A novel Enhanced Collaborative Autoencoder with knowledge distillation for top-N recommender systems
In most recommender systems, the data of user feedbacks are usually represented with a set of discrete values, which are difficult to exactly describe users’ interests. This problem makes it not easy to exactly model users’ latent preferences for recommendation. Intuitively, a basic idea for this is...
Uloženo v:
| Vydáno v: | Neurocomputing (Amsterdam) Ročník 332; s. 137 - 148 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier B.V
07.03.2019
|
| Témata: | |
| ISSN: | 0925-2312, 1872-8286 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
Buďte první, kdo okomentuje tento záznam!