates the efficacy of our training algorithm and the generalisation of the PPNN. Additionally, our construction process is problem-tailored and more suitable for addressing UPEC than iterative search algorithms, because it effectively mitigates the impact of invalid nodes.
AbstractList Unmanned aerial vehicles (UAVs) are advanced flight systems. However, their positioning systems cause distance-dependent errors during flight. This study seeks to solve the UAV path planning problem with positioning error correction (UPEC) with an end-to-end method. Traditional methods struggle to balance solution quality and computational overload, and often have limited utilisation of scenario information. To overcome these issues, we propose a path planning model (PPM) based on deep reinforcement learning to solve the UPEC. The model has a complete structure that includes a mathematical model, feature engineering, solution process, neural policy network, scenario generation, training process, and test solution mechanism. Specifically, we first establish a Markov decision process (MDP) for UPEC and apply feature engineering with effective features to support decision-making. We then introduce a path planning neural network (PPNN) to represent the MDP policy. Based on the dataset generated from the multi-rule combination validation, we train the PPNN using the proposed RL algorithm with storage pool. Furthermore, we propose a backtracking mechanism to guarantee solution feasibility during the construction process. Extensive experiments demonstrate that the proposed PPM outperforms existing state-of-the-art algorithms in terms of solution quality and timeliness, and the backtracking mechanism effectively improves the scenario completion rate. The model study indicates the efficacy of our training algorithm and the generalisation of the PPNN. Additionally, our construction process is problem-tailored and more suitable for addressing UPEC than iterative search algorithms, because it effectively mitigates the impact of invalid nodes.
ArticleNumber 112569
Author Chen, Ming
Wu, Guohua
Liu, Xiaolu
Xing, Lining
Chun, Jie
Du, Yonghao
Xiang, Shang
Author_xml – sequence: 1
  givenname: Jie
  surname: Chun
  fullname: Chun, Jie
  email: chunjie21@nudt.edu.cn
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, 410073, Hunan, China
– sequence: 2
  givenname: Ming
  surname: Chen
  fullname: Chen, Ming
  email: chenming18@nudt.edu.cn
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, 410073, Hunan, China
– sequence: 3
  givenname: Xiaolu
  orcidid: 0000-0002-5244-790X
  surname: Liu
  fullname: Liu, Xiaolu
  email: lxl_sunny@nudt.edu.cn
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, 410073, Hunan, China
– sequence: 4
  givenname: Shang
  surname: Xiang
  fullname: Xiang, Shang
  email: xiangshang@xtu.edu.cn
  organization: School of Public Administration, XiangTan University, Xiangtan, 411100, Hunan, China
– sequence: 5
  givenname: Yonghao
  surname: Du
  fullname: Du, Yonghao
  email: duyonghao15@nudt.edu.cn
  organization: College of Systems Engineering, National University of Defense Technology, Changsha, 410073, Hunan, China
– sequence: 6
  givenname: Guohua
  surname: Wu
  fullname: Wu, Guohua
  email: guohuawu@csu.edu.cn
  organization: School of Automation, Central South University, Changsha, 410075, Hunan, China
– sequence: 7
  givenname: Lining
  surname: Xing
  fullname: Xing, Lining
  email: lnxing@xidian.edu.cn
