A novel Enhanced Collaborative Autoencoder with knowledge distillation for top-N recommender systems

In most recommender systems, the data of user feedbacks are usually represented with a set of discrete values, which are difficult to exactly describe users’ interests. This problem makes it not easy to exactly model users’ latent preferences for recommendation. Intuitively, a basic idea for this is...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Neurocomputing (Amsterdam) Ročník 332; s. 137 - 148
Hlavní autoři: Pan, Yiteng, He, Fazhi, Yu, Haiping
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 07.03.2019
Témata:
ISSN:0925-2312, 1872-8286
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract In most recommender systems, the data of user feedbacks are usually represented with a set of discrete values, which are difficult to exactly describe users’ interests. This problem makes it not easy to exactly model users’ latent preferences for recommendation. Intuitively, a basic idea for this issue is to predict continuous values through a trained model to reveal users’ essential feedbacks, and then make use of the generated data to retrain another model to learn users’ preferences. However, since these continuous data are generated by an imperfect model which are trained by discrete data, there exists a lot of noise among the generated data. This problem may have a severe adverse impact on the performance. Towards this problem, we propose a novel Enhanced Collaborative Autoencoder (ECAE) to learn robust information from generated soft data with the technique of knowledge distillation. First, we propose a tightly coupled structure to incorporate the generation and retraining stages into a unified framework. So that the generated data can be fine tuned to reduce the noise by propagating training errors of retraining network. Second, for that each unit of the generated data contains different level of noise, we propose a novel distillation layer to balance the influence of noise and knowledge. Finally, we propose to take both predict results of generation and retraining network into account to make final recommendations for each user. The experimental results on four public datasets for top-N recommendation show that the ECAE model performs better than several state-of-the-art algorithms on metrics of MAP and NDCG.
AbstractList In most recommender systems, the data of user feedbacks are usually represented with a set of discrete values, which are difficult to exactly describe users’ interests. This problem makes it not easy to exactly model users’ latent preferences for recommendation. Intuitively, a basic idea for this issue is to predict continuous values through a trained model to reveal users’ essential feedbacks, and then make use of the generated data to retrain another model to learn users’ preferences. However, since these continuous data are generated by an imperfect model which are trained by discrete data, there exists a lot of noise among the generated data. This problem may have a severe adverse impact on the performance. Towards this problem, we propose a novel Enhanced Collaborative Autoencoder (ECAE) to learn robust information from generated soft data with the technique of knowledge distillation. First, we propose a tightly coupled structure to incorporate the generation and retraining stages into a unified framework. So that the generated data can be fine tuned to reduce the noise by propagating training errors of retraining network. Second, for that each unit of the generated data contains different level of noise, we propose a novel distillation layer to balance the influence of noise and knowledge. Finally, we propose to take both predict results of generation and retraining network into account to make final recommendations for each user. The experimental results on four public datasets for top-N recommendation show that the ECAE model performs better than several state-of-the-art algorithms on metrics of MAP and NDCG.
Author Pan, Yiteng
He, Fazhi
Yu, Haiping
Author_xml – sequence: 1
  givenname: Yiteng
  surname: Pan
  fullname: Pan, Yiteng
– sequence: 2
  givenname: Fazhi
  orcidid: 0000-0001-9167-1683
  surname: He
  fullname: He, Fazhi
  email: fzhe@whu.edu.cn
– sequence: 3
  givenname: Haiping
  orcidid: 0000-0002-8900-8054
  surname: Yu
  fullname: Yu, Haiping
BookMark eNqFkL1OwzAUhS1UJNrCGzD4BRL8kzgJA1JVlR-pggVmy3FuqEtiV7Zp1bcnoUwMMN3lfEfnfjM0sc4CQteUpJRQcbNNLXxq16eM0DKlLCUsP0NTWhYsKVkpJmhKKpYnjFN2gWYhbAmhBWXVFDULbN0eOryyG2U1NHjpuk7Vzqto9oAXn9GB1a4Bjw8mbvCHdYcOmnfAjQnRDNlonMWt8zi6XfKMPQxLerAjEY4hQh8u0XmrugBXP3eO3u5Xr8vHZP3y8LRcrBPNiYhJqRuAss4ypSjLayZUVlcNK7nOFWlJLQQvBM0Eb4uKt4yzNq81B0W0ylvFFJ-j21Ov9i4ED63UJn7vi16ZTlIiR19yK0--5OhLUiYHXwOc_YJ33vTKH__D7k4YDI_tDXgZtIHRpBlMRNk483fBFxT3jAg
CitedBy_id crossref_primary_10_1016_j_asoc_2020_106335
crossref_primary_10_1016_j_chaos_2022_112204
crossref_primary_10_1108_IJICC_11_2021_0257
crossref_primary_10_1007_s12293_021_00328_7
crossref_primary_10_1016_j_eswa_2021_115306
crossref_primary_10_1007_s11042_022_12232_4
crossref_primary_10_3233_ICA_190723
crossref_primary_10_1016_j_aei_2019_100963
crossref_primary_10_1007_s10489_019_01542_0
crossref_primary_10_1016_j_engappai_2024_108792
crossref_primary_10_1109_ACCESS_2019_2940603
crossref_primary_10_1007_s11042_022_13411_z
crossref_primary_10_1007_s11257_024_09418_w
crossref_primary_10_1007_s11704_019_8123_3
crossref_primary_10_1007_s11042_022_12513_y
crossref_primary_10_2196_23086
crossref_primary_10_1007_s11042_022_13281_5
crossref_primary_10_1016_j_engappai_2025_111914
crossref_primary_10_1007_s11042_019_08070_6
crossref_primary_10_3390_math11030761
crossref_primary_10_1007_s11042_019_08399_y
crossref_primary_10_1007_s41095_020_0185_5
crossref_primary_10_1016_j_aei_2019_02_003
crossref_primary_10_1016_j_ins_2019_10_072
crossref_primary_10_1007_s40815_021_01177_9
crossref_primary_10_1109_TCE_2023_3325138
crossref_primary_10_1007_s12652_020_02388_y
crossref_primary_10_1016_j_neucom_2022_04_082
crossref_primary_10_1371_journal_pone_0255948
crossref_primary_10_3390_sym12101636
crossref_primary_10_3233_IDA_194641
crossref_primary_10_1007_s00371_019_01774_8
crossref_primary_10_1109_TCSVT_2022_3146305
crossref_primary_10_1016_j_eswa_2021_115132
crossref_primary_10_1016_j_measurement_2019_06_029
crossref_primary_10_1007_s10489_021_02872_8
crossref_primary_10_1007_s10489_022_03758_z
crossref_primary_10_1016_j_neucom_2021_01_040
crossref_primary_10_1007_s11766_019_3714_1
crossref_primary_10_1007_s10115_024_02204_5
crossref_primary_10_1007_s00371_021_02184_5
crossref_primary_10_1007_s10489_022_04423_1
crossref_primary_10_1109_ACCESS_2021_3133628
crossref_primary_10_1007_s10586_025_05258_4
crossref_primary_10_1016_j_jpdc_2019_05_005
crossref_primary_10_1007_s11042_019_08597_8
crossref_primary_10_1016_j_knosys_2020_106372
crossref_primary_10_1080_03081079_2023_2200248
crossref_primary_10_1007_s11042_019_08493_1
crossref_primary_10_1016_j_dt_2021_04_014
crossref_primary_10_1016_j_future_2019_05_021
crossref_primary_10_1109_ACCESS_2025_3573181
crossref_primary_10_1002_cpe_7241
crossref_primary_10_1016_j_neucom_2024_128718
crossref_primary_10_1109_ACCESS_2021_3057091
crossref_primary_10_1109_TAI_2021_3116551
crossref_primary_10_1007_s11042_023_14704_7
crossref_primary_10_1007_s11042_021_10897_x
crossref_primary_10_1007_s11042_021_10890_4
crossref_primary_10_1007_s10489_022_03170_7
crossref_primary_10_1007_s13042_023_01828_3
crossref_primary_10_1177_1063293X21998083
crossref_primary_10_1007_s11042_023_14490_2
crossref_primary_10_1007_s11280_020_00793_z
crossref_primary_10_1007_s11704_019_8184_3
crossref_primary_10_1109_ACCESS_2023_3323353
crossref_primary_10_1007_s00500_020_05419_0
crossref_primary_10_1007_s11042_021_11300_5
crossref_primary_10_1016_j_engappai_2021_104494
crossref_primary_10_1007_s11263_021_01453_z
crossref_primary_10_1016_j_inffus_2025_103098
crossref_primary_10_1007_s11042_021_10965_2
crossref_primary_10_1007_s00607_022_01103_3
crossref_primary_10_3390_electronics14081538
crossref_primary_10_1007_s11042_021_11223_1
crossref_primary_10_1007_s11042_022_12564_1
crossref_primary_10_1109_ACCESS_2020_2990410
Cites_doi 10.1007/s11766-017-3466-8
10.1109/TBDATA.2016.2602849
10.1007/s11704-018-6442-4
10.1109/TASE.2014.2348555
10.1016/j.neucom.2017.10.040
10.1016/j.future.2017.11.046
10.1109/ACCESS.2016.2556680
10.1016/j.neucom.2017.12.063
10.1007/s11390-017-1764-5
10.1007/s11042-018-5697-y
10.1214/009053607000000677
10.1016/j.patcog.2017.02.013
10.1142/S0218843017410015
10.1016/j.knosys.2016.06.028
10.1007/s11042-018-6735-5
10.1016/j.neucom.2015.10.134
10.1016/j.knosys.2011.09.019
10.1016/j.aei.2016.10.005
10.1109/TII.2015.2443723
10.1016/j.knosys.2013.03.012
10.1016/j.neucom.2018.05.001
10.1109/TII.2014.2308433
10.1016/j.neucom.2017.07.051
10.1007/s11390-017-1714-2
10.1109/TSC.2015.2501981
10.1007/s11042-018-6690-1
10.1109/TNNLS.2015.2415257
10.3233/ICA-170544
10.1016/j.future.2017.09.073
ContentType Journal Article
Copyright 2019 Elsevier B.V.
Copyright_xml – notice: 2019 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.neucom.2018.12.025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-8286
EndPage 148
ExternalDocumentID 10_1016_j_neucom_2018_12_025
S0925231218314796
GroupedDBID ---
--K
--M
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXLA
AAXUO
AAYFN
ABBOA
ABCQJ
ABFNM
ABJNI
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
KOM
LG9
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSN
SSV
SSZ
T5K
ZMT
~G-
29N
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FEDTE
FGOYB
HLZ
HVGLF
HZ~
R2-
SBC
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c306t-8cdee8b44aa125b26a4b9d283c5a0f0b663761463f793f232f5bc3ea0ca5fa2a3
ISICitedReferencesCount 86
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000456410600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-2312
IngestDate Sat Nov 29 03:02:59 EST 2025
Tue Nov 18 19:44:08 EST 2025
Fri Feb 23 02:27:02 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Neural network
Knowledge distillation
Recommender system
Denoising Autoencoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-8cdee8b44aa125b26a4b9d283c5a0f0b663761463f793f232f5bc3ea0ca5fa2a3
ORCID 0000-0001-9167-1683
0000-0002-8900-8054
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_neucom_2018_12_025
crossref_primary_10_1016_j_neucom_2018_12_025
elsevier_sciencedirect_doi_10_1016_j_neucom_2018_12_025
PublicationCentury 2000
PublicationDate 2019-03-07
PublicationDateYYYYMMDD 2019-03-07
PublicationDate_xml – month: 03
  year: 2019
  text: 2019-03-07
  day: 07
PublicationDecade 2010
PublicationTitle Neurocomputing (Amsterdam)
PublicationYear 2019
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Luo, Zhou, Li, You, Xia, Zhu (bib0013) 2016; 27
Luo, Zhou, Leung, Xia, Zhu, You, Li (bib0014) 2016; 13
G. Hinton, O. Vinyals, J. Dean, Distilling the Knowledge in a Neural Network, arXiv preprint. arXiv
Sedhain, Menon, Sanner, Xie (bib0028) 2015
Li, Lv, Xie, Shang, Xia, Lu, Gu (bib0004) 2012; 28
Hu, Cao, Xu, Cao, Gu, Cao (bib0005) 2014
Zhang, Liu, Jin, Zhang (bib0007) 2018; 285
Rendle, Balby Marinho, Nanopoulos, Schmidt-Thieme (bib0044) 2009
K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-decoder for statistical machine translation, arXiv
Xu, Yang, Gao, Lai, Yan (bib0039) 2018; 273
Wu, He, Zhang, Li (bib0002) 2018; 11
Vincent, Larochelle, Bengio, Manzagol (bib0041) 2008
Koren (bib0001) 2008
He, Zhang, Ren, Sun (bib0018) 2015
Bengio, Lamblin, Popovici, Larochelle, others (bib0040) 2006; 19
Luo, Zhou, Shang, Li, Xia (bib0015) 2016; 4
Bobadilla, Ortega, Hernando, Gutiérrez (bib0003) 2013; 46
Sarwar, Karypis, Konstan, Riedl (bib0010) 2001
Li, He, Yu (bib0024) 2018; 33
Yuan, Luo, Shang (bib0009) 2018; 275
Luo, Zhou, Xia, Zhu (bib0011) 2014; 10
Yang, Sun, Zhang, Zhang (bib0008) 2018; 308
Krizhevsky, Sutskever, Hinton (bib0017) 2012; 25
O. Kuchaiev, B. Ginsburg, Training deep autoencoders for collaborative filtering, arXiv
(2015).
Q. Li, X. Zheng, X. Wu, Collaborative Autoencoder for Recommender Systems: a unified framework for explicit and implicit feedback, arXiv preprint. arXiv
Wu, DuBois, Zheng, Ester (bib0029) 2016
Zhang, He (bib0049) 2017; 24
[cs, stat]. (2017).
(2017).
Yan, He, Hou, Ai (bib0053) 2018; 27
Liu, Yang, Li, Zhou (bib0020) 2014
Zuo, Zeng, Gong, Jiao (bib0030) 2016; 204
Lv, He, Cai, Cheng (bib0050) 2017; 33
He, Liao, Zhang, Nie, Hu, Chua (bib0016) 2017
Tang, Wang, Zhang (bib0033) 2016
Chen, He, Yu (bib0027) 2018
Qi, Xu, Zhang, Dou, Hu, Zhou, Yu (bib0006) 2018; 4
[cs, stat], (2014).
Yu, He, Pan (bib0025) 2018; 77
Mnih, Salakhutdinov (bib0035) 2008
He, Zhang, Ren, Sun (bib0036) 2016
Zlateski, Lee, Seung (bib0046) 2016
Yan, He, Chen (bib0052) 2017; 32
Wu, Wang, Liu (bib0043) 2016; 109
Luo, Zhou, Li, Xia, You, Zhu, Leung (bib0012) 2015; 11
Rendle, Freudenthaler (bib0045) 2014
Szegedy, Liu, Jia, Sermanet, Reed, Anguelov, Erhan, Vanhoucke, Rabinovich (bib0037) 2015
Li, He, Yu, Chen (bib0023) 2018
Lv, He, Cai, Cheng (bib0051) 2018; 28
Li, He, Yu, Chen (bib0022) 2017; 32
J. Dai, Y. Li, K. He, J. Sun, R-FCN: object detection via region-based fully convolutional networks, arXiv preprint. arXiv
Zhou, He, Hou, Qiu (bib0047) 2018; 79
Hofmann, Schölkopf, Smola (bib0021) 2008; 36
(2016).
Rendle, Freudenthaler, Gantner, Schmidt-Thieme (bib0042) 2009
Chen, He, Wu, Hou (bib0048) 2017; 67
Yu, He, Pan (bib0026) 2018
10.1016/j.neucom.2018.12.025_bib0034
Mnih (10.1016/j.neucom.2018.12.025_bib0035) 2008
Zlateski (10.1016/j.neucom.2018.12.025_bib0046) 2016
Yu (10.1016/j.neucom.2018.12.025_bib0025) 2018; 77
10.1016/j.neucom.2018.12.025_bib0038
Rendle (10.1016/j.neucom.2018.12.025_bib0045) 2014
Chen (10.1016/j.neucom.2018.12.025_bib0027) 2018
Sarwar (10.1016/j.neucom.2018.12.025_bib0010) 2001
Zhang (10.1016/j.neucom.2018.12.025_bib0049) 2017; 24
Koren (10.1016/j.neucom.2018.12.025_bib0001) 2008
Lv (10.1016/j.neucom.2018.12.025_bib0051) 2018; 28
Qi (10.1016/j.neucom.2018.12.025_bib0006) 2018; 4
Szegedy (10.1016/j.neucom.2018.12.025_bib0037) 2015
Zhang (10.1016/j.neucom.2018.12.025_bib0007) 2018; 285
Yuan (10.1016/j.neucom.2018.12.025_bib0009) 2018; 275
Wu (10.1016/j.neucom.2018.12.025_bib0002) 2018; 11
Hu (10.1016/j.neucom.2018.12.025_bib0005) 2014
Luo (10.1016/j.neucom.2018.12.025_bib0013) 2016; 27
Zuo (10.1016/j.neucom.2018.12.025_bib0030) 2016; 204
Yan (10.1016/j.neucom.2018.12.025_bib0052) 2017; 32
Li (10.1016/j.neucom.2018.12.025_bib0004) 2012; 28
Bobadilla (10.1016/j.neucom.2018.12.025_bib0003) 2013; 46
Yang (10.1016/j.neucom.2018.12.025_bib0008) 2018; 308
Luo (10.1016/j.neucom.2018.12.025_bib0014) 2016; 13
Rendle (10.1016/j.neucom.2018.12.025_bib0042) 2009
Wu (10.1016/j.neucom.2018.12.025_bib0029) 2016
Zhou (10.1016/j.neucom.2018.12.025_bib0047) 2018; 79
Luo (10.1016/j.neucom.2018.12.025_bib0011) 2014; 10
Krizhevsky (10.1016/j.neucom.2018.12.025_sbref0017) 2012; 25
Li (10.1016/j.neucom.2018.12.025_bib0023) 2018
Bengio (10.1016/j.neucom.2018.12.025_bib0040) 2006; 19
Li (10.1016/j.neucom.2018.12.025_bib0024) 2018; 33
Lv (10.1016/j.neucom.2018.12.025_bib0050) 2017; 33
He (10.1016/j.neucom.2018.12.025_bib0016) 2017
10.1016/j.neucom.2018.12.025_bib0019
Tang (10.1016/j.neucom.2018.12.025_bib0033) 2016
He (10.1016/j.neucom.2018.12.025_sbref0031) 2016
Yan (10.1016/j.neucom.2018.12.025_bib0053) 2018; 27
Vincent (10.1016/j.neucom.2018.12.025_bib0041) 2008
He (10.1016/j.neucom.2018.12.025_sbref0018) 2015
Li (10.1016/j.neucom.2018.12.025_bib0022) 2017; 32
Sedhain (10.1016/j.neucom.2018.12.025_bib0028) 2015
Yu (10.1016/j.neucom.2018.12.025_bib0026) 2018
Luo (10.1016/j.neucom.2018.12.025_bib0012) 2015; 11
Wu (10.1016/j.neucom.2018.12.025_bib0043) 2016; 109
Luo (10.1016/j.neucom.2018.12.025_bib0015) 2016; 4
Chen (10.1016/j.neucom.2018.12.025_bib0048) 2017; 67
Liu (10.1016/j.neucom.2018.12.025_bib0020) 2014
Xu (10.1016/j.neucom.2018.12.025_bib0039) 2018; 273
Rendle (10.1016/j.neucom.2018.12.025_bib0044) 2009
Hofmann (10.1016/j.neucom.2018.12.025_bib0021) 2008; 36
10.1016/j.neucom.2018.12.025_bib0032
10.1016/j.neucom.2018.12.025_bib0031
References_xml – year: 2018
  ident: bib0027
  article-title: A matting method based on full feature coverage
  publication-title: Multimedia Tools Appl.
– start-page: 1861
  year: 2014
  end-page: 1867
  ident: bib0005
  article-title: Deep modeling of group preferences for group-based recommendation
  publication-title: Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence
– reference: K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, Y. Bengio, Learning phrase representations using rnn encoder-decoder for statistical machine translation, arXiv:
– start-page: 1
  year: 2015
  end-page: 9
  ident: bib0037
  article-title: Going deeper with convolutions
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 28
  start-page: 41
  year: 2018
  end-page: 62
  ident: bib0051
  article-title: Supporting selective undo of string-wise operations for collaborative editing systems
  publication-title: Fut. Gen. Comput. Syst.
– volume: 11
  start-page: 946
  year: 2015
  end-page: 956
  ident: bib0012
  article-title: An efficient second-order approach to factorize sparse matrices in recommender systems
  publication-title: IEEE Trans. Ind. Inf.
– start-page: 173
  year: 2017
  end-page: 182
  ident: bib0016
  article-title: Neural collaborative filtering
  publication-title: Proceedings of the Twenty-Sixth International Conference on World Wide Web
– volume: 79
  start-page: 473
  year: 2018
  end-page: 487
  ident: bib0047
  article-title: Parallel ant colony optimization on multi-core SIMD CPUs
  publication-title: Fut. Gen. Comput. Syst.
– volume: 4
  start-page: 301
  year: 2018
  end-page: 312
  ident: bib0006
  article-title: Structural balance theory-based E-commerce recommendation over big rating data
  publication-title: IEEE Trans. Big Data
– volume: 32
  start-page: 294
  year: 2017
  end-page: 312
  ident: bib0022
  article-title: A correlative classifiers approach based on particle filter and sample set for tracking occluded target
  publication-title: Appl. Math. A J. Chin. Univ.
– reference: (2015).
– start-page: 727
  year: 2009
  end-page: 736
  ident: bib0044
  article-title: Learning optimal ranking with tensor factorization for tag recommendation
  publication-title: Proceedings of the Fifteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 204
  start-page: 51
  year: 2016
  end-page: 60
  ident: bib0030
  article-title: Tag-aware recommender systems based on deep neural networks
  publication-title: Neurocomputing
– volume: 24
  start-page: 261
  year: 2017
  end-page: 277
  ident: bib0049
  article-title: An efficient approach to directly compute the exact Hausdorff distance for 3D point sets
  publication-title: Integr. Comput. Aided Eng.
– start-page: 1257
  year: 2008
  end-page: 1264
  ident: bib0035
  article-title: Probabilistic matrix factorization
  publication-title: Advances in Neural Information Processing Systems 20
– reference: , [cs, stat]. (2017).
– volume: 285
  start-page: 94
  year: 2018
  end-page: 103
  ident: bib0007
  article-title: A dynamic trust based two-layer neighbor selection scheme towards online recommender systems
  publication-title: Neurocomputing
– volume: 273
  start-page: 260
  year: 2018
  end-page: 270
  ident: bib0039
  article-title: SRNN: self-regularized neural network
  publication-title: Neurocomputing
– volume: 13
  start-page: 333
  year: 2016
  end-page: 343
  ident: bib0014
  article-title: An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering
  publication-title: IEEE Trans. Autom. Sci. Eng.
– start-page: 1491
  year: 2014
  end-page: 1500
  ident: bib0020
  article-title: A recursive recurrent neural network for statistical machine translation
  publication-title: Proceedings of the ACL
– volume: 19
  start-page: 153
  year: 2006
  ident: bib0040
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 273
  year: 2014
  end-page: 282
  ident: bib0045
  article-title: Improving pairwise learning for item recommendation from implicit feedback
  publication-title: Proceedings of the Seventh ACM International Conference on Web Search and Data Mining
– volume: 11
  start-page: 341
  year: 2018
  end-page: 353
  ident: bib0002
  article-title: Service-oriented feature-based data exchange for cloud-based design and manufacturing
  publication-title: IEEE Trans. Serv. Comput.
– volume: 67
  start-page: 139
  year: 2017
  end-page: 148
  ident: bib0048
  article-title: A local start search algorithm to compute exact Hausdorff Distance for arbitrary point sets
  publication-title: Pattern Recognit.
– volume: 308
  start-page: 205
  year: 2018
  end-page: 226
  ident: bib0008
  article-title: Uncovering anomalous rating behaviors for rating systems
  publication-title: Neurocomputing
– start-page: 111
  year: 2015
  end-page: 112
  ident: bib0028
  article-title: AutoRec: autoencoders meet collaborative filtering
  publication-title: Proceedings of the Twenty-Fourth International Conference on World Wide Web
– start-page: 1096
  year: 2008
  end-page: 1103
  ident: bib0041
  article-title: Extracting and composing robust features with denoising autoencoders
  publication-title: Proceedings of the Twenty-Fifth International Conference on Machine Learning
– volume: 36
  start-page: 1171
  year: 2008
  end-page: 1220
  ident: bib0021
  article-title: Kernel methods in machine learning
  publication-title: Ann. Stat.
– reference: , [cs, stat], (2014).
– reference: (2017).
– volume: 10
  start-page: 1273
  year: 2014
  end-page: 1284
  ident: bib0011
  article-title: An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems
  publication-title: IEEE Trans. Ind. Inf.
– volume: 27
  start-page: 579
  year: 2016
  end-page: 592
  ident: bib0013
  article-title: A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 426
  year: 2008
  end-page: 434
  ident: bib0001
  article-title: Factorization meets the neighborhood: a multifaceted collaborative filtering model
  publication-title: Proceedings of the Fourteenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 275
  start-page: 2019
  year: 2018
  end-page: 2030
  ident: bib0009
  article-title: Effects of preprocessing and training biases in latent factor models for recommender systems
  publication-title: Neurocomputing
– volume: 109
  start-page: 90
  year: 2016
  end-page: 103
  ident: bib0043
  article-title: Recurrent neural network based recommendation for time heterogeneous feedback
  publication-title: Knowl. Based Syst.
– reference: (2016).
– start-page: 285
  year: 2001
  end-page: 295
  ident: bib0010
  article-title: Item-based collaborative filtering recommendation algorithms
  publication-title: Proceedings of the Tenth International Conference on World Wide Web
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0036
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 73:1
  year: 2016
  end-page: 73:12
  ident: bib0046
  article-title: ZNNi: maximizing the inference throughput of 3d convolutional networks on CPUs and GPUs
  publication-title: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis
– volume: 46
  start-page: 109
  year: 2013
  end-page: 132
  ident: bib0003
  article-title: Recommender systems survey
  publication-title: Knowl. Based Syst.
– start-page: 5900
  year: 2016
  end-page: 5904
  ident: bib0033
  article-title: Recurrent neural network training with dark knowledge transfer
  publication-title: Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)
– start-page: 452
  year: 2009
  end-page: 461
  ident: bib0042
  article-title: BPR: Bayesian personalized ranking from implicit feedback
  publication-title: Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence
– volume: 32
  start-page: 340
  year: 2017
  end-page: 355
  ident: bib0052
  article-title: A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization
  publication-title: J. Comput. Sci. Technol.
– volume: 4
  start-page: 2649
  year: 2016
  end-page: 2655
  ident: bib0015
  article-title: A novel approach to extracting non-negative latent factors from non-negative big sparse matrices
  publication-title: IEEE Access
– volume: 28
  start-page: 1
  year: 2012
  end-page: 12
  ident: bib0004
  article-title: Interest-based real-time content recommendation in online social communities
  publication-title: Knowl. Based Syst.
– reference: J. Dai, Y. Li, K. He, J. Sun, R-FCN: object detection via region-based fully convolutional networks, arXiv preprint. arXiv:
– volume: 77
  start-page: 24097
  year: 2018
  end-page: 24119
  ident: bib0025
  article-title: A novel region-based active contour model via local patch similarity measure for image segmentation
  publication-title: Multimedia Tools Appl.
– volume: 33
  start-page: 223
  year: 2018
  end-page: 236
  ident: bib0024
  article-title: Robust visual tracking based on convolutional features with illumination and occlusion handing
  publication-title: J. Comput. Sci. Technol.
– year: 2018
  ident: bib0026
  article-title: A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation
  publication-title: Multimedia Tools Appl.
– start-page: 153
  year: 2016
  end-page: 162
  ident: bib0029
  article-title: Collaborative denoising auto-encoders for top-N recommender systems
  publication-title: Proceedings of the Ninth ACM International Conference on Web Search and Data Mining
– volume: 33
  start-page: 397
  year: 2017
  end-page: 409
  ident: bib0050
  article-title: A string-wise CRDT algorithm for smart and large-scale collaborative editing systems
  publication-title: Adv. Eng. Inf.
– volume: 25
  start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0017
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Advances in Neural Information Processing Systems
– volume: 27
  start-page: 1741001
  year: 2018
  ident: bib0053
  article-title: An efficient particle swarm optimization for large-scale hardware/software co-design system
  publication-title: Int. J. Cooper. Inf. Syst.
– reference: G. Hinton, O. Vinyals, J. Dean, Distilling the Knowledge in a Neural Network, arXiv preprint. arXiv:
– reference: O. Kuchaiev, B. Ginsburg, Training deep autoencoders for collaborative filtering, arXiv:
– year: 2018
  ident: bib0023
  article-title: A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning
  publication-title: Front. Comput. Sci.
– reference: Q. Li, X. Zheng, X. Wu, Collaborative Autoencoder for Recommender Systems: a unified framework for explicit and implicit feedback, arXiv preprint. arXiv:
– start-page: 1026
  year: 2015
  end-page: 1034
  ident: bib0018
  article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification
  publication-title: Proceedings of the IEEE International Conference on Computer Vision (ICCV)
– volume: 32
  start-page: 294
  year: 2017
  ident: 10.1016/j.neucom.2018.12.025_bib0022
  article-title: A correlative classifiers approach based on particle filter and sample set for tracking occluded target
  publication-title: Appl. Math. A J. Chin. Univ.
  doi: 10.1007/s11766-017-3466-8
– volume: 4
  start-page: 301
  issue: 3
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0006
  article-title: Structural balance theory-based E-commerce recommendation over big rating data
  publication-title: IEEE Trans. Big Data
  doi: 10.1109/TBDATA.2016.2602849
– year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0023
  article-title: A parallel and robust object tracking approach synthesizing adaptive Bayesian learning and improved incremental subspace learning
  publication-title: Front. Comput. Sci.
  doi: 10.1007/s11704-018-6442-4
– volume: 13
  start-page: 333
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_bib0014
  article-title: An incremental-and-static-combined scheme for matrix-factorization-based collaborative filtering
  publication-title: IEEE Trans. Autom. Sci. Eng.
  doi: 10.1109/TASE.2014.2348555
– start-page: 1861
  year: 2014
  ident: 10.1016/j.neucom.2018.12.025_bib0005
  article-title: Deep modeling of group preferences for group-based recommendation
– ident: 10.1016/j.neucom.2018.12.025_bib0034
– ident: 10.1016/j.neucom.2018.12.025_bib0038
– volume: 275
  start-page: 2019
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0009
  article-title: Effects of preprocessing and training biases in latent factor models for recommender systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.10.040
– volume: 28
  start-page: 41
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0051
  article-title: Supporting selective undo of string-wise operations for collaborative editing systems
  publication-title: Fut. Gen. Comput. Syst.
  doi: 10.1016/j.future.2017.11.046
– start-page: 111
  year: 2015
  ident: 10.1016/j.neucom.2018.12.025_bib0028
  article-title: AutoRec: autoencoders meet collaborative filtering
– volume: 25
  start-page: 1097
  year: 2012
  ident: 10.1016/j.neucom.2018.12.025_sbref0017
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 4
  start-page: 2649
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_bib0015
  article-title: A novel approach to extracting non-negative latent factors from non-negative big sparse matrices
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2016.2556680
– volume: 285
  start-page: 94
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0007
  article-title: A dynamic trust based two-layer neighbor selection scheme towards online recommender systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.12.063
– volume: 33
  start-page: 223
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0024
  article-title: Robust visual tracking based on convolutional features with illumination and occlusion handing
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-017-1764-5
– start-page: 770
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_sbref0031
  article-title: Deep residual learning for image recognition
– start-page: 1096
  year: 2008
  ident: 10.1016/j.neucom.2018.12.025_bib0041
  article-title: Extracting and composing robust features with denoising autoencoders
– start-page: 1026
  year: 2015
  ident: 10.1016/j.neucom.2018.12.025_sbref0018
  article-title: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification
– start-page: 727
  year: 2009
  ident: 10.1016/j.neucom.2018.12.025_bib0044
  article-title: Learning optimal ranking with tensor factorization for tag recommendation
– start-page: 1491
  year: 2014
  ident: 10.1016/j.neucom.2018.12.025_bib0020
  article-title: A recursive recurrent neural network for statistical machine translation
– volume: 77
  start-page: 24097
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0025
  article-title: A novel region-based active contour model via local patch similarity measure for image segmentation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-5697-y
– volume: 36
  start-page: 1171
  year: 2008
  ident: 10.1016/j.neucom.2018.12.025_bib0021
  article-title: Kernel methods in machine learning
  publication-title: Ann. Stat.
  doi: 10.1214/009053607000000677
– volume: 67
  start-page: 139
  year: 2017
  ident: 10.1016/j.neucom.2018.12.025_bib0048
  article-title: A local start search algorithm to compute exact Hausdorff Distance for arbitrary point sets
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.02.013
– volume: 27
  start-page: 1741001
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0053
  article-title: An efficient particle swarm optimization for large-scale hardware/software co-design system
  publication-title: Int. J. Cooper. Inf. Syst.
  doi: 10.1142/S0218843017410015
– volume: 19
  start-page: 153
  year: 2006
  ident: 10.1016/j.neucom.2018.12.025_bib0040
  article-title: Greedy layer-wise training of deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 109
  start-page: 90
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_bib0043
  article-title: Recurrent neural network based recommendation for time heterogeneous feedback
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2016.06.028
– start-page: 452
  year: 2009
  ident: 10.1016/j.neucom.2018.12.025_bib0042
  article-title: BPR: Bayesian personalized ranking from implicit feedback
– start-page: 285
  year: 2001
  ident: 10.1016/j.neucom.2018.12.025_bib0010
  article-title: Item-based collaborative filtering recommendation algorithms
– year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0026
  article-title: A novel segmentation model for medical images with intensity inhomogeneity based on adaptive perturbation
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-6735-5
– start-page: 73:1
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_bib0046
  article-title: ZNNi: maximizing the inference throughput of 3d convolutional networks on CPUs and GPUs
– volume: 204
  start-page: 51
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_bib0030
  article-title: Tag-aware recommender systems based on deep neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2015.10.134
– start-page: 153
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_bib0029
  article-title: Collaborative denoising auto-encoders for top-N recommender systems
– volume: 28
  start-page: 1
  year: 2012
  ident: 10.1016/j.neucom.2018.12.025_bib0004
  article-title: Interest-based real-time content recommendation in online social communities
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2011.09.019
– ident: 10.1016/j.neucom.2018.12.025_bib0032
– volume: 33
  start-page: 397
  year: 2017
  ident: 10.1016/j.neucom.2018.12.025_bib0050
  article-title: A string-wise CRDT algorithm for smart and large-scale collaborative editing systems
  publication-title: Adv. Eng. Inf.
  doi: 10.1016/j.aei.2016.10.005
– volume: 11
  start-page: 946
  year: 2015
  ident: 10.1016/j.neucom.2018.12.025_bib0012
  article-title: An efficient second-order approach to factorize sparse matrices in recommender systems
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2015.2443723
– start-page: 426
  year: 2008
  ident: 10.1016/j.neucom.2018.12.025_bib0001
  article-title: Factorization meets the neighborhood: a multifaceted collaborative filtering model
– volume: 46
  start-page: 109
  year: 2013
  ident: 10.1016/j.neucom.2018.12.025_bib0003
  article-title: Recommender systems survey
  publication-title: Knowl. Based Syst.
  doi: 10.1016/j.knosys.2013.03.012
– volume: 308
  start-page: 205
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0008
  article-title: Uncovering anomalous rating behaviors for rating systems
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.05.001
– volume: 10
  start-page: 1273
  year: 2014
  ident: 10.1016/j.neucom.2018.12.025_bib0011
  article-title: An efficient non-negative matrix-factorization-based approach to collaborative filtering for recommender systems
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2014.2308433
– start-page: 1257
  year: 2008
  ident: 10.1016/j.neucom.2018.12.025_bib0035
  article-title: Probabilistic matrix factorization
– ident: 10.1016/j.neucom.2018.12.025_bib0019
– start-page: 1
  year: 2015
  ident: 10.1016/j.neucom.2018.12.025_bib0037
  article-title: Going deeper with convolutions
– volume: 273
  start-page: 260
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0039
  article-title: SRNN: self-regularized neural network
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.07.051
– volume: 32
  start-page: 340
  year: 2017
  ident: 10.1016/j.neucom.2018.12.025_bib0052
  article-title: A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization
  publication-title: J. Comput. Sci. Technol.
  doi: 10.1007/s11390-017-1714-2
– start-page: 273
  year: 2014
  ident: 10.1016/j.neucom.2018.12.025_bib0045
  article-title: Improving pairwise learning for item recommendation from implicit feedback
– volume: 11
  start-page: 341
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0002
  article-title: Service-oriented feature-based data exchange for cloud-based design and manufacturing
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2015.2501981
– year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0027
  article-title: A matting method based on full feature coverage
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-018-6690-1
– volume: 27
  start-page: 579
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_bib0013
  article-title: A nonnegative latent factor model for large-scale sparse matrices in recommender systems via alternating direction method
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2015.2415257
– ident: 10.1016/j.neucom.2018.12.025_bib0031
– start-page: 5900
  year: 2016
  ident: 10.1016/j.neucom.2018.12.025_bib0033
  article-title: Recurrent neural network training with dark knowledge transfer
– volume: 24
  start-page: 261
  year: 2017
  ident: 10.1016/j.neucom.2018.12.025_bib0049
  article-title: An efficient approach to directly compute the exact Hausdorff distance for 3D point sets
  publication-title: Integr. Comput. Aided Eng.
  doi: 10.3233/ICA-170544
– volume: 79
  start-page: 473
  year: 2018
  ident: 10.1016/j.neucom.2018.12.025_bib0047
  article-title: Parallel ant colony optimization on multi-core SIMD CPUs
  publication-title: Fut. Gen. Comput. Syst.
  doi: 10.1016/j.future.2017.09.073
– start-page: 173
  year: 2017
  ident: 10.1016/j.neucom.2018.12.025_bib0016
  article-title: Neural collaborative filtering
SSID ssj0017129
Score 2.530776
Snippet In most recommender systems, the data of user feedbacks are usually represented with a set of discrete values, which are difficult to exactly describe users’...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 137
SubjectTerms Denoising Autoencoder
Knowledge distillation
Neural network
Recommender system
Title A novel Enhanced Collaborative Autoencoder with knowledge distillation for top-N recommender systems
URI https://dx.doi.org/10.1016/j.neucom.2018.12.025
Volume 332
WOSCitedRecordID wos000456410600014&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1872-8286
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017129
  issn: 0925-2312
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pa9swFBZZu8Mu-z3atRs67BY0YtmO5KMpGd0OobAOspORZWltSZzQOqEM9r_3PUl2vGXsF-xigolsoff56dMnvfcIeWNTrvTYjFgluIIFiixZZvCUeZTYUlmeyNgXmxDTqZzNsrPB4FsbC7OZi7qWt7fZ6r-aGu6BsTF09i_M3T0UbsBvMDpcwexw_SPD58N6uTHz4aS-8Lv7J1tTb8wwXzdLTF6JOSScCNuparhZ02ARou3xw-WKTYe4Zl4sXMm5kPj5pk9pXXoP7YpDBNkhX2D2hQqh1skMZ15o_QwMN8yVToB13Fl9vbjsvM_aTYYKS2p_6UsSGAUVM1-71utkO7EyXnDkKQM26X2v8e5WCu4C2fv-OA6Cp_eokc8JEybnyKfl3PH7XoK4elubNR4Cgk5Jp_L6oOofMmp_xK5gT8CdRYnIxvfIPhdpBk5xP38_mX3otqFExH2yxtD1NvbSHRDcfdfPuU2Pr5w_Jg_DQoPmHiBPyMDUT8mjtogHDT79Galy6vBCW7zQ7_BCe3ihiBfa4YX28UIBL9ThhfbwQgNenpNP7ybnJ6cslN5gGtaQDZO6MkaWSaIUMOCSj1VSZhVQUZ2qkR2VwFMFfM7j2IJ_t8DKbVrq2KiRVqlVXMUvyF69rM0BoWlSWRVpzitkj8pmlU6BZ0uTSB7bLDokcTtohQ556bE8yrxoDyBeFX6oCxzqIuIFDPUhYV2rlc_L8pv_i9YeReCWnjMWAKFftnz5zy2PyIPt13FM9prrtXlF7utNc3lz_Tpg7Q6cpKKj
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+Enhanced+Collaborative+Autoencoder+with+knowledge+distillation+for+top-N+recommender+systems&rft.jtitle=Neurocomputing+%28Amsterdam%29&rft.au=Pan%2C+Yiteng&rft.au=He%2C+Fazhi&rft.au=Yu%2C+Haiping&rft.date=2019-03-07&rft.pub=Elsevier+B.V&rft.issn=0925-2312&rft.eissn=1872-8286&rft.volume=332&rft.spage=137&rft.epage=148&rft_id=info:doi/10.1016%2Fj.neucom.2018.12.025&rft.externalDocID=S0925231218314796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-2312&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-2312&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-2312&client=summon