Unsupervised anomaly detection for pome fruit quality inspection using X-ray radiography

[Display omitted] •X-ray radiographs were used to identify apple and pear fruit with internal disorders.•Classification was achieved by a fully convolutional autoencoder.•We evaluated our model on both simulated and real data.•Our model outperforms the traditional autoencoder architecture. A novel f...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers and electronics in agriculture Ročník 226; s. 109364
Hlavní autoři: Tempelaere, Astrid, He, Jiaqi, Van Doorselaer, Leen, Verboven, Pieter, Nicolai, Bart, Valerio Giuffrida, Mario
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.11.2024
Témata:
ISSN:0168-1699
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract [Display omitted] •X-ray radiographs were used to identify apple and pear fruit with internal disorders.•Classification was achieved by a fully convolutional autoencoder.•We evaluated our model on both simulated and real data.•Our model outperforms the traditional autoencoder architecture. A novel fully convolutional autoencoder (convAE) was introduced to analyze X-ray radiography images of ‘Braeburn’ apples and ‘Conference’ pears with and without disorders for online sorting purposes. The model was solely trained on either apple or pear samples without disorders and outperformed a traditional autoencoder (AE) across multiple test sets. We evaluated our approach using the area under the curve (AUC) as an evaluation metric. A cross-test experiment further demonstrated consistent performance between a model trained on apple data for classifying pear fruit (accuracy: 71 %) and a pear-specific model (accuracy: 70 %). We also evaluated models trained on simulated X-ray radiographs with real ones, and vice versa. For instance, under scenario of training on real data and testing on simulated X-ray radiographs, an accuracy of 80 % for detecting disordered non-consumable pear was achieved. This work provides valuable insights into anomaly detection for apples and pears with several disorders.
AbstractList [Display omitted] •X-ray radiographs were used to identify apple and pear fruit with internal disorders.•Classification was achieved by a fully convolutional autoencoder.•We evaluated our model on both simulated and real data.•Our model outperforms the traditional autoencoder architecture. A novel fully convolutional autoencoder (convAE) was introduced to analyze X-ray radiography images of ‘Braeburn’ apples and ‘Conference’ pears with and without disorders for online sorting purposes. The model was solely trained on either apple or pear samples without disorders and outperformed a traditional autoencoder (AE) across multiple test sets. We evaluated our approach using the area under the curve (AUC) as an evaluation metric. A cross-test experiment further demonstrated consistent performance between a model trained on apple data for classifying pear fruit (accuracy: 71 %) and a pear-specific model (accuracy: 70 %). We also evaluated models trained on simulated X-ray radiographs with real ones, and vice versa. For instance, under scenario of training on real data and testing on simulated X-ray radiographs, an accuracy of 80 % for detecting disordered non-consumable pear was achieved. This work provides valuable insights into anomaly detection for apples and pears with several disorders.
ArticleNumber 109364
Author Tempelaere, Astrid
Nicolai, Bart
Valerio Giuffrida, Mario
Van Doorselaer, Leen
He, Jiaqi
Verboven, Pieter
Author_xml – sequence: 1
  givenname: Astrid
  orcidid: 0000-0003-3807-6695
  surname: Tempelaere
  fullname: Tempelaere, Astrid
  email: astrid.tempelaere@kuleuven.be
  organization: KU Leuven, MeBioS-BIOSYST, Willem De Croylaan 42, 3001 Leuven, Belgium
– sequence: 2
  givenname: Jiaqi
  surname: He
  fullname: He, Jiaqi
  email: jiaqi.he@kuleuven.be
  organization: KU Leuven, MeBioS-BIOSYST, Willem De Croylaan 42, 3001 Leuven, Belgium
– sequence: 3
  givenname: Leen
  surname: Van Doorselaer
  fullname: Van Doorselaer, Leen
  email: leen.vandoorselaer@kuleuven.be
  organization: KU Leuven, MeBioS-BIOSYST, Willem De Croylaan 42, 3001 Leuven, Belgium
– sequence: 4
  givenname: Pieter
  surname: Verboven
  fullname: Verboven, Pieter
  email: pieter.verboven@kuleuven.be
  organization: KU Leuven, MeBioS-BIOSYST, Willem De Croylaan 42, 3001 Leuven, Belgium
– sequence: 5
  givenname: Bart
  orcidid: 0000-0001-9542-8285
  surname: Nicolai
  fullname: Nicolai, Bart
  email: bart.nicolai@kuleuven.be
  organization: KU Leuven, MeBioS-BIOSYST, Willem De Croylaan 42, 3001 Leuven, Belgium
– sequence: 6
  givenname: Mario
  surname: Valerio Giuffrida
  fullname: Valerio Giuffrida, Mario
  email: valerio.giuffrida@nottingham.ac.uk
  organization: University of Nottingham, Computer Vision Laboratory, Wollaton Road, NG8 1BB Nottingham, United Kingdom
BookMark eNqFkL1qwzAQgDWk0CTtG3TQCziVLVuyOxRK6B8EujSQTcjS2VWwJVeyA377OjhTh3Y67uc77r4VWlhnAaG7mGxiErP740a5tpP1JiFJOpUKytIFWk6tPIpZUVyjVQhHMuVFzpfosLdh6MCfTACNpXWtbEasoQfVG2dx5TzuXAu48oPp8fcgG9OP2NjQXSaGYGyND5GXI_ZSG1d72X2NN-iqkk2A20tco_3L8-f2Ldp9vL5vn3aRooT1UUFA5inQLIMkA14WTHJaUV3lUifAs5gDlZSokhWq4gRyzXlZ5nkZp4RlLKNr9DDvVd6F4KESyvTyfFnvpWlETMTZiziK2Ys4exGzlwlOf8GdN63043_Y44zB9NjJgBdBGbAKtPGTFaGd-XvBD8BmhUE
CitedBy_id crossref_primary_10_1109_TAFE_2024_3488196
crossref_primary_10_3390_agronomy14112691
Cites_doi 10.1016/j.postharvbio.2022.111950
10.1016/j.jfoodeng.2020.110102
10.1007/978-3-319-70096-0_39
10.2214/AJR.14.13116
10.1016/j.postharvbio.2023.112342
10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
10.1109/ISIE45552.2021.9576231
10.1016/S0925-5214(98)00035-0
10.1016/j.compag.2018.08.032
10.1016/j.postharvbio.2023.112439
10.1016/j.eswa.2021.114925
10.1016/j.compbiomed.2022.106328
10.5943/ppq/7/1/8
10.1016/S0925-5214(01)00120-X
10.1016/j.postharvbio.2023.112390
10.1016/j.postharvbio.2015.12.015
10.1117/12.262857
10.1007/978-3-319-59050-9_12
10.1016/j.compag.2022.106962
10.1016/j.ultramic.2015.05.002
10.1016/j.postharvbio.2012.08.008
10.1016/j.postharvbio.2013.08.008
10.1063/1.4963604
10.1016/j.foodcont.2023.110092
10.1109/TIP.2003.819861
10.1016/j.postharvbio.2015.09.020
10.1111/1541-4337.12269
10.1016/j.postharvbio.2024.112953
10.1016/j.scienta.2022.110943
10.1109/JPROC.2021.3052449
10.19071/cb.2017.v8.3211
10.1364/OE.24.025129
10.3390/s20236753
10.1016/j.postharvbio.2023.112576
10.1146/annurev-food-030713-092410
10.3390/geomatics3010004
10.1016/j.compag.2019.104948
10.1016/j.postharvbio.2018.05.020
ContentType Journal Article
Copyright 2024 Elsevier B.V.
Copyright_xml – notice: 2024 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.compag.2024.109364
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Agriculture
ExternalDocumentID 10_1016_j_compag_2024_109364
S0168169924007555
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALCJ
AALRI
AAOAW
AAQFI
AAQXK
AATLK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABBQC
ABFNM
ABFRF
ABGRD
ABJNI
ABKYH
ABMAC
ABMZM
ABRWV
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACIWK
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADQTV
AEBSH
AEFWE
AEIPS
AEKER
AENEX
AEQOU
AEXOQ
AFJKZ
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLV
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
LW9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
SAB
SBC
SDF
SDG
SES
SEW
SNL
SPC
SPCBC
SSA
SSH
SSV
SSZ
T5K
UHS
UNMZH
WUQ
Y6R
~G-
~KM
9DU
AAYWO
AAYXX
ACIEU
ACLOT
ACMHX
ACVFH
ADCNI
ADSLC
AEUPX
AFPUW
AGQPQ
AGWPP
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-90ea84e355e25e7b96a73f3df8ad2e7517e3a30cb69cf70e8d77bb88b14065653
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001316925800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0168-1699
IngestDate Tue Nov 18 22:11:16 EST 2025
Sat Nov 29 03:17:22 EST 2025
Sun Apr 06 06:54:41 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Food quality inspection
Autoencoder
Anomaly detection
X-ray imaging
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-90ea84e355e25e7b96a73f3df8ad2e7517e3a30cb69cf70e8d77bb88b14065653
ORCID 0000-0003-3807-6695
0000-0001-9542-8285
ParticipantIDs crossref_citationtrail_10_1016_j_compag_2024_109364
crossref_primary_10_1016_j_compag_2024_109364
elsevier_sciencedirect_doi_10_1016_j_compag_2024_109364
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationTitle Computers and electronics in agriculture
PublicationYear 2024
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Youden (b0280) 1950; 3
da Silva, Silva, Barroso, Yamamoto, Arthur, Toledo, de Mastrangelo, A. (b0030) 2021; 10
KC, Yin, Wu, Wu (b0090) 2019; 165
Wang, Bovik, Sheikh, Member, Simoncelli, Member (b0270) 2004; 13
Matsui, Sugimori, Koseki, Koyama (b0130) 2023; 203
Guo, X., Liu, X., Zhu, E., Yin, J., 2017. Deep Clustering with Convolutional Autoencoders. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 10635 LNCS, 373–382. Doi: 10.1007/978-3-319-70096-0_39.
Nicolaï, Defraeye, De Ketelaere, Herremans, Hertog, Saeys, Torricelli, Vandendriessche, Verboven (b0150) 2014; 5
Liznerski, P., Ruff, L., Vandermeulen, R.A., Franks, B.J., Kloft, M., Müller, K.-R., 2020. Explainable Deep One-Class Classification 1–25.
Kwon, Lee, Kim (b0110) 2008; 1–4
Terry, L.A., Mena, C., Williams, A., Jenney, N., Whitehead, P., 2011. Fruit and Vegetable Resource Maps: Mapping Fruit and Vegetable Waste Through the Retail and Wholesale Supply Chain. WRAP.
Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L., 2021. VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization. IEEE Int. Symp. Ind. Electron. 2021-June. Doi: 10.1109/ISIE45552.2021.9576231.
Tempelaere, Van De Looverbosch, Kelchtermans, Verboven, Tuytelaars, Nicolai (b0210) 2023; 200
Miklos, Nielsen, Einarsdottir, Lametsch (b0140) 2016; 1769
Chabalala, Y., Adam, E., Ali, K.A., 2023. Exploring the Effect of Balanced and Imbalanced Multi ‑ Class Distribution Data and Sampling Techniques on Fruit ‑ Tree Crop Classification Using Different Machine Learning Classifiers 70–92.
Tempelaere, Van Doorselaer, Van De Looverbosch, Pieters, He, Verboven, Schenk, Nicolai (b0195) 2022; 213–220
Tempelaere, Van Doorselaer, He, Verboven, Nicolai (b0220) 2024; 155
Fan, Li, Zhang, Tian, Wang, He, Zhang, Huang (b0040) 2020; 286
Kim, Kim, Chun, Kang, Hong, Min (b0095) 2021; 67
Argenta, Fan, Mattheis (b0010) 2002; 24
Han, Xu, Zhang, Lu, Liang, Fan (b0065) 2024; 213
van Aarle, Palenstijn, De Beenhouwer, Altantzis, Bals, Batenburg, Sijbers (b0240) 2015; 157
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N., 2020. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
Herremans, Melado-Herreros, Defraeye, Verlinden, Hertog, Verboven, Val, Fernández-Valle, Bongaers, Estrade, Wevers, Barreiro, Nicolaï (b0075) 2014; 87
Usda (b0230) 2005
Van Dael, Lebotsa, Herremans, Verboven, Sijbers, Opara, Nicolaï (bib296) 2016; 112
Huda, Abrahams (b0080) 2015; 204
Argenta, Wood, Mattheis, Thewes, Nesi, Neuwald (b0015) 2023; 204
Zhang, Y., 2015. A Better Autoencoder for Image: Convolutional Autoencoder 1–7.
Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G., 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 10265 LNCS, 146–147. Doi: 10.1007/978-3-319-59050-9_12.
Gadgile, D., Joshi, C.P., Shinde, V.M., Kachare, P.B., 2017. Detection of green mold rot infection of citrus fruit by X-ray scanning non-destructive technology 8, 78–80. Doi: 10.19071/cb.2017.v8.3211.
Tempelaere, Phan, Van De Looverbosch, Verboven, Tuytelaars, Nicolai (b0205) 2023
Van De Looverbosch, Raeymaekers, Verboven, Sijbers, Nicolaï (b0255) 2021; 176
Yu, Wang, Ding, Qi, Hu, Duan, Yang, Bi (b0285) 2022; 190
Ahmed, Yasmin, Park, Kim, Kim, Wakholi, Mo, Cho (b0005) 2020; 20
Tempelaere, De Ketelaere, He, Kalfas, Pieters, Saeys, Van Belleghem, Van Doorselaer, Verboven, Nicolaï (b0200) 2023; 206
Bergmann, Löwe, Fauser, Sattlegger, Steger (b0020) 2019; 5
Mathanker, Weckler, Wang (b0125) 2013; 56
Herremans, Verboven, Bongaers, Estrade, Verlinden, Wevers, Hertog, Nicolai (b0070) 2013; 75
Goodfellow, Bengio, Courville (b0055) 2016
van Dael, Verboven, Zanella, Sijbers, Nicolai (b0250) 2019; 148
Tempelaere, Van Doorselaer, He, Verboven, Tuytelaars, Nicolai (b0215) 2023
Ruff, L., Vandermeulen, R.A., Görnitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M., 2018. Deep one-class classification. 35th Int. Conf. Mach. Learn. ICML 2018 10, 6981–6996.
Ruff, Kauffmann, Vandermeulen, Montavon, Samek, Kloft, Dietterich, Muller (b0170) 2021; 109
Schatzki, Haff, Young, Can, Le, Toyofuku (b0175) 1996; 2907
Knoll, Czymmek, Poczihoski, Holtorf, Hussmann (b0105) 2018; 153
Zhou, Niu, Li, Zhao, Gao, Liu, Dong (b0295) 2023; 152
Usda (b0235) 2007
Ruff, L., Vandermeulen, R.A., Görnitz, N., Binder, A., Müller, E., Müller, K.R., Kloft, M., 2020. Deep Semi-Supervised Anomaly Detection. 8th Int. Conf. Learn. Represent. ICLR 2020.
van Aarle, Palenstijn, Cant, Janssens, Bleichrodt, Dabravolski, De Beenhouwer, Joost Batenburg, Sijbers (b0245) 2016; 24
Piovesan, Vancauwenberghe, Van De Looverbosch, Verboven, Nicolaï (b0155) 2021; 1–15
Kingma, Ba (b0100) 2015; 2015
Gadgile, D., Chavan, A., 2017. Detection of post-harvest fungal diseases of mango by X-ray scanning non-destructive technology 7, 65–69. Doi: 10.5943/ppq/7/1/8.
Mercier, Villeneuve, Mondor, Uysal (b0135) 2017; 16
Statista (b0190) 2023
Lau (b0115) 1998; 14
Van De Looverbosch, He, Tempelaere, Kelchtermans, Verboven, Tuytelaars, Sijbers, Nicolai (b0260) 2022; 197
Wood, Proske, de Freitas, Scheer, Vögele, Neuwald (b0275) 2022; 297
Jaeger, Antúnez, Ares, Johnston, Hall, Harker (b0085) 2016; 116
Shi, W., Caballero, J., Theis, L., Huszar, F., Aitken, A., Ledig, C., Wang, Z., 2016. Is the deconvolution layer the same as a convolutional layer?.
Huda (10.1016/j.compag.2024.109364_b0080) 2015; 204
Yu (10.1016/j.compag.2024.109364_b0285) 2022; 190
Herremans (10.1016/j.compag.2024.109364_b0070) 2013; 75
Van De Looverbosch (10.1016/j.compag.2024.109364_b0255) 2021; 176
Bergmann (10.1016/j.compag.2024.109364_b0020) 2019; 5
Wang (10.1016/j.compag.2024.109364_b0270) 2004; 13
Argenta (10.1016/j.compag.2024.109364_b0010) 2002; 24
10.1016/j.compag.2024.109364_b0290
da Silva (10.1016/j.compag.2024.109364_b0030) 2021; 10
Usda (10.1016/j.compag.2024.109364_b0230) 2005
10.1016/j.compag.2024.109364_b0050
Miklos (10.1016/j.compag.2024.109364_b0140) 2016; 1769
10.1016/j.compag.2024.109364_b0145
Argenta (10.1016/j.compag.2024.109364_b0015) 2023; 204
10.1016/j.compag.2024.109364_b0025
10.1016/j.compag.2024.109364_b0225
Tempelaere (10.1016/j.compag.2024.109364_b0205) 2023
Jaeger (10.1016/j.compag.2024.109364_b0085) 2016; 116
Herremans (10.1016/j.compag.2024.109364_b0075) 2014; 87
10.1016/j.compag.2024.109364_b0060
Goodfellow (10.1016/j.compag.2024.109364_b0055) 2016
10.1016/j.compag.2024.109364_b0180
Wood (10.1016/j.compag.2024.109364_b0275) 2022; 297
Kim (10.1016/j.compag.2024.109364_b0095) 2021; 67
Youden (10.1016/j.compag.2024.109364_b0280) 1950; 3
10.1016/j.compag.2024.109364_b0185
KC (10.1016/j.compag.2024.109364_b0090) 2019; 165
10.1016/j.compag.2024.109364_b0035
Fan (10.1016/j.compag.2024.109364_b0040) 2020; 286
Statista (10.1016/j.compag.2024.109364_b0190)
Usda (10.1016/j.compag.2024.109364_b0235) 2007
Schatzki (10.1016/j.compag.2024.109364_b0175) 1996; 2907
Lau (10.1016/j.compag.2024.109364_b0115) 1998; 14
Piovesan (10.1016/j.compag.2024.109364_b0155) 2021; 1–15
van Aarle (10.1016/j.compag.2024.109364_b0240) 2015; 157
Van De Looverbosch (10.1016/j.compag.2024.109364_b0260) 2022; 197
Matsui (10.1016/j.compag.2024.109364_b0130) 2023; 203
Ruff (10.1016/j.compag.2024.109364_b0170) 2021; 109
van Aarle (10.1016/j.compag.2024.109364_b0245) 2016; 24
Tempelaere (10.1016/j.compag.2024.109364_b0220) 2024; 155
Ahmed (10.1016/j.compag.2024.109364_b0005) 2020; 20
10.1016/j.compag.2024.109364_b0045
Kingma (10.1016/j.compag.2024.109364_b0100) 2015; 2015
Nicolaï (10.1016/j.compag.2024.109364_b0150) 2014; 5
Mathanker (10.1016/j.compag.2024.109364_b0125) 2013; 56
Kwon (10.1016/j.compag.2024.109364_b0110) 2008; 1–4
Van Dael (10.1016/j.compag.2024.109364_bib296) 2016; 112
Tempelaere (10.1016/j.compag.2024.109364_b0210) 2023; 200
Mercier (10.1016/j.compag.2024.109364_b0135) 2017; 16
Tempelaere (10.1016/j.compag.2024.109364_b0200) 2023; 206
Tempelaere (10.1016/j.compag.2024.109364_b0215) 2023
Tempelaere (10.1016/j.compag.2024.109364_b0195) 2022; 213–220
van Dael (10.1016/j.compag.2024.109364_b0250) 2019; 148
Han (10.1016/j.compag.2024.109364_b0065) 2024; 213
10.1016/j.compag.2024.109364_b0160
Knoll (10.1016/j.compag.2024.109364_b0105) 2018; 153
10.1016/j.compag.2024.109364_b0165
10.1016/j.compag.2024.109364_b0120
Zhou (10.1016/j.compag.2024.109364_b0295) 2023; 152
References_xml – volume: 10
  year: 2021
  ident: b0030
  article-title: Convolutional neural networks using enhanced radiographs for real-time detection of sitophilus zeamais in maize grain
  publication-title: Foods
– year: 2023
  ident: b0190
  article-title: Global fruit production in 2021, by selected variety (in million metric tons) [WWW Document]
– volume: 152
  year: 2023
  ident: b0295
  article-title: Spatial–contextual variational autoencoder with attention correction for anomaly detection in retinal OCT images
  publication-title: Comput. Biol. Med.
– volume: 297
  year: 2022
  ident: b0275
  article-title: Seasonal variation in calcium and ascorbic acid content at harvest related to internal browning in ‘Braeburn’ apple during controlled atmosphere storage
  publication-title: Sci. Hortic. (amsterdam)
– volume: 67
  start-page: 2547
  year: 2021
  end-page: 2568
  ident: b0095
  article-title: Real-Time Anomaly Detection in Packaged Food X-Ray Images Using Supervised Learning
  publication-title: Comput. Mater. Contin.
– volume: 13
  start-page: 600
  year: 2004
  end-page: 612
  ident: b0270
  article-title: Image Quality Assessment : From Error Visibility to Structural Similarity. 600 IEEE Trans
  publication-title: IMAGE Process.
– volume: 203
  year: 2023
  ident: b0130
  article-title: Automated detection of internal fruit rot in Hass avocado via deep learning-based semantic segmentation of X-ray images
  publication-title: Postharvest Biol. Technol.
– volume: 155
  year: 2024
  ident: b0220
  article-title: BraeNet: Internal disorder detection in ‘Braeburn’ apple using X-ray imaging data
  publication-title: Food Control
– volume: 14
  start-page: 131
  year: 1998
  end-page: 141
  ident: b0115
  article-title: Effect of growing season, harvest maturity, waxing, low O2 and elevated CO2 on flesh browning disorders in “Braeburn” apples
  publication-title: Postharvest Biol. Technol.
– volume: 157
  start-page: 35
  year: 2015
  end-page: 47
  ident: b0240
  article-title: The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography
  publication-title: Ultramicroscopy
– volume: 204
  start-page: W126
  year: 2015
  end-page: W131
  ident: b0080
  article-title: Radiographic techniques, contrast, and noise in x-ray imaging
  publication-title: AJR. Am. J. Roentgenol.
– volume: 1769
  year: 2016
  ident: b0140
  article-title: Grating-based X-ray tomography of 3D food structures
  publication-title: AIP Conf. Proc.
– reference: Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N., 2020. An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale.
– reference: Zhang, Y., 2015. A Better Autoencoder for Image: Convolutional Autoencoder 1–7.
– volume: 153
  start-page: 347
  year: 2018
  end-page: 356
  ident: b0105
  article-title: Improving efficiency of organic farming by using a deep learning classification approach
  publication-title: Comput. Electron. Agric.
– volume: 206
  year: 2023
  ident: b0200
  article-title: An introduction to artificial intelligence in machine vision for postharvest detection of disorders in horticultural products
  publication-title: Postharvest Biol. Technol.
– volume: 5
  start-page: 285
  year: 2014
  end-page: 312
  ident: b0150
  article-title: Nondestructive Measurement of Fruit and Vegetable Quality
  publication-title: Annu. Rev. Food Sci. Technol.
– volume: 197
  year: 2022
  ident: b0260
  article-title: Inline nondestructive internal disorder detection in pear fruit using explainable deep anomaly detection on X-ray images
  publication-title: Comput. Electron. Agric.
– volume: 87
  start-page: 42
  year: 2014
  end-page: 50
  ident: b0075
  article-title: Comparison of X-ray CT and MRI of Watercore Disorder of Different Apple Cultivars
  publication-title: Postharvest Biol. Technol.
– reference: Ruff, L., Vandermeulen, R.A., Görnitz, N., Deecke, L., Siddiqui, S.A., Binder, A., Müller, E., Kloft, M., 2018. Deep one-class classification. 35th Int. Conf. Mach. Learn. ICML 2018 10, 6981–6996.
– volume: 5
  start-page: 372
  year: 2019
  end-page: 380
  ident: b0020
  article-title: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. VISIGRAPP 2019 - Proc. 14th Int. Jt. Conf. Comput. Vision
  publication-title: Imaging Comput. Graph. Theory Appl.
– reference: Guo, X., Liu, X., Zhu, E., Yin, J., 2017. Deep Clustering with Convolutional Autoencoders. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 10635 LNCS, 373–382. Doi: 10.1007/978-3-319-70096-0_39.
– start-page: 552
  year: 2023
  end-page: 560
  ident: b0215
  article-title: Deep Learning for Apple Fruit Quality Inspection using X-Ray Imaging
  publication-title: Proc. IEEE/CVF Int. Conf. Comput. vis.
– volume: 204
  year: 2023
  ident: b0015
  article-title: Factors affecting development of disorders expressed after storage of ‘Gala’ apple fruit
  publication-title: Postharvest Biol. Technol.
– volume: 75
  start-page: 114
  year: 2013
  end-page: 124
  ident: b0070
  article-title: Characterisation of “Braeburn” Browning Disorder by means of X-Ray Micro-CT
  publication-title: Postharvest Biol. Technol.
– volume: 148
  start-page: 218
  year: 2019
  end-page: 227
  ident: b0250
  article-title: Combination of Shape and X-Ray Inspection for Apple Internal Quality Control. In Silico Analysis of the Methodology based on X-Ray Computed Tomography
  publication-title: Postharvest Biol. Technol.
– volume: 286
  year: 2020
  ident: b0040
  article-title: On line detection of defective apples using computer vision system combined with deep learning methods
  publication-title: J. Food Eng.
– volume: 24
  start-page: 13
  year: 2002
  end-page: 24
  ident: b0010
  article-title: Responses of “Fuji” apples to short and long duration exposure to elevated CO2 concentration
  publication-title: Postharvest Biol. Technol.
– volume: 213–220
  year: 2022
  ident: b0195
  article-title: Influence of different origins, CA storage conditions and storage times on internal browning in apple and pear cultivars
  publication-title: Acta Hortic.
– volume: 112
  start-page: 205
  year: 2016
  end-page: 214
  ident: bib296
  article-title: A segmentation and classification algorithm for online detection of internal disorders in citrus using X-ray radiographs
  publication-title: Postharvest Biol. Technol.
– volume: 24
  start-page: 25129
  year: 2016
  ident: b0245
  article-title: Fast and flexible X-ray tomography using the ASTRA toolbox
  publication-title: Opt. Express
– volume: 176
  year: 2021
  ident: b0255
  article-title: Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning
  publication-title: Expert Syst. Appl.
– volume: 200
  year: 2023
  ident: b0210
  article-title: Synthetic data for X-ray CT of healthy and disordered pear fruit using deep learning
  publication-title: Postharvest Biol. Technol.
– volume: 1–15
  year: 2021
  ident: b0155
  article-title: X-ray computed tomography for 3D plant imaging
  publication-title: Trends Plant Sci.
– volume: 3
  start-page: 32
  year: 1950
  end-page: 35
  ident: b0280
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
– year: 2016
  ident: b0055
  article-title: Deep Learning
– reference: Ruff, L., Vandermeulen, R.A., Görnitz, N., Binder, A., Müller, E., Müller, K.R., Kloft, M., 2020. Deep Semi-Supervised Anomaly Detection. 8th Int. Conf. Learn. Represent. ICLR 2020.
– volume: 213
  year: 2024
  ident: b0065
  article-title: Non-destructive detection method and experiment of pomelo volume and flesh content based on image fusion
  publication-title: Postharvest Biol. Technol.
– year: 2007
  ident: b0235
  article-title: Shipping Point And Market Inspection Instructions For Pears
– volume: 2015
  start-page: 1
  year: 2015
  end-page: 15
  ident: b0100
  article-title: Adam: A method for stochastic optimization. 3rd Int
  publication-title: Conf. Learn. Represent. ICLR
– year: 2005
  ident: b0230
  article-title: Shipping Point And Market Inspection Instructions For Apples
– volume: 56
  start-page: 1213
  year: 2013
  end-page: 1226
  ident: b0125
  article-title: X-Ray Applications in Food and Agriculture: A Review
  publication-title: Trans. ASABE
– reference: Gadgile, D., Joshi, C.P., Shinde, V.M., Kachare, P.B., 2017. Detection of green mold rot infection of citrus fruit by X-ray scanning non-destructive technology 8, 78–80. Doi: 10.19071/cb.2017.v8.3211.
– volume: 16
  start-page: 647
  year: 2017
  end-page: 667
  ident: b0135
  article-title: Time-Temperature Management Along the Food Cold Chain: A Review of Recent Developments
  publication-title: Compr. Rev. Food Sci. Food Saf.
– volume: 20
  start-page: 1
  year: 2020
  end-page: 15
  ident: b0005
  article-title: Classification of watermelon seeds using morphological patterns of x-ray imaging: A comparison of conventional machine learning and deep learning
  publication-title: Sensors
– reference: Chabalala, Y., Adam, E., Ali, K.A., 2023. Exploring the Effect of Balanced and Imbalanced Multi ‑ Class Distribution Data and Sampling Techniques on Fruit ‑ Tree Crop Classification Using Different Machine Learning Classifiers 70–92.
– volume: 190
  year: 2022
  ident: b0285
  article-title: Detection of pear freezing injury by non-destructive X-ray scanning technology
  publication-title: Postharvest Biol. Technol.
– volume: 1–4
  year: 2008
  ident: b0110
  article-title: Real-time detection of foreign objects using x-ray imaging for dry food manufacturing line
  publication-title: Proc. Int. Symp. Consum. Electron. ISCE
– year: 2023
  ident: b0205
  article-title: Non-destructive internal disorder segmentation in pear fruit by X-ray radiography and AI
– reference: Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G., 2017. Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) 10265 LNCS, 146–147. Doi: 10.1007/978-3-319-59050-9_12.
– reference: Liznerski, P., Ruff, L., Vandermeulen, R.A., Franks, B.J., Kloft, M., Müller, K.-R., 2020. Explainable Deep One-Class Classification 1–25.
– reference: Gadgile, D., Chavan, A., 2017. Detection of post-harvest fungal diseases of mango by X-ray scanning non-destructive technology 7, 65–69. Doi: 10.5943/ppq/7/1/8.
– volume: 2907
  start-page: 176
  year: 1996
  end-page: 185
  ident: b0175
  article-title: Defect detection in apples by means of x-ray imaging
  publication-title: Proc. SPIE
– volume: 116
  start-page: 36
  year: 2016
  end-page: 44
  ident: b0085
  article-title: Consumers’ Visual Attention to Fruit Defects and Disorders: A Case Study with Apple Images
  publication-title: Postharvest Biol. Technol.
– volume: 109
  start-page: 756
  year: 2021
  end-page: 795
  ident: b0170
  article-title: A Unifying Review of Deep and Shallow Anomaly Detection
  publication-title: Proc. IEEE
– reference: Shi, W., Caballero, J., Theis, L., Huszar, F., Aitken, A., Ledig, C., Wang, Z., 2016. Is the deconvolution layer the same as a convolutional layer?.
– volume: 165
  year: 2019
  ident: b0090
  article-title: Depthwise separable convolution architectures for plant disease classification
  publication-title: Comput. Electron. Agric.
– reference: Mishra, P., Verk, R., Fornasier, D., Piciarelli, C., Foresti, G.L., 2021. VT-ADL: A Vision Transformer Network for Image Anomaly Detection and Localization. IEEE Int. Symp. Ind. Electron. 2021-June. Doi: 10.1109/ISIE45552.2021.9576231.
– reference: Terry, L.A., Mena, C., Williams, A., Jenney, N., Whitehead, P., 2011. Fruit and Vegetable Resource Maps: Mapping Fruit and Vegetable Waste Through the Retail and Wholesale Supply Chain. WRAP.
– ident: 10.1016/j.compag.2024.109364_b0035
– volume: 190
  year: 2022
  ident: 10.1016/j.compag.2024.109364_b0285
  article-title: Detection of pear freezing injury by non-destructive X-ray scanning technology
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2022.111950
– volume: 286
  year: 2020
  ident: 10.1016/j.compag.2024.109364_b0040
  article-title: On line detection of defective apples using computer vision system combined with deep learning methods
  publication-title: J. Food Eng.
  doi: 10.1016/j.jfoodeng.2020.110102
– ident: 10.1016/j.compag.2024.109364_b0060
  doi: 10.1007/978-3-319-70096-0_39
– volume: 204
  start-page: W126
  year: 2015
  ident: 10.1016/j.compag.2024.109364_b0080
  article-title: Radiographic techniques, contrast, and noise in x-ray imaging
  publication-title: AJR. Am. J. Roentgenol.
  doi: 10.2214/AJR.14.13116
– volume: 200
  year: 2023
  ident: 10.1016/j.compag.2024.109364_b0210
  article-title: Synthetic data for X-ray CT of healthy and disordered pear fruit using deep learning
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2023.112342
– volume: 3
  start-page: 32
  year: 1950
  ident: 10.1016/j.compag.2024.109364_b0280
  article-title: Index for rating diagnostic tests
  publication-title: Cancer
  doi: 10.1002/1097-0142(1950)3:1<32::AID-CNCR2820030106>3.0.CO;2-3
– ident: 10.1016/j.compag.2024.109364_b0145
  doi: 10.1109/ISIE45552.2021.9576231
– volume: 14
  start-page: 131
  year: 1998
  ident: 10.1016/j.compag.2024.109364_b0115
  article-title: Effect of growing season, harvest maturity, waxing, low O2 and elevated CO2 on flesh browning disorders in “Braeburn” apples
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(98)00035-0
– ident: 10.1016/j.compag.2024.109364_b0160
– volume: 213–220
  year: 2022
  ident: 10.1016/j.compag.2024.109364_b0195
  article-title: Influence of different origins, CA storage conditions and storage times on internal browning in apple and pear cultivars
  publication-title: Acta Hortic.
– volume: 153
  start-page: 347
  year: 2018
  ident: 10.1016/j.compag.2024.109364_b0105
  article-title: Improving efficiency of organic farming by using a deep learning classification approach
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2018.08.032
– ident: 10.1016/j.compag.2024.109364_b0120
– volume: 204
  year: 2023
  ident: 10.1016/j.compag.2024.109364_b0015
  article-title: Factors affecting development of disorders expressed after storage of ‘Gala’ apple fruit
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2023.112439
– volume: 176
  year: 2021
  ident: 10.1016/j.compag.2024.109364_b0255
  article-title: Non-destructive internal disorder detection of Conference pears by semantic segmentation of X-ray CT scans using deep learning
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114925
– volume: 152
  year: 2023
  ident: 10.1016/j.compag.2024.109364_b0295
  article-title: Spatial–contextual variational autoencoder with attention correction for anomaly detection in retinal OCT images
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2022.106328
– ident: 10.1016/j.compag.2024.109364_b0045
  doi: 10.5943/ppq/7/1/8
– ident: 10.1016/j.compag.2024.109364_b0190
– volume: 24
  start-page: 13
  year: 2002
  ident: 10.1016/j.compag.2024.109364_b0010
  article-title: Responses of “Fuji” apples to short and long duration exposure to elevated CO2 concentration
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/S0925-5214(01)00120-X
– start-page: 552
  year: 2023
  ident: 10.1016/j.compag.2024.109364_b0215
  article-title: Deep Learning for Apple Fruit Quality Inspection using X-Ray Imaging
  publication-title: Proc. IEEE/CVF Int. Conf. Comput. vis.
– volume: 2015
  start-page: 1
  year: 2015
  ident: 10.1016/j.compag.2024.109364_b0100
  article-title: Adam: A method for stochastic optimization. 3rd Int
  publication-title: Conf. Learn. Represent. ICLR
– volume: 10
  year: 2021
  ident: 10.1016/j.compag.2024.109364_b0030
  article-title: Convolutional neural networks using enhanced radiographs for real-time detection of sitophilus zeamais in maize grain
  publication-title: Foods
– volume: 203
  year: 2023
  ident: 10.1016/j.compag.2024.109364_b0130
  article-title: Automated detection of internal fruit rot in Hass avocado via deep learning-based semantic segmentation of X-ray images
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2023.112390
– volume: 116
  start-page: 36
  year: 2016
  ident: 10.1016/j.compag.2024.109364_b0085
  article-title: Consumers’ Visual Attention to Fruit Defects and Disorders: A Case Study with Apple Images
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2015.12.015
– volume: 2907
  start-page: 176
  year: 1996
  ident: 10.1016/j.compag.2024.109364_b0175
  article-title: Defect detection in apples by means of x-ray imaging
  publication-title: Proc. SPIE
  doi: 10.1117/12.262857
– year: 2007
  ident: 10.1016/j.compag.2024.109364_b0235
– ident: 10.1016/j.compag.2024.109364_b0180
  doi: 10.1007/978-3-319-59050-9_12
– volume: 197
  year: 2022
  ident: 10.1016/j.compag.2024.109364_b0260
  article-title: Inline nondestructive internal disorder detection in pear fruit using explainable deep anomaly detection on X-ray images
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2022.106962
– volume: 157
  start-page: 35
  year: 2015
  ident: 10.1016/j.compag.2024.109364_b0240
  article-title: The ASTRA Toolbox: A platform for advanced algorithm development in electron tomography
  publication-title: Ultramicroscopy
  doi: 10.1016/j.ultramic.2015.05.002
– year: 2016
  ident: 10.1016/j.compag.2024.109364_b0055
– volume: 75
  start-page: 114
  year: 2013
  ident: 10.1016/j.compag.2024.109364_b0070
  article-title: Characterisation of “Braeburn” Browning Disorder by means of X-Ray Micro-CT
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2012.08.008
– volume: 87
  start-page: 42
  year: 2014
  ident: 10.1016/j.compag.2024.109364_b0075
  article-title: Comparison of X-ray CT and MRI of Watercore Disorder of Different Apple Cultivars
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2013.08.008
– volume: 1–4
  year: 2008
  ident: 10.1016/j.compag.2024.109364_b0110
  article-title: Real-time detection of foreign objects using x-ray imaging for dry food manufacturing line
  publication-title: Proc. Int. Symp. Consum. Electron. ISCE
– ident: 10.1016/j.compag.2024.109364_b0165
– volume: 1769
  year: 2016
  ident: 10.1016/j.compag.2024.109364_b0140
  article-title: Grating-based X-ray tomography of 3D food structures
  publication-title: AIP Conf. Proc.
  doi: 10.1063/1.4963604
– volume: 155
  year: 2024
  ident: 10.1016/j.compag.2024.109364_b0220
  article-title: BraeNet: Internal disorder detection in ‘Braeburn’ apple using X-ray imaging data
  publication-title: Food Control
  doi: 10.1016/j.foodcont.2023.110092
– volume: 56
  start-page: 1213
  year: 2013
  ident: 10.1016/j.compag.2024.109364_b0125
  article-title: X-Ray Applications in Food and Agriculture: A Review
  publication-title: Trans. ASABE
– volume: 13
  start-page: 600
  year: 2004
  ident: 10.1016/j.compag.2024.109364_b0270
  article-title: Image Quality Assessment : From Error Visibility to Structural Similarity. 600 IEEE Trans
  publication-title: IMAGE Process.
  doi: 10.1109/TIP.2003.819861
– volume: 112
  start-page: 205
  year: 2016
  ident: 10.1016/j.compag.2024.109364_bib296
  article-title: A segmentation and classification algorithm for online detection of internal disorders in citrus using X-ray radiographs
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2015.09.020
– volume: 16
  start-page: 647
  year: 2017
  ident: 10.1016/j.compag.2024.109364_b0135
  article-title: Time-Temperature Management Along the Food Cold Chain: A Review of Recent Developments
  publication-title: Compr. Rev. Food Sci. Food Saf.
  doi: 10.1111/1541-4337.12269
– volume: 213
  year: 2024
  ident: 10.1016/j.compag.2024.109364_b0065
  article-title: Non-destructive detection method and experiment of pomelo volume and flesh content based on image fusion
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2024.112953
– volume: 297
  year: 2022
  ident: 10.1016/j.compag.2024.109364_b0275
  article-title: Seasonal variation in calcium and ascorbic acid content at harvest related to internal browning in ‘Braeburn’ apple during controlled atmosphere storage
  publication-title: Sci. Hortic. (amsterdam)
  doi: 10.1016/j.scienta.2022.110943
– volume: 109
  start-page: 756
  year: 2021
  ident: 10.1016/j.compag.2024.109364_b0170
  article-title: A Unifying Review of Deep and Shallow Anomaly Detection
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2021.3052449
– ident: 10.1016/j.compag.2024.109364_b0185
– year: 2005
  ident: 10.1016/j.compag.2024.109364_b0230
– ident: 10.1016/j.compag.2024.109364_b0290
– ident: 10.1016/j.compag.2024.109364_b0225
– year: 2023
  ident: 10.1016/j.compag.2024.109364_b0205
– ident: 10.1016/j.compag.2024.109364_b0050
  doi: 10.19071/cb.2017.v8.3211
– volume: 24
  start-page: 25129
  year: 2016
  ident: 10.1016/j.compag.2024.109364_b0245
  article-title: Fast and flexible X-ray tomography using the ASTRA toolbox
  publication-title: Opt. Express
  doi: 10.1364/OE.24.025129
– volume: 20
  start-page: 1
  year: 2020
  ident: 10.1016/j.compag.2024.109364_b0005
  article-title: Classification of watermelon seeds using morphological patterns of x-ray imaging: A comparison of conventional machine learning and deep learning
  publication-title: Sensors
  doi: 10.3390/s20236753
– volume: 1–15
  year: 2021
  ident: 10.1016/j.compag.2024.109364_b0155
  article-title: X-ray computed tomography for 3D plant imaging
  publication-title: Trends Plant Sci.
– volume: 206
  year: 2023
  ident: 10.1016/j.compag.2024.109364_b0200
  article-title: An introduction to artificial intelligence in machine vision for postharvest detection of disorders in horticultural products
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2023.112576
– volume: 5
  start-page: 285
  year: 2014
  ident: 10.1016/j.compag.2024.109364_b0150
  article-title: Nondestructive Measurement of Fruit and Vegetable Quality
  publication-title: Annu. Rev. Food Sci. Technol.
  doi: 10.1146/annurev-food-030713-092410
– volume: 67
  start-page: 2547
  year: 2021
  ident: 10.1016/j.compag.2024.109364_b0095
  article-title: Real-Time Anomaly Detection in Packaged Food X-Ray Images Using Supervised Learning
  publication-title: Comput. Mater. Contin.
– volume: 5
  start-page: 372
  year: 2019
  ident: 10.1016/j.compag.2024.109364_b0020
  article-title: Improving unsupervised defect segmentation by applying structural similarity to autoencoders. VISIGRAPP 2019 - Proc. 14th Int. Jt. Conf. Comput. Vision
  publication-title: Imaging Comput. Graph. Theory Appl.
– ident: 10.1016/j.compag.2024.109364_b0025
  doi: 10.3390/geomatics3010004
– volume: 165
  year: 2019
  ident: 10.1016/j.compag.2024.109364_b0090
  article-title: Depthwise separable convolution architectures for plant disease classification
  publication-title: Comput. Electron. Agric.
  doi: 10.1016/j.compag.2019.104948
– volume: 148
  start-page: 218
  year: 2019
  ident: 10.1016/j.compag.2024.109364_b0250
  article-title: Combination of Shape and X-Ray Inspection for Apple Internal Quality Control. In Silico Analysis of the Methodology based on X-Ray Computed Tomography
  publication-title: Postharvest Biol. Technol.
  doi: 10.1016/j.postharvbio.2018.05.020
SSID ssj0016987
Score 2.4209569
Snippet [Display omitted] •X-ray radiographs were used to identify apple and pear fruit with internal disorders.•Classification was achieved by a fully convolutional...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 109364
SubjectTerms Anomaly detection
Autoencoder
Deep learning
Food quality inspection
X-ray imaging
Title Unsupervised anomaly detection for pome fruit quality inspection using X-ray radiography
URI https://dx.doi.org/10.1016/j.compag.2024.109364
Volume 226
WOSCitedRecordID wos001316925800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0168-1699
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016987
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1La9tAEF5cp4f2UPokadqyh96Mgq3ValdHk6a0PYRAnaCbWEmjoOBIrmyZ5N939iHJ1KUv6EWYRbsyMx_DzOzMN4S8z6Mo09dBng9h4QVCck9xzrypvnOKIJPAMjNsQpyfyziOLkajtuuF2S5FVcm7u2j1X1WNa6hs3Tr7F-ruD8UF_I1KxyeqHZ9_pPjLat2utAVYg6ZhrW_V8n6SwwayvqxwVd_CpGjasmuq1M1_tucS32hN-iD2GnU_aVRe7pJad5wGbhaEJXgeRumY4lp13ThCjx40C0DvfKnA1fTqWSH5kIU1SCrVt7JbukKj86Gum7XZY1IHMLSsXSES6q01lxdlX1_sUhd-4Hr4-nzaXk-NTXGGGNeGdmxSZ6N921a_Z-9t6uHmxBTsX5_ojxiCLMuM_gOT9ld9tD5Z180KzvkDcuALHskxOZh_Pou_9NdPYSRtn737K13PpSkM3P_Wz32aHT9l8ZQ8cQEGnVtgPCMjqJ6Tx_NBJy9IvAsR6iBCe4hQhAjVEKEGItRBhA4QoQYi1ECE7kDkJbn8eLY4_eS5CRtehqHixoumoGQA6HOCz0GkUagEK1heSJX7IPhMAFNsmqVhlBViCjIXIk2lTDEsx0CAs1dkXNUVHBI6gylD91GhtGYBZIFSRcoKmYJm9ULTfkRYJ6Mkc_TzegrKMunqDG8SK9lESzaxkj0iXr9rZelXfvO-6MSfOBfSuoYJIuaXO1__885j8mgA9xsy3jQtvCUPs-2mXDfvHLS-A54NnMk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Unsupervised+anomaly+detection+for+pome+fruit+quality+inspection+using+X-ray+radiography&rft.jtitle=Computers+and+electronics+in+agriculture&rft.au=Tempelaere%2C+Astrid&rft.au=He%2C+Jiaqi&rft.au=Van+Doorselaer%2C+Leen&rft.au=Verboven%2C+Pieter&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0168-1699&rft.volume=226&rft_id=info:doi/10.1016%2Fj.compag.2024.109364&rft.externalDocID=S0168169924007555
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1699&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1699&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1699&client=summon