  organization: College of Electronic Engineering, Xidian University, Xi’an, 710126, Shanxi, China
BookMark eNqFkM1OwzAQhH0oEm3hDTj4BRLWbuw6HJCqij-pEhfK1TiuAy6pHdkuqG9PTThxgNNKs_ONdmeCRs47g9AFgZIA4Zfb8t35eIglBVqVhFDG6xEaQ82gmAMjp2gS4xYAKCVijF5WRgVn3StOHmvvYgp7nbDC0Xf7ZL3DrQ94vXjGvUpvuO-U-3b3wTed2eFPm1UfbfbmhQnhCGgfgtFZO0MnreqiOf-ZU7S-vXla3herx7uH5WJV6BnwVNSENkDnhjIlQLeiIaqCCnSjOcwYM6wWwEnLjGhqzhrGOTMNEGVE3baCi9kUXQ25OvgYg2mltknlC1JQtpMEZO5HbuXQj8z9yKGfI1z9gvtgdyoc_sOuB8wcH_uwJsiorXHabGz-Xm68_TvgC5Ljh8k
CitedBy_id crossref_primary_10_1088_2631_8695_adcb92
crossref_primary_10_1016_j_asoc_2025_112984
crossref_primary_10_1109_TCYB_2025_3535777
crossref_primary_10_1016_j_swevo_2025_101857
crossref_primary_10_1016_j_eswa_2025_126771
Cites_doi 10.1016/j.eswa.2022.117796
10.3390/math11194059
10.1155/2018/2851964
10.1016/j.knosys.2020.106366
10.32604/iasc.2021.015339
10.23919/CSMS.2023.0003
10.1016/j.eswa.2023.120713
10.1016/j.asoc.2020.106099
10.1016/j.trc.2023.104186
10.1109/TSMC.2024.3411640
10.1016/j.compag.2020.105387
10.1109/TCYB.2021.3103811
10.1177/0020294020915727
10.1109/TSMCA.2011.2159586
10.1016/j.eswa.2022.119137
10.1137/1024022
10.23919/CSMS.2022.0006
10.1016/j.ast.2016.08.017
10.1109/TCYB.2021.3111082
10.1016/j.scijus.2021.11.002
10.1109/TII.2012.2198665
10.1016/j.ins.2022.06.015
10.1016/j.swevo.2018.01.011
10.1016/j.ijepes.2021.106987
10.3390/en15218036
10.1016/j.comnet.2020.107148
10.1007/s12293-021-00334-9
10.1002/dac.5090
10.1016/j.ins.2023.119401
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.knosys.2024.112569
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_knosys_2024_112569
S0950705124012036
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
UHS
WUQ
~HD
ID FETCH-LOGICAL-c306t-912b027e25a80cf8b1a4040cbc60355e598061f5e8b965b5665eb01ae89ff8683
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001333636500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-7051
IngestDate Tue Nov 18 22:11:22 EST 2025
Sat Nov 29 01:33:42 EST 2025
Sat Jan 25 15:59:53 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep reinforcement learning
Path planning
UAV
Positioning error correction
Reinforcement learning algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-912b027e25a80cf8b1a4040cbc60355e598061f5e8b965b5665eb01ae89ff8683
ORCID 0000-0002-5244-790X
ParticipantIDs crossref_citationtrail_10_1016_j_knosys_2024_112569
crossref_primary_10_1016_j_knosys_2024_112569
elsevier_sciencedirect_doi_10_1016_j_knosys_2024_112569
PublicationCentury 2000
PublicationDate 2024-11-25
PublicationDateYYYYMMDD 2024-11-25
PublicationDate_xml – month: 11
  year: 2024
  text: 2024-11-25
  day: 25
PublicationDecade 2020
PublicationTitle Knowledge-based systems
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Vinyals, Fortunato, Jaitly (b30) 2015; Vol. 28
Bao, Zhang, Xie (b10) 2023; 153
Freitas, Faiçal, Cardoso e Silva, Ueyama (b28) 2020; 173
Fan, Chen, Liang (b29) 2023; 213
Liu, Zhang, Guan, Delahaye (b20) 2016; 58
Arantes, Arantes, Toledo, Júnior, Williams (b27) 2017; 26
Wu, Wu, Peng, Chen, Feng (b44) 2023
Bello, Pham, Le, Norouzi, Bengio (b32) 2017
Mohd Daud, Mohd Yusof, Heo, Khoo, Chainchel Singh, Mahmood, Nawawi (b6) 2022; 62
Nazari, Oroojlooy, Takáč, Snyder (b33) 2018
Li, Zhang, Wang, Wang, Han, Wang (b37) 2022; 52
Edney, Wood (b2) 2020; 163
Labonte (b19) 2013; 9
Fu, Ding, Zhou (b17) 2012; 42
Hartmanis (b9) 1982; 24
Chun, Yang, Liu, Wu, He, Xing (b41) 2023; 11
Ahmed, Mohamed, Harras, Kholief, Mesbah (b26) 2016
Maini, Sujit (b23) 2016
Wang, Hu, Weir (b40) 2022; 607
Ali, Zhangang, Zhengru (b16) 2023; 56
Lei, Guo, Zhao, Wang, Qian, Meng, Tang (b34) 2022; 205
Chen, Zhang, Hu, Xiao (b25) 2018
Li, Ma, Gao, Cao, Lim, Song, Zhang (b36) 2022; 52
Fu, Yu, Xie, Chen, Mao (b15) 2018; 2018
Zhao, Qiuying (b11) 2013; 21
Gu (b35) 2022
Radoglou-Grammatikis, Sarigiannidis, Lagkas, Moscholios (b3) 2020; 172
Ye, RuHui, Yi (b12) 2017; 25
Ali, Xiong, Haider, Tamir, Dong, Shen (b24) 2023; 232
Nikolos, Brintaki (b13) 2005
Chen, Chen, Du, Wei, Chen (b38) 2020; 207
Tian, Shi (b18) 2018; 41
Kool, van Hoof, Welling (b31) 2019
Xiang, Wang, Xing, Du (b22) 2021; 13
Lee, Lai, Chuang, Chen (b7) 2021; 28
Wu, Chen, Tian (b43) 2022; 15
Shahid, Abrar, Ajmal, Masroor, Amjad, Jeelani (b1) 2022; 35
Bai, Fan, Niu, Cui (b14) 2022; 2
Li, Su, Ling, Karatas, Zheng (b4) 2023; 3
Cekmez, Ozsiginan, Sahingoz (b21) 2016
Guan, Sun, Su, Hu, Wang, Wang, Peng, Guo (b5) 2021; 130
Zhou, Wu, Zhang, Chen, Jiang (b39) 2023; 646
Qu, Gai, Zhong, Zhang (b8) 2020; 89
Chen, Du, Tang, Xing, Chen, Chen (b42) 2024
Ye (10.1016/j.knosys.2024.112569_b12) 2017; 25
Xiang (10.1016/j.knosys.2024.112569_b22) 2021; 13
Nikolos (10.1016/j.knosys.2024.112569_b13) 2005
Vinyals (10.1016/j.knosys.2024.112569_b30) 2015; Vol. 28
Zhou (10.1016/j.knosys.2024.112569_b39) 2023; 646
Chen (10.1016/j.knosys.2024.112569_b25) 2018
Chen (10.1016/j.knosys.2024.112569_b38) 2020; 207
Hartmanis (10.1016/j.knosys.2024.112569_b9) 1982; 24
Bai (10.1016/j.knosys.2024.112569_b14) 2022; 2
Ali (10.1016/j.knosys.2024.112569_b24) 2023; 232
Freitas (10.1016/j.knosys.2024.112569_b28) 2020; 173
Radoglou-Grammatikis (10.1016/j.knosys.2024.112569_b3) 2020; 172
Bao (10.1016/j.knosys.2024.112569_b10) 2023; 153
Zhao (10.1016/j.knosys.2024.112569_b11) 2013; 21
Fu (10.1016/j.knosys.2024.112569_b15) 2018; 2018
Ahmed (10.1016/j.knosys.2024.112569_b26) 2016
Shahid (10.1016/j.knosys.2024.112569_b1) 2022; 35
Edney (10.1016/j.knosys.2024.112569_b2) 2020; 163
Maini (10.1016/j.knosys.2024.112569_b23) 2016
Li (10.1016/j.knosys.2024.112569_b37) 2022; 52
Chun (10.1016/j.knosys.2024.112569_b41) 2023; 11
Chen (10.1016/j.knosys.2024.112569_b42) 2024
Lee (10.1016/j.knosys.2024.112569_b7) 2021; 28
Wu (10.1016/j.knosys.2024.112569_b44) 2023
Li (10.1016/j.knosys.2024.112569_b4) 2023; 3
Fan (10.1016/j.knosys.2024.112569_b29) 2023; 213
Fu (10.1016/j.knosys.2024.112569_b17) 2012; 42
Arantes (10.1016/j.knosys.2024.112569_b27) 2017; 26
Labonte (10.1016/j.knosys.2024.112569_b19) 2013; 9
Lei (10.1016/j.knosys.2024.112569_b34) 2022; 205
Wang (10.1016/j.knosys.2024.112569_b40) 2022; 607
Mohd Daud (10.1016/j.knosys.2024.112569_b6) 2022; 62
Kool (10.1016/j.knosys.2024.112569_b31) 2019
Qu (10.1016/j.knosys.2024.112569_b8) 2020; 89
Ali (10.1016/j.knosys.2024.112569_b16) 2023; 56
Wu (10.1016/j.knosys.2024.112569_b43) 2022; 15
Liu (10.1016/j.knosys.2024.112569_b20) 2016; 58
Cekmez (10.1016/j.knosys.2024.112569_b21) 2016
Nazari (10.1016/j.knosys.2024.112569_b33) 2018
Guan (10.1016/j.knosys.2024.112569_b5) 2021; 130
Bello (10.1016/j.knosys.2024.112569_b32) 2017
Gu (10.1016/j.knosys.2024.112569_b35) 2022
Tian (10.1016/j.knosys.2024.112569_b18) 2018; 41
Li (10.1016/j.knosys.2024.112569_b36) 2022; 52
References_xml – volume: 52
  start-page: 13572
  year: 2022
  end-page: 13585
  ident: b36
  article-title: Deep reinforcement learning for solving the heterogeneous capacitated vehicle routing problem
  publication-title: IEEE Trans. Cybern.
– volume: 9
  start-page: 132
  year: 2013
  end-page: 141
  ident: b19
  article-title: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning
  publication-title: IEEE Trans. Ind. Inform.
– volume: 607
  start-page: 931
  year: 2022
  end-page: 946
  ident: b40
  article-title: Simultaneous task and energy planning using deep reinforcement learning
  publication-title: Inform. Sci.
– volume: 172
  year: 2020
  ident: b3
  article-title: A compilation of UAV applications for precision agriculture
  publication-title: Comput. Netw.
– volume: 205
  year: 2022
  ident: b34
  article-title: A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem
  publication-title: Expert Syst. Appl.
– start-page: 47
  year: 2016
  end-page: 52
  ident: b21
  article-title: Multi colony ant optimization for UAV path planning with obstacle avoidance
  publication-title: 2016 International Conference on Unmanned Aircraft Systems
– start-page: 340
  year: 2023
  end-page: 349
  ident: b44
  article-title: ITS: Improved tabu search algorithm for path planning in UAV-assisted edge computing systems
  publication-title: 2023 IEEE International Conference on Web Services
– volume: 26
  year: 2017
  ident: b27
  article-title: Heuristic and genetic algorithm approaches for UAV path planning under critical situation
  publication-title: Int. J. Artif. Intell. Tools
– volume: 153
  year: 2023
  ident: b10
  article-title: Landmark selection and path planning for unmanned vehicles with position error corrections
  publication-title: Transp. Res. C
– volume: 213
  year: 2023
  ident: b29
  article-title: UAV trajectory planning based on bi-directional APF-RRT* algorithm with goal-biased
  publication-title: Expert Syst. Appl.
– year: 2019
  ident: b31
  article-title: Attention, learn to solve routing problems!
  publication-title: International Conference on Learning Representations
– volume: 41
  start-page: 49
  year: 2018
  end-page: 68
  ident: b18
  article-title: MPSO: Modified particle swarm optimization and its applications
  publication-title: Swarm Evol. Comput.
– volume: 11
  start-page: 4059
  year: 2023
  ident: b41
  article-title: Deep reinforcement learning for the agile earth observation satellite scheduling problem
  publication-title: Mathematics
– start-page: 62
  year: 2016
  end-page: 67
  ident: b23
  article-title: Path planning for a UAV with kinematic constraints in the presence of polygonal obstacles
  publication-title: 2016 International Conference on Unmanned Aircraft Systems
– start-page: 9861
  year: 2018
  end-page: 9871
  ident: b33
  article-title: Reinforcement learning for solving the vehicle routing problem
  publication-title: Proceedings of the 32nd International Conference on Neural Information Processing Systems
– volume: 89
  year: 2020
  ident: b8
  article-title: A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning
  publication-title: Appl. Soft Comput.
– volume: 173
  year: 2020
  ident: b28
  article-title: Use of UAVs for an efficient capsule distribution and smart path planning for biological pest control
  publication-title: Comput. Electron. Agric.
– volume: 21
  start-page: 203
  year: 2013
  end-page: 211
  ident: b11
  article-title: Error analysis and the development of an error mitigation approach for use in the rotation fiber optic gyro inertial navigation system.
  publication-title: Eng. Lett.
– year: 2024
  ident: b42
  article-title: Learning to construct a solution for the agile satellite scheduling problem with time-dependent transition times
  publication-title: IEEE Trans. Syst. Man Cybern.
– volume: 2
  start-page: 130
  year: 2022
  end-page: 141
  ident: b14
  article-title: Multi-UAV cooperative trajectory planning based on many-objective evolutionary algorithm
  publication-title: Complex Syst. Model. Simul.
– start-page: 1
  year: 2016
  end-page: 6
  ident: b26
  article-title: Energy efficient path planning techniques for UAV-based systems with space discretization
  publication-title: 2016 IEEE Wireless Communications and Networking Conference
– volume: 2018
  start-page: 1
  year: 2018
  end-page: 11
  ident: b15
  article-title: A heuristic evolutionary algorithm of UAV path planning
  publication-title: Wirel. Commun. Mob. Comput.
– volume: 15
  start-page: 8036
  year: 2022
  ident: b43
  article-title: Optimal energy consumption path planning for quadrotor UAV transmission tower inspection based on simulated annealing algorithm
  publication-title: Energies (19961073)
– volume: 58
  start-page: 92
  year: 2016
  end-page: 102
  ident: b20
  article-title: Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization
  publication-title: Aerosp. Sci. Technol.
– start-page: 174
  year: 2022
  end-page: 185
  ident: b35
  article-title: Optimal design of flexible job shop scheduling under resource preemption based on deep reinforcement learning
  publication-title: Complex Syst. Model. Simul.
– volume: 42
  start-page: 511
  year: 2012
  end-page: 526
  ident: b17
  article-title: Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV
  publication-title: IEEE Trans. Syst. Man Cybern. - A
– volume: 24
  start-page: 90
  year: 1982
  end-page: 91
  ident: b9
  article-title: Computers and intractability: A guide to the theory of NP-completeness (Michael R. Garey and David S. Johnson)
  publication-title: SIAM Rev.
– volume: 62
  start-page: 30
  year: 2022
  end-page: 42
  ident: b6
  article-title: Applications of drone in disaster management: A scoping review
  publication-title: Sci. Justice
– start-page: 1510
  year: 2018
  end-page: 1514
  ident: b25
  article-title: Unmanned aerial vehicle route planning method based on a star algorithm
  publication-title: 2018 13th IEEE Conference on Industrial Electronics and Applications
– volume: Vol. 28
  year: 2015
  ident: b30
  article-title: Pointer networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 52
  start-page: 13142
  year: 2022
  end-page: 13155
  ident: b37
  article-title: Deep reinforcement learning for combinatorial optimization: Covering salesman problems
  publication-title: IEEE Trans. Cybern.
– volume: 130
  year: 2021
  ident: b5
  article-title: UAV-lidar aids automatic intelligent powerline inspection
  publication-title: Int. J. Electr. Power Energy Syst.
– volume: 646
  year: 2023
  ident: b39
  article-title: A robust deep reinforcement learning approach to driverless taxi dispatching under uncertain demand
  publication-title: Inform. Sci.
– volume: 35
  year: 2022
  ident: b1
  article-title: Path planning in unmanned aerial vehicles: An optimistic overview
  publication-title: Int. J. Commun. Syst.
– year: 2017
  ident: b32
  article-title: Neural combinatorial optimization with reinforcement learning
– volume: 25
  start-page: 424
  year: 2017
  end-page: 430
  ident: b12
  article-title: A cumulative error suppression method for UAV visual positioning system based on historical visiting information
  publication-title: Eng. Lett.
– volume: 163
  year: 2020
  ident: b2
  article-title: Applications of digital imaging and analysis in seabird monitoring and research
  publication-title: Ibis
– volume: 207
  year: 2020
  ident: b38
  article-title: Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization
  publication-title: Knowl.-Based Syst.
– volume: 13
  year: 2021
  ident: b22
  article-title: An effective memetic algorithm for UAV routing and orientation under uncertain navigation environments
  publication-title: Memet. Comput.
– volume: 56
  start-page: 459
  year: 2023
  end-page: 469
  ident: b16
  article-title: Path planning of multiple UAVs using MMACO and DE algorithm in dynamic environment
  publication-title: Meas. Control
– volume: 232
  year: 2023
  ident: b24
  article-title: Feature selection-based decision model for UAV path planning on rough terrains
  publication-title: Expert Syst. Appl.
– volume: 3
  start-page: 102
  year: 2023
  end-page: 117
  ident: b4
  article-title: Optimization of air defense system deployment against reconnaissance drone swarms
  publication-title: Complex Syst. Model. Simul.
– volume: 28
  start-page: 227
  year: 2021
  end-page: 240
  ident: b7
  article-title: Design and validation of a route planner for logistic UAV swarm
  publication-title: Intell. Autom. Soft Comput.
– start-page: 549
  year: 2005
  end-page: 556
  ident: b13
  article-title: Coordinated UAV path planning using differential evolution
  publication-title: Proceedings of the 2005 IEEE International Symposium on, Mediterrean Conference on Control and Automation Intelligent Control, 2005
– start-page: 1
  year: 2016
  ident: 10.1016/j.knosys.2024.112569_b26
  article-title: Energy efficient path planning techniques for UAV-based systems with space discretization
– volume: 205
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b34
  article-title: A multi-action deep reinforcement learning framework for flexible job-shop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.117796
– volume: 11
  start-page: 4059
  issue: 19
  year: 2023
  ident: 10.1016/j.knosys.2024.112569_b41
  article-title: Deep reinforcement learning for the agile earth observation satellite scheduling problem
  publication-title: Mathematics
  doi: 10.3390/math11194059
– volume: 26
  year: 2017
  ident: 10.1016/j.knosys.2024.112569_b27
  article-title: Heuristic and genetic algorithm approaches for UAV path planning under critical situation
  publication-title: Int. J. Artif. Intell. Tools
– start-page: 340
  year: 2023
  ident: 10.1016/j.knosys.2024.112569_b44
  article-title: ITS: Improved tabu search algorithm for path planning in UAV-assisted edge computing systems
– volume: 2018
  start-page: 1
  year: 2018
  ident: 10.1016/j.knosys.2024.112569_b15
  article-title: A heuristic evolutionary algorithm of UAV path planning
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2018/2851964
– volume: 207
  year: 2020
  ident: 10.1016/j.knosys.2024.112569_b38
  article-title: Heuristic algorithms based on deep reinforcement learning for quadratic unconstrained binary optimization
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2020.106366
– start-page: 1510
  year: 2018
  ident: 10.1016/j.knosys.2024.112569_b25
  article-title: Unmanned aerial vehicle route planning method based on a star algorithm
– volume: 28
  start-page: 227
  year: 2021
  ident: 10.1016/j.knosys.2024.112569_b7
  article-title: Design and validation of a route planner for logistic UAV swarm
  publication-title: Intell. Autom. Soft Comput.
  doi: 10.32604/iasc.2021.015339
– volume: 21
  start-page: 203
  issue: 4
  year: 2013
  ident: 10.1016/j.knosys.2024.112569_b11
  article-title: Error analysis and the development of an error mitigation approach for use in the rotation fiber optic gyro inertial navigation system.
  publication-title: Eng. Lett.
– volume: 3
  start-page: 102
  issue: 2
  year: 2023
  ident: 10.1016/j.knosys.2024.112569_b4
  article-title: Optimization of air defense system deployment against reconnaissance drone swarms
  publication-title: Complex Syst. Model. Simul.
  doi: 10.23919/CSMS.2023.0003
– volume: 232
  year: 2023
  ident: 10.1016/j.knosys.2024.112569_b24
  article-title: Feature selection-based decision model for UAV path planning on rough terrains
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2023.120713
– volume: 89
  year: 2020
  ident: 10.1016/j.knosys.2024.112569_b8
  article-title: A novel reinforcement learning based grey wolf optimizer algorithm for unmanned aerial vehicles (UAVs) path planning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106099
– volume: 25
  start-page: 424
  issue: 4
  year: 2017
  ident: 10.1016/j.knosys.2024.112569_b12
  article-title: A cumulative error suppression method for UAV visual positioning system based on historical visiting information
  publication-title: Eng. Lett.
– volume: 153
  year: 2023
  ident: 10.1016/j.knosys.2024.112569_b10
  article-title: Landmark selection and path planning for unmanned vehicles with position error corrections
  publication-title: Transp. Res. C
  doi: 10.1016/j.trc.2023.104186
– start-page: 549
  year: 2005
  ident: 10.1016/j.knosys.2024.112569_b13
  article-title: Coordinated UAV path planning using differential evolution
– start-page: 47
  year: 2016
  ident: 10.1016/j.knosys.2024.112569_b21
  article-title: Multi colony ant optimization for UAV path planning with obstacle avoidance
– year: 2024
  ident: 10.1016/j.knosys.2024.112569_b42
  article-title: Learning to construct a solution for the agile satellite scheduling problem with time-dependent transition times
  publication-title: IEEE Trans. Syst. Man Cybern.
  doi: 10.1109/TSMC.2024.3411640
– volume: 173
  year: 2020
  ident: 10.1016/j.knosys.2024.112569_b28
  article-title: Use of UAVs for an efficient capsule distribution and smart path planning for biological pest control
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2020.105387
– start-page: 62
  year: 2016
  ident: 10.1016/j.knosys.2024.112569_b23
  article-title: Path planning for a UAV with kinematic constraints in the presence of polygonal obstacles
– volume: 52
  start-page: 13142
  issue: 12
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b37
  article-title: Deep reinforcement learning for combinatorial optimization: Covering salesman problems
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3103811
– volume: 56
  start-page: 459
  issue: 3–4
  year: 2023
  ident: 10.1016/j.knosys.2024.112569_b16
  article-title: Path planning of multiple UAVs using MMACO and DE algorithm in dynamic environment
  publication-title: Meas. Control
  doi: 10.1177/0020294020915727
– year: 2017
  ident: 10.1016/j.knosys.2024.112569_b32
– volume: 42
  start-page: 511
  issue: 2
  year: 2012
  ident: 10.1016/j.knosys.2024.112569_b17
  article-title: Phase angle-encoded and quantum-behaved particle swarm optimization applied to three-dimensional route planning for UAV
  publication-title: IEEE Trans. Syst. Man Cybern. - A
  doi: 10.1109/TSMCA.2011.2159586
– volume: 213
  year: 2023
  ident: 10.1016/j.knosys.2024.112569_b29
  article-title: UAV trajectory planning based on bi-directional APF-RRT* algorithm with goal-biased
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2022.119137
– start-page: 9861
  year: 2018
  ident: 10.1016/j.knosys.2024.112569_b33
  article-title: Reinforcement learning for solving the vehicle routing problem
– start-page: 174
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b35
  article-title: Optimal design of flexible job shop scheduling under resource preemption based on deep reinforcement learning
  publication-title: Complex Syst. Model. Simul.
– volume: 24
  start-page: 90
  issue: 1
  year: 1982
  ident: 10.1016/j.knosys.2024.112569_b9
  article-title: Computers and intractability: A guide to the theory of NP-completeness (Michael R. Garey and David S. Johnson)
  publication-title: SIAM Rev.
  doi: 10.1137/1024022
– volume: 2
  start-page: 130
  issue: 2
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b14
  article-title: Multi-UAV cooperative trajectory planning based on many-objective evolutionary algorithm
  publication-title: Complex Syst. Model. Simul.
  doi: 10.23919/CSMS.2022.0006
– volume: 58
  start-page: 92
  year: 2016
  ident: 10.1016/j.knosys.2024.112569_b20
  article-title: Adaptive sensitivity decision based path planning algorithm for unmanned aerial vehicle with improved particle swarm optimization
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2016.08.017
– volume: 52
  start-page: 13572
  issue: 12
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b36
  article-title: Deep reinforcement learning for solving the heterogeneous capacitated vehicle routing problem
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2021.3111082
– volume: 62
  start-page: 30
  issue: 1
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b6
  article-title: Applications of drone in disaster management: A scoping review
  publication-title: Sci. Justice
  doi: 10.1016/j.scijus.2021.11.002
– volume: 9
  start-page: 132
  issue: 1
  year: 2013
  ident: 10.1016/j.knosys.2024.112569_b19
  article-title: Comparison of parallel genetic algorithm and particle swarm optimization for real-time UAV path planning
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2012.2198665
– volume: 607
  start-page: 931
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b40
  article-title: Simultaneous task and energy planning using deep reinforcement learning
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2022.06.015
– volume: 41
  start-page: 49
  year: 2018
  ident: 10.1016/j.knosys.2024.112569_b18
  article-title: MPSO: Modified particle swarm optimization and its applications
  publication-title: Swarm Evol. Comput.
  doi: 10.1016/j.swevo.2018.01.011
– volume: 130
  year: 2021
  ident: 10.1016/j.knosys.2024.112569_b5
  article-title: UAV-lidar aids automatic intelligent powerline inspection
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.106987
– volume: 163
  year: 2020
  ident: 10.1016/j.knosys.2024.112569_b2
  article-title: Applications of digital imaging and analysis in seabird monitoring and research
  publication-title: Ibis
– volume: 15
  start-page: 8036
  issue: 21
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b43
  article-title: Optimal energy consumption path planning for quadrotor UAV transmission tower inspection based on simulated annealing algorithm
  publication-title: Energies (19961073)
  doi: 10.3390/en15218036
– volume: 172
  year: 2020
  ident: 10.1016/j.knosys.2024.112569_b3
  article-title: A compilation of UAV applications for precision agriculture
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2020.107148
– volume: 13
  year: 2021
  ident: 10.1016/j.knosys.2024.112569_b22
  article-title: An effective memetic algorithm for UAV routing and orientation under uncertain navigation environments
  publication-title: Memet. Comput.
  doi: 10.1007/s12293-021-00334-9
– volume: 35
  year: 2022
  ident: 10.1016/j.knosys.2024.112569_b1
  article-title: Path planning in unmanned aerial vehicles: An optimistic overview
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.5090
– volume: Vol. 28
  year: 2015
  ident: 10.1016/j.knosys.2024.112569_b30
  article-title: Pointer networks
– year: 2019
  ident: 10.1016/j.knosys.2024.112569_b31
  article-title: Attention, learn to solve routing problems!
– volume: 646
  year: 2023
  ident: 10.1016/j.knosys.2024.112569_b39
  article-title: A robust deep reinforcement learning approach to driverless taxi dispatching under uncertain demand
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2023.119401
SSID ssj0002218
Score 2.43845
Snippet Unmanned aerial vehicles (UAVs) are advanced flight systems. However, their positioning systems cause distance-dependent errors during flight. This study seeks...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112569
SubjectTerms Deep reinforcement learning
Path planning
Positioning error correction
Reinforcement learning algorithm
UAV
Title Learning to construct a solution for UAV path planning problem with positioning error correction
URI https://dx.doi.org/10.1016/j.knosys.2024.112569
Volume 304
WOSCitedRecordID wos001333636500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0950-7051
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002218
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LTxsxELbK48ClL0DQl3zgFi1yvA_bxwhRtVChSkCV27J2vCKANiiEip_fmfV4EzVVgUq9rBIntjeeL57Ps_NgbC_PnAetnCZp5kQC-lYktqgtnHmkU0pXwGFFW2xCnZzo4dB8p_QEd205AdU0-uHB3P5XUUMbCBtDZ58h7m5QaIDXIHS4gtjh-iTBf4vGDmCVbkIJYntVL87aOhaeD35gStVLrCLdFi3qUWWZYJiNrlz4gZ9OoYPDKh6ukyLR2eNokUtQG44oL3RH0w8u70Pox9jPmzy565PKRGeg8T02DccV3GJshHdkyUaT9qJxQmYYpRcCmYPFbClqhkyPIlGCEs3SLpyGKsRLO3owLlztXzcT-A37OAmGPeWhwMtvubJPcWgcGXhKHx-xrrA1qXID293a4Ovh8KhT0lK2pt_uVmJUZev6tzzXn1nLAhM5e81e0hGCD4Lo37AXvnnLXsXyHJx26012EZHAZxPeIYFXPCKBAxI4IIEjEnhEAickcEQCX0ACb5HA50jYYuefD88OviRUUCNxcDKcgWKTVkjlZV5p4Wpt-1UGm7izrhDAO31uNNC7OvfamiK3wPRzb0W_8trUtS50us1Wm0njdxjHnEC1GVk5Mv3MOWeKTIPC8sAA4d_t1S5L44KVjrLNY9GTmzK6FV6VYZlLXOYyLPMuS7petyHbyiPfV1EWJTHGwARLgM9fe777557v2cYc6R_YKsjOf2Tr7udsfDf9RDj7BT0dlCo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Learning+to+construct+a+solution+for+UAV+path+planning+problem+with+positioning+error+correction&rft.jtitle=Knowledge-based+systems&rft.au=Chun%2C+Jie&rft.au=Chen%2C+Ming&rft.au=Liu%2C+Xiaolu&rft.au=Xiang%2C+Shang&rft.date=2024-11-25&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.volume=304&rft_id=info:doi/10.1016%2Fj.knosys.2024.112569&rft.externalDocID=S0950705124012036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon