Heuristic-based load-balancing algorithm for IaaS cloud

The tremendous growth of virtualization technology in cloud environment reflects the increasing number of tasks that require the services of the virtual machines (VMs). To balance the load among the VMs and minimizing the makespan of the tasks are the challenging research issues. Many algorithms hav...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Future generation computer systems Ročník 81; s. 156 - 165
Hlavní autoři: Adhikari, Mainak, Amgoth, Tarachand
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.04.2018
Témata:
ISSN:0167-739X, 1872-7115
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The tremendous growth of virtualization technology in cloud environment reflects the increasing number of tasks that require the services of the virtual machines (VMs). To balance the load among the VMs and minimizing the makespan of the tasks are the challenging research issues. Many algorithms have been proposed to solve the said problem. However, they lack in finding the potential information about the resources and tasks and it may lead to the improper assignment of the tasks to the VMs. In this paper, we propose a new load balancing algorithm for Infrastructure as a Service (IaaS) cloud. We devise an efficient strategy to configure the servers based on the number of incoming tasks and their sizes to find suitable VMs for assignment and maximize the utilization of computing resource. We test the proposed algorithm through simulation runs and compare the simulation results with the existing algorithms using various performance metrics. Through comparisons, we demonstrate that the proposed algorithm performs better than the existing ones. •The objective of HBLBA is to minimize the makespan and utilize the resource efficiently.•We devise a mechanism to configure servers and it helps in utilizing resources efficiently.•An intelligent decision strategy for task assignment.•Finally, a comprehensive validation via simulation runs using various performance metrics.
AbstractList The tremendous growth of virtualization technology in cloud environment reflects the increasing number of tasks that require the services of the virtual machines (VMs). To balance the load among the VMs and minimizing the makespan of the tasks are the challenging research issues. Many algorithms have been proposed to solve the said problem. However, they lack in finding the potential information about the resources and tasks and it may lead to the improper assignment of the tasks to the VMs. In this paper, we propose a new load balancing algorithm for Infrastructure as a Service (IaaS) cloud. We devise an efficient strategy to configure the servers based on the number of incoming tasks and their sizes to find suitable VMs for assignment and maximize the utilization of computing resource. We test the proposed algorithm through simulation runs and compare the simulation results with the existing algorithms using various performance metrics. Through comparisons, we demonstrate that the proposed algorithm performs better than the existing ones. •The objective of HBLBA is to minimize the makespan and utilize the resource efficiently.•We devise a mechanism to configure servers and it helps in utilizing resources efficiently.•An intelligent decision strategy for task assignment.•Finally, a comprehensive validation via simulation runs using various performance metrics.
Author Adhikari, Mainak
Amgoth, Tarachand
Author_xml – sequence: 1
  givenname: Mainak
  surname: Adhikari
  fullname: Adhikari, Mainak
  email: mainak.ism@gmail.com
– sequence: 2
  givenname: Tarachand
  surname: Amgoth
  fullname: Amgoth, Tarachand
  email: tarachand@iitism.ac.in
BookMark eNqFkE1LAzEQhoNUsK3-Aw_7B3bNx26z60GQolYoeFDBW5gmk5qy3UiSFfz3ptSTBz3NMLzPC_PMyGTwAxJyyWjFKFtc7So7pjFgxSmT-VRR0ZyQKWslLyVjzYRMc0yWUnRvZ2QW447SnBRsSuQKx-BicrrcQERT9B5MXnsYtBu2BfRbH1x63xfWh-IR4LnQvR_NOTm10Ee8-Jlz8np_97Jcleunh8fl7brUgi5S2doOmWyaupU1WGsk5VZsDAqsF7ZlEjiXyEGA0JwZyjWntrM52kkratOJObk-9urgYwxolXYJkvNDCuB6xag6KFA7dVSgDgoO16wgw_Uv-CO4PYSv_7CbI4b5sU-HQUXtcNBoXECdlPHu74JvqpZ6jA
CitedBy_id crossref_primary_10_1007_s10586_024_04419_1
crossref_primary_10_1016_j_asoc_2020_106411
crossref_primary_10_33461_uybisbbd_873210
crossref_primary_10_1109_ACCESS_2019_2945499
crossref_primary_10_1002_cpe_7943
crossref_primary_10_1007_s10922_021_09602_y
crossref_primary_10_11648_j_ajnc_20251402_13
crossref_primary_10_1016_j_compind_2019_06_002
crossref_primary_10_1007_s10586_021_03322_3
crossref_primary_10_1016_j_comnet_2020_107707
crossref_primary_10_1007_s10586_020_03071_9
crossref_primary_10_1007_s11277_023_10350_2
crossref_primary_10_1007_s13198_021_01244_2
crossref_primary_10_1007_s10586_021_03280_w
crossref_primary_10_4018_IJGHPC_301592
crossref_primary_10_1007_s11227_019_03095_y
crossref_primary_10_3390_math11010156
crossref_primary_10_1002_cpe_7136
crossref_primary_10_1109_ACCESS_2021_3065308
crossref_primary_10_3233_JCM_180830
crossref_primary_10_1007_s10586_023_04118_3
crossref_primary_10_1016_j_jksuci_2021_02_007
crossref_primary_10_1007_s41870_022_01027_3
crossref_primary_10_1016_j_asoc_2019_02_004
crossref_primary_10_1007_s13319_019_0222_2
crossref_primary_10_4018_IJCAC_2020040101
crossref_primary_10_1007_s11227_022_04426_2
crossref_primary_10_1109_ACCESS_2022_3157435
crossref_primary_10_3390_en11123345
crossref_primary_10_1155_2020_1072485
crossref_primary_10_1007_s11227_021_04062_2
crossref_primary_10_1016_j_jksuci_2022_03_016
crossref_primary_10_1007_s11082_024_06292_z
crossref_primary_10_1016_j_jnca_2019_04_003
crossref_primary_10_1016_j_future_2018_05_061
crossref_primary_10_1007_s11276_019_02090_8
crossref_primary_10_37394_232018_2025_13_52
crossref_primary_10_1016_j_knosys_2021_107020
crossref_primary_10_1007_s10586_021_03302_7
crossref_primary_10_3390_electronics9071091
crossref_primary_10_1007_s10723_019_09499_7
crossref_primary_10_1111_exsy_13150
crossref_primary_10_1109_ACCESS_2023_3337146
crossref_primary_10_1007_s10586_024_04307_8
crossref_primary_10_1007_s11227_022_04501_8
crossref_primary_10_1155_2022_1533949
crossref_primary_10_3390_sym14122554
crossref_primary_10_3390_su141911982
crossref_primary_10_1007_s11277_024_11117_z
crossref_primary_10_1002_cpe_5652
crossref_primary_10_1016_j_jnca_2018_12_010
crossref_primary_10_1109_ACCESS_2023_3299213
crossref_primary_10_1016_j_future_2019_07_019
crossref_primary_10_26634_jcc_10_2_20421
crossref_primary_10_1007_s11831_022_09708_9
crossref_primary_10_1007_s10586_021_03354_9
crossref_primary_10_1186_s13677_019_0146_7
crossref_primary_10_1007_s10489_019_01448_x
crossref_primary_10_1007_s10723_019_09486_y
crossref_primary_10_3390_s23239581
crossref_primary_10_1007_s11831_023_09885_1
crossref_primary_10_1016_j_future_2020_01_035
crossref_primary_10_1007_s11227_020_03544_z
crossref_primary_10_1007_s11277_024_11311_z
crossref_primary_10_1145_3325097
Cites_doi 10.1007/s13369-015-1626-9
10.1007/978-3-319-08156-4_28
10.1109/TNET.2013.2288973
10.1109/LCOMM.2015.2501402
10.1016/j.asoc.2013.01.025
10.1016/j.future.2008.12.001
10.1002/(SICI)1096-9128(199805)10:6<467::AID-CPE325>3.0.CO;2-A
10.20533/ijicr.2042.4655.2015.0078
10.1109/TST.2013.6449405
10.1016/j.jksuci.2015.09.001
10.1016/j.future.2012.12.006
10.1109/TC.2013.122
10.1109/TPDS.2015.2402655
10.1016/j.jnca.2014.07.030
10.1109/71.993206
10.1016/j.compeleceng.2017.04.018
10.1109/DeSE.2013.43
10.1016/j.jnca.2017.03.008
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2017.10.035
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 165
ExternalDocumentID 10_1016_j_future_2017_10_035
S0167739X1730732X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-8f9e17554874affd702f3bde3e46f817a227e2a3a3c21d02c20f9f4af97f34d93
ISICitedReferencesCount 74
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423652200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:48:22 EST 2025
Tue Nov 18 20:56:35 EST 2025
Fri Feb 23 02:30:16 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords IaaS cloud
Resource utilization
Virtual machines
Makespan
Server configuration
Load balancing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-8f9e17554874affd702f3bde3e46f817a227e2a3a3c21d02c20f9f4af97f34d93
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_future_2017_10_035
crossref_primary_10_1016_j_future_2017_10_035
elsevier_sciencedirect_doi_10_1016_j_future_2017_10_035
PublicationCentury 2000
PublicationDate April 2018
2018-04-00
PublicationDateYYYYMMDD 2018-04-01
PublicationDate_xml – month: 04
  year: 2018
  text: April 2018
PublicationDecade 2010
PublicationTitle Future generation computer systems
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Dhinesh Babu, Venkata Krishna (b18) 2013; 13
Topcuoglu, Hariri, Wu (b26) 2002; 13
Elzeki, Reshad, Cloud (b11) 2012; 50
Suresh, Sakthivel (b2) 2017; 50
Aldawsari, Baker, England (b22) 2015; 6
Thar Baker, Yanik Ngoko, Rafael Tolosana-Calasanz, Omer F. Rana, Martin Randles, Energy-efficient cloud computing environment via autonomic meta-director framework, in: Proceedings of Developments in eSystems Engineering (DeSE), 2013 Sixth International Conference on, 2015, pp. 198–203.
Singh, Juneja, Malhotra (b1) 2017; 29
Hu, Blake, Emerson (b19) 1998; 10
Cao, Li, Stojmenovic (b20) 2014; 63
T. Chatterjee, V.K. Ojha, M. Adhikari, S. Banerjee, U. Biswas, V. Snasel, Design and implementation of a new datacenter Broker policy to improve the QoS of a cloud, in: Proceedings of ICBIA 2014, Advances in Intelligent Systems and Computing, vol. 303, 2014, pp. 281–290.
Baker, Asim, Tawfik, Aldawsari, Buyya (b24) 2017; 89
Yong, Xiaoling, Qian, Yuwen (b17) 2016; 13
Basker, Rhymend Uthariaraj, Chitra Devi (b10) 2014; 2
Chitra Devi, Rhymend Uthariara (b21) 2016; 2016
Xu, Pang, Fu (b14) 2013; 18
Calheiros, Ranjan, De Rose, Buyya (b9) 2009
Zhao, Yang, Wei, Ding, Hu, Xu (b13) 2015; 27
Maguluri, Srikant (b15) 2013; 22
Banerjee, Adhikari, Kar, Biswas (b4) 2014; 40
Katsaros, Subirats, Oriol Fitó, Guitart, Gilet, Espling (b25) 2013; 29
Buyya, Yeo, Venugopal, Broberg, Brandic (b6) 2009; 25
Pham, Tran, Do, Huh, Hong (b16) 2016; 20
Yagoubi, Slimani (b12) 2006; 13
Alakeel (b8) 2010; 10
Garg, Toosi, Gopalaiyengar, Buyya (b5) 2014; 45
Singh, Hemalatha (b7) 2012; 56
Basker (10.1016/j.future.2017.10.035_b10) 2014; 2
Suresh (10.1016/j.future.2017.10.035_b2) 2017; 50
Alakeel (10.1016/j.future.2017.10.035_b8) 2010; 10
Zhao (10.1016/j.future.2017.10.035_b13) 2015; 27
Pham (10.1016/j.future.2017.10.035_b16) 2016; 20
Dhinesh Babu (10.1016/j.future.2017.10.035_b18) 2013; 13
10.1016/j.future.2017.10.035_b23
Cao (10.1016/j.future.2017.10.035_b20) 2014; 63
Singh (10.1016/j.future.2017.10.035_b1) 2017; 29
Xu (10.1016/j.future.2017.10.035_b14) 2013; 18
Topcuoglu (10.1016/j.future.2017.10.035_b26) 2002; 13
Garg (10.1016/j.future.2017.10.035_b5) 2014; 45
Elzeki (10.1016/j.future.2017.10.035_b11) 2012; 50
Katsaros (10.1016/j.future.2017.10.035_b25) 2013; 29
Yong (10.1016/j.future.2017.10.035_b17) 2016; 13
Banerjee (10.1016/j.future.2017.10.035_b4) 2014; 40
Aldawsari (10.1016/j.future.2017.10.035_b22) 2015; 6
Buyya (10.1016/j.future.2017.10.035_b6) 2009; 25
Baker (10.1016/j.future.2017.10.035_b24) 2017; 89
10.1016/j.future.2017.10.035_b3
Hu (10.1016/j.future.2017.10.035_b19) 1998; 10
Singh (10.1016/j.future.2017.10.035_b7) 2012; 56
Maguluri (10.1016/j.future.2017.10.035_b15) 2013; 22
Yagoubi (10.1016/j.future.2017.10.035_b12) 2006; 13
Chitra Devi (10.1016/j.future.2017.10.035_b21) 2016; 2016
Calheiros (10.1016/j.future.2017.10.035_b9) 2009
References_xml – volume: 40
  start-page: 1409
  year: 2014
  end-page: 1425
  ident: b4
  article-title: Development and analysis of a new cloudlet allocation strategy for QoS improvement in cloud
  publication-title: Arab. J. Sci. Eng.
– volume: 45
  start-page: 108
  year: 2014
  end-page: 120
  ident: b5
  article-title: SLA-based virtual machine management for heterogeneous workloads in a cloud data center
  publication-title: J. Netw. Comput. Appl.
– year: 2009
  ident: b9
  publication-title: CloudSim: A Novel Framework for Modeling and Simulation of Cloud Computing Infrastructures and Services in Technical Report, GRIDS-TR-2009-1, Grid Computing and Distributed Systems Laboratory
– reference: T. Chatterjee, V.K. Ojha, M. Adhikari, S. Banerjee, U. Biswas, V. Snasel, Design and implementation of a new datacenter Broker policy to improve the QoS of a cloud, in: Proceedings of ICBIA 2014, Advances in Intelligent Systems and Computing, vol. 303, 2014, pp. 281–290.
– volume: 6
  start-page: 630
  year: 2015
  end-page: 639
  ident: b22
  article-title: Trusted energy-efficient cloud-based services brokerage platform
  publication-title: Int. J. Intell. Comput. Res.
– volume: 89
  start-page: 96
  year: 2017
  end-page: 108
  ident: b24
  article-title: An energy-aware service composition algorithm for multiple cloud-based iot applications
  publication-title: J. Netw. Comput. Appl.
– volume: 13
  start-page: 260
  year: 2002
  end-page: 274
  ident: b26
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 2
  start-page: 81
  year: 2014
  end-page: 86
  ident: b10
  article-title: An enhanced scheduling in weighted round robin for the cloud infrastructure services
  publication-title: Int. J. Recent Adv. Eng. Technol.
– volume: 13
  start-page: 260
  year: 2006
  end-page: 265
  ident: b12
  article-title: Dynamic load balancing strategy for grid computing
  publication-title: Trans. Eng. Comput. Technol.
– volume: 10
  start-page: 467
  year: 1998
  end-page: 483
  ident: b19
  article-title: An optimal migration algorithm for dynamic load balancing
  publication-title: Concurr. Comput. Pract. Exp.
– volume: 10
  start-page: 153
  year: 2010
  end-page: 160
  ident: b8
  article-title: A guide to dynamic load, balancing in distributed computer system
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– volume: 29
  start-page: 2077
  year: 2013
  end-page: 2091
  ident: b25
  article-title: A service framework for energy-aware monitoring and VM management in Clouds
  publication-title: Future Gener. Comput. Syst.
– volume: 20
  start-page: 292
  year: 2016
  end-page: 295
  ident: b16
  article-title: Joint consolidation and service-aware load balancing for datacenters
  publication-title: IEEE Commun. Lett.
– volume: 50
  start-page: 22
  year: 2012
  end-page: 27
  ident: b11
  article-title: Improved max-min algorithm in cloud computing
  publication-title: Int. J. Comput. Appl.
– volume: 18
  start-page: 34
  year: 2013
  end-page: 39
  ident: b14
  article-title: A load balancing model based on cloud partitioning for the public cloud
  publication-title: Tsinghua Sci. Technol.
– volume: 13
  start-page: 2292
  year: 2013
  end-page: 2303
  ident: b18
  article-title: Honeybee behavior inspired load balancing of tasks in cloud computing environments
  publication-title: Appl. Soft Comput.
– volume: 22
  start-page: 1938
  year: 2013
  end-page: 1951
  ident: b15
  article-title: Scheduling jobs with unknown duration in clouds
  publication-title: IEEE/ACM Trans. Netw.
– volume: 27
  start-page: 305
  year: 2015
  end-page: 316
  ident: b13
  article-title: A heuristic clustering-based task deployment approach for load balancing using bayes theorem in cloud environment
  publication-title: IEEE Trans. Parallel Distrib. Syst.
– volume: 29
  start-page: 19
  year: 2017
  end-page: 28
  ident: b1
  article-title: A novel agent-based autonomous and service composition framework for cost optimization of resource provisioning in cloud computing
  publication-title: J. King Saud Univ., Comput. Inf. Sci.
– volume: 50
  start-page: 30
  year: 2017
  end-page: 44
  ident: b2
  article-title: A novel performance constrained power management framework for cloud computing using an adaptive node scaling approach
  publication-title: Comput. Electr. Eng.
– volume: 2016
  start-page: 1
  year: 2016
  end-page: 14
  ident: b21
  article-title: Load balancing in cloud computing environment using improved weighted round robin algorithm for nonpreemptive dependent tasks
  publication-title: Sci. World J.
– reference: Thar Baker, Yanik Ngoko, Rafael Tolosana-Calasanz, Omer F. Rana, Martin Randles, Energy-efficient cloud computing environment via autonomic meta-director framework, in: Proceedings of Developments in eSystems Engineering (DeSE), 2013 Sixth International Conference on, 2015, pp. 198–203.
– volume: 63
  start-page: 45
  year: 2014
  end-page: 58
  ident: b20
  article-title: Optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers
  publication-title: IEEE Trans. Comput.
– volume: 56
  start-page: 1
  year: 2012
  end-page: 4
  ident: b7
  article-title: An approach on semi distributed load balancing algorithm for cloud computing system
  publication-title: Int. J. Comput. Appl.
– volume: 25
  start-page: 599
  year: 2009
  end-page: 616
  ident: b6
  article-title: Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility
  publication-title: Future Gener. Comput. Syst.
– volume: 13
  start-page: 130
  year: 2016
  end-page: 137
  ident: b17
  article-title: A dynamic load balancing method of cloud-center based on SDN
  publication-title: China Commun.
– volume: 40
  start-page: 1409
  year: 2014
  ident: 10.1016/j.future.2017.10.035_b4
  article-title: Development and analysis of a new cloudlet allocation strategy for QoS improvement in cloud
  publication-title: Arab. J. Sci. Eng.
  doi: 10.1007/s13369-015-1626-9
– ident: 10.1016/j.future.2017.10.035_b3
  doi: 10.1007/978-3-319-08156-4_28
– volume: 56
  start-page: 1
  year: 2012
  ident: 10.1016/j.future.2017.10.035_b7
  article-title: An approach on semi distributed load balancing algorithm for cloud computing system
  publication-title: Int. J. Comput. Appl.
– volume: 50
  start-page: 22
  year: 2012
  ident: 10.1016/j.future.2017.10.035_b11
  article-title: Improved max-min algorithm in cloud computing
  publication-title: Int. J. Comput. Appl.
– volume: 22
  start-page: 1938
  year: 2013
  ident: 10.1016/j.future.2017.10.035_b15
  article-title: Scheduling jobs with unknown duration in clouds
  publication-title: IEEE/ACM Trans. Netw.
  doi: 10.1109/TNET.2013.2288973
– volume: 20
  start-page: 292
  year: 2016
  ident: 10.1016/j.future.2017.10.035_b16
  article-title: Joint consolidation and service-aware load balancing for datacenters
  publication-title: IEEE Commun. Lett.
  doi: 10.1109/LCOMM.2015.2501402
– volume: 2
  start-page: 81
  year: 2014
  ident: 10.1016/j.future.2017.10.035_b10
  article-title: An enhanced scheduling in weighted round robin for the cloud infrastructure services
  publication-title: Int. J. Recent Adv. Eng. Technol.
– volume: 13
  start-page: 2292
  year: 2013
  ident: 10.1016/j.future.2017.10.035_b18
  article-title: Honeybee behavior inspired load balancing of tasks in cloud computing environments
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.01.025
– volume: 25
  start-page: 599
  year: 2009
  ident: 10.1016/j.future.2017.10.035_b6
  article-title: Cloud computing and emerging it platforms: Vision, hype, and reality for delivering computing as the 5th utility
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2008.12.001
– volume: 13
  start-page: 130
  year: 2016
  ident: 10.1016/j.future.2017.10.035_b17
  article-title: A dynamic load balancing method of cloud-center based on SDN
  publication-title: China Commun.
– volume: 10
  start-page: 467
  year: 1998
  ident: 10.1016/j.future.2017.10.035_b19
  article-title: An optimal migration algorithm for dynamic load balancing
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/(SICI)1096-9128(199805)10:6<467::AID-CPE325>3.0.CO;2-A
– volume: 6
  start-page: 630
  year: 2015
  ident: 10.1016/j.future.2017.10.035_b22
  article-title: Trusted energy-efficient cloud-based services brokerage platform
  publication-title: Int. J. Intell. Comput. Res.
  doi: 10.20533/ijicr.2042.4655.2015.0078
– volume: 13
  start-page: 260
  year: 2006
  ident: 10.1016/j.future.2017.10.035_b12
  article-title: Dynamic load balancing strategy for grid computing
  publication-title: Trans. Eng. Comput. Technol.
– volume: 18
  start-page: 34
  year: 2013
  ident: 10.1016/j.future.2017.10.035_b14
  article-title: A load balancing model based on cloud partitioning for the public cloud
  publication-title: Tsinghua Sci. Technol.
  doi: 10.1109/TST.2013.6449405
– volume: 29
  start-page: 19
  year: 2017
  ident: 10.1016/j.future.2017.10.035_b1
  article-title: A novel agent-based autonomous and service composition framework for cost optimization of resource provisioning in cloud computing
  publication-title: J. King Saud Univ., Comput. Inf. Sci.
  doi: 10.1016/j.jksuci.2015.09.001
– volume: 29
  start-page: 2077
  year: 2013
  ident: 10.1016/j.future.2017.10.035_b25
  article-title: A service framework for energy-aware monitoring and VM management in Clouds
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2012.12.006
– volume: 63
  start-page: 45
  year: 2014
  ident: 10.1016/j.future.2017.10.035_b20
  article-title: Optimal power allocation and load distribution for multiple heterogeneous multicore server processors across clouds and data centers
  publication-title: IEEE Trans. Comput.
  doi: 10.1109/TC.2013.122
– year: 2009
  ident: 10.1016/j.future.2017.10.035_b9
– volume: 27
  start-page: 305
  year: 2015
  ident: 10.1016/j.future.2017.10.035_b13
  article-title: A heuristic clustering-based task deployment approach for load balancing using bayes theorem in cloud environment
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2015.2402655
– volume: 45
  start-page: 108
  year: 2014
  ident: 10.1016/j.future.2017.10.035_b5
  article-title: SLA-based virtual machine management for heterogeneous workloads in a cloud data center
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2014.07.030
– volume: 2016
  start-page: 1
  year: 2016
  ident: 10.1016/j.future.2017.10.035_b21
  article-title: Load balancing in cloud computing environment using improved weighted round robin algorithm for nonpreemptive dependent tasks
  publication-title: Sci. World J.
– volume: 13
  start-page: 260
  year: 2002
  ident: 10.1016/j.future.2017.10.035_b26
  article-title: Performance-effective and low-complexity task scheduling for heterogeneous computing
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/71.993206
– volume: 50
  start-page: 30
  year: 2017
  ident: 10.1016/j.future.2017.10.035_b2
  article-title: A novel performance constrained power management framework for cloud computing using an adaptive node scaling approach
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2017.04.018
– volume: 10
  start-page: 153
  year: 2010
  ident: 10.1016/j.future.2017.10.035_b8
  article-title: A guide to dynamic load, balancing in distributed computer system
  publication-title: Int. J. Comput. Sci. Netw. Secur.
– ident: 10.1016/j.future.2017.10.035_b23
  doi: 10.1109/DeSE.2013.43
– volume: 89
  start-page: 96
  year: 2017
  ident: 10.1016/j.future.2017.10.035_b24
  article-title: An energy-aware service composition algorithm for multiple cloud-based iot applications
  publication-title: J. Netw. Comput. Appl.
  doi: 10.1016/j.jnca.2017.03.008
SSID ssj0001731
Score 2.4707615
Snippet The tremendous growth of virtualization technology in cloud environment reflects the increasing number of tasks that require the services of the virtual...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 156
SubjectTerms IaaS cloud
Load balancing
Makespan
Resource utilization
Server configuration
Virtual machines
Title Heuristic-based load-balancing algorithm for IaaS cloud
URI https://dx.doi.org/10.1016/j.future.2017.10.035
Volume 81
WOSCitedRecordID wos000423652200013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1LT9tAEF61oYdeKH2pUKh86A0tsncXr32MKipANKrUVMrNWu-jCTUOCgni5zP78JKEKi2HXixrZa8Tf-PZmdXM9yH0mausVjUnmOV1ipkpDbbbC5gxeWwsPTg3jmf2gg8GxWhUfg9qmzdOToC3bXF3V17_V6hhDMC2rbNPgDtOCgNwDqDDEWCH4z8Bf6oXnn0Z2xVKHTZToeC0scQatiGx-TWdTebjK1dgeCbEj0PZTBerep2OaMSqK-tgIDKIPwTm5xiI99V48lv4bvVvthErNv70ryyzgjMHSwk99kohcYchK5YKU8KmIzhTTp3kbfSaXmgluL3sOF9aQTOv_vDIOft9gssjz5Ziy-r4ka2s83wlq1zYa2tUrBzsitIuKz9LZWeBoQpmeY62CKQ_aQ9t9c9ORudxRc540KUM_6NroXR1fo9_zZ9DlKWwY7iDtkO-kPQ9zq_RM92-Qa86LY4kuOa3iK_BnqzCnkTYE4A9sbAnDvZ36OfXk-GXUxxEMbCE7G6OC1NqCPlsosmEMYqnxNBaaapZboqMC0K4JoIKKkmmUiJJCh8gXFpyQ5kq6XvUa6et_oASVbOyhnxXA-aslKmAWCXXknJHg5aLXUS791DJwBhvhUuaahMKuwjHu649Y8pfrufdK65C1OejuQrsZuOde0980kf08sG891FvPlvoA_RC3s4nN7NPwWjuAV7fevg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Heuristic-based+load-balancing+algorithm+for+IaaS+cloud&rft.jtitle=Future+generation+computer+systems&rft.au=Adhikari%2C+Mainak&rft.au=Amgoth%2C+Tarachand&rft.date=2018-04-01&rft.issn=0167-739X&rft.volume=81&rft.spage=156&rft.epage=165&rft_id=info:doi/10.1016%2Fj.future.2017.10.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_future_2017_10_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon