Wider or Deeper: Revisiting the ResNet Model for Visual Recognition

•We further develop the unravelled view of ResNets, which helps us better understand their behaviours. We demonstrate this in the context of a training process, which is the key difference from the original version 1.•We propose a group of relatively shallow convolutional networks based on our new u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 90; S. 119 - 133
Hauptverfasser: Wu, Zifeng, Shen, Chunhua, van den Hengel, Anton
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.06.2019
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •We further develop the unravelled view of ResNets, which helps us better understand their behaviours. We demonstrate this in the context of a training process, which is the key difference from the original version 1.•We propose a group of relatively shallow convolutional networks based on our new understanding. Some of them perform comparably with the state-of-the-art approaches on the ImageNet classification dataset 2.•We evaluate the impact of using different networks on the performance of semantic image segmentation, and show these networks, as pre-trained features, can boost existing algorithms a lot. The community has been going deeper and deeper in designing one cutting edge network after another, yet some works are there suggesting that we may have gone too far in this dimension. Some researchers unravelled a residual network into an exponentially wider one, and assorted the success of residual networks to fusing a large amount of relatively shallow models. Since some of their early claims are still not settled, we in this paper dig more on this topic, i.e., the unravelled view of residual networks. Based on that, we try to find a good compromise between the depth and width. Afterwards, we walk through a typical pipeline of developing a deep-learning-based algorithm. We start from a group of relatively shallow networks, which perform as well or even better than the current (much deeper) state-of-the-art models on the ImageNet classification dataset. Then, we initialize fully convolutional networks (FCNs) using our pre-trained models, and tune them for semantic image segmentation. Results show that the proposed networks, as pre-trained features, can boost existing methods a lot. Even without exhausting the sophistical techniques to improve the classic FCN model, we achieve comparable results with the best performers on four widely-used datasets, i.e., Cityscapes, PASCAL VOC, ADE20k and PASCAL-Context. The code and pre-trained models are released for public access11https://github.com/itijyou/ademxapp.
AbstractList •We further develop the unravelled view of ResNets, which helps us better understand their behaviours. We demonstrate this in the context of a training process, which is the key difference from the original version 1.•We propose a group of relatively shallow convolutional networks based on our new understanding. Some of them perform comparably with the state-of-the-art approaches on the ImageNet classification dataset 2.•We evaluate the impact of using different networks on the performance of semantic image segmentation, and show these networks, as pre-trained features, can boost existing algorithms a lot. The community has been going deeper and deeper in designing one cutting edge network after another, yet some works are there suggesting that we may have gone too far in this dimension. Some researchers unravelled a residual network into an exponentially wider one, and assorted the success of residual networks to fusing a large amount of relatively shallow models. Since some of their early claims are still not settled, we in this paper dig more on this topic, i.e., the unravelled view of residual networks. Based on that, we try to find a good compromise between the depth and width. Afterwards, we walk through a typical pipeline of developing a deep-learning-based algorithm. We start from a group of relatively shallow networks, which perform as well or even better than the current (much deeper) state-of-the-art models on the ImageNet classification dataset. Then, we initialize fully convolutional networks (FCNs) using our pre-trained models, and tune them for semantic image segmentation. Results show that the proposed networks, as pre-trained features, can boost existing methods a lot. Even without exhausting the sophistical techniques to improve the classic FCN model, we achieve comparable results with the best performers on four widely-used datasets, i.e., Cityscapes, PASCAL VOC, ADE20k and PASCAL-Context. The code and pre-trained models are released for public access11https://github.com/itijyou/ademxapp.
Author Shen, Chunhua
van den Hengel, Anton
Wu, Zifeng
Author_xml – sequence: 1
  givenname: Zifeng
  orcidid: 0000-0002-0990-233X
  surname: Wu
  fullname: Wu, Zifeng
  email: Zifeng.Wu@adelaide.edu.au, zifeng.wu@adelaide.edu.au
– sequence: 2
  givenname: Chunhua
  surname: Shen
  fullname: Shen, Chunhua
  email: Chunhua.Shen@adelaide.edu.au
– sequence: 3
  givenname: Anton
  surname: van den Hengel
  fullname: van den Hengel, Anton
  email: anton.vandenhengel@adelaide.edu.au
BookMark eNqFkNtKAzEQhoNUsK2-gRf7ArvOJHvshSD1CFVBPFyGNDupKetuSWLBtzelXnmhV8PM_N8c_gkb9UNPjJ0iZAhYnq2zjQp6WGUcsMkAM4DygI2xrkRaYM5HbAwgMBUcxBGbeL8GwCo2xmz-ZltyyeCSS6INuVnyRFvrbbD9KgnvFFP_QCG5H1rqEhN1r9Z_qi7W48I-6ob-mB0a1Xk6-YlT9nJ99Ty_TRePN3fzi0WqBZQhrbXi2NSKqhYgX0JNuha8WKpCaFGWeVVxowrFhcHGlByqptINqpYMLzQ2QkxZvp-r3eC9IyM3zn4o9yUR5M4IuZZ7I-TOCAkooxERm_3CtA1qd3hwynb_wed7mOJjW0tOem2p19RaRzrIdrB_D_gGoD59UA
CitedBy_id crossref_primary_10_1049_ipr2_13026
crossref_primary_10_1109_TNNLS_2021_3080261
crossref_primary_10_1002_mp_14098
crossref_primary_10_1007_s10278_025_01470_1
crossref_primary_10_1007_s11760_023_02975_4
crossref_primary_10_1016_j_patcog_2021_108057
crossref_primary_10_1007_s10489_023_04940_7
crossref_primary_10_3390_sym17060961
crossref_primary_10_1016_j_tifs_2021_01_091
crossref_primary_10_3390_math11112466
crossref_primary_10_1016_j_patrec_2024_04_006
crossref_primary_10_1038_s41598_025_00600_7
crossref_primary_10_1007_s42979_022_01197_8
crossref_primary_10_3390_plants14050632
crossref_primary_10_3390_diagnostics12123171
crossref_primary_10_1088_1361_6560_aba87c
crossref_primary_10_1093_eurheartj_ehab090
crossref_primary_10_1109_JSEN_2023_3256060
crossref_primary_10_1002_advs_202500981
crossref_primary_10_1007_s40747_023_01102_7
crossref_primary_10_1016_j_compgeo_2024_106518
crossref_primary_10_3390_pr12061075
crossref_primary_10_1007_s00521_021_06462_0
crossref_primary_10_1109_ACCESS_2020_3016116
crossref_primary_10_1007_s11042_022_14054_w
crossref_primary_10_1109_TCSVT_2024_3383238
crossref_primary_10_1016_j_patrec_2024_12_016
crossref_primary_10_1016_j_mechmat_2020_103625
crossref_primary_10_1016_j_bspc_2023_104652
crossref_primary_10_1109_TIFS_2023_3278458
crossref_primary_10_25259_AJC_254_2024
crossref_primary_10_1109_TIV_2022_3149624
crossref_primary_10_1016_j_jvcir_2024_104386
crossref_primary_10_3390_rs15194681
crossref_primary_10_1007_s11227_025_07239_1
crossref_primary_10_1016_j_neucom_2020_08_014
crossref_primary_10_3390_math12233684
crossref_primary_10_1016_j_nicl_2025_103873
crossref_primary_10_3389_fnins_2020_00546
crossref_primary_10_1109_TCSVT_2024_3442310
crossref_primary_10_1007_s00521_023_08250_4
crossref_primary_10_1016_j_media_2019_101570
crossref_primary_10_1002_rcs_70094
crossref_primary_10_1007_s11042_022_13230_2
crossref_primary_10_1109_TNSRE_2022_3166224
crossref_primary_10_1155_2024_8729440
crossref_primary_10_1002_pca_3130
crossref_primary_10_3390_app10186147
crossref_primary_10_1111_jmi_13140
crossref_primary_10_1109_TPAMI_2021_3132068
crossref_primary_10_1016_j_mtbio_2025_102087
crossref_primary_10_1016_j_ijhydene_2023_03_219
crossref_primary_10_1109_LSP_2021_3079850
crossref_primary_10_1016_j_cirpj_2023_07_010
crossref_primary_10_1002_mp_17316
crossref_primary_10_1109_ACCESS_2024_3463391
crossref_primary_10_1109_LRA_2021_3126892
crossref_primary_10_3233_JIFS_211267
crossref_primary_10_1007_s11424_022_0307_5
crossref_primary_10_1016_j_jhazmat_2023_132853
crossref_primary_10_1016_j_trc_2024_104798
crossref_primary_10_1111_1750_3841_70379
crossref_primary_10_1016_j_asoc_2024_112649
crossref_primary_10_1016_j_biosystemseng_2021_02_001
crossref_primary_10_1016_j_neunet_2020_05_002
crossref_primary_10_1016_j_aca_2023_341869
crossref_primary_10_3390_s21237844
crossref_primary_10_1016_j_nutres_2021_05_011
crossref_primary_10_1109_ACCESS_2020_2997380
crossref_primary_10_3390_atmos12070869
crossref_primary_10_3390_s24092755
crossref_primary_10_1016_j_jvcir_2023_103800
crossref_primary_10_1007_s44174_024_00165_5
crossref_primary_10_1088_1361_665X_ad06e0
crossref_primary_10_1109_ACCESS_2019_2908685
crossref_primary_10_1109_TASE_2025_3554653
crossref_primary_10_3390_s23187957
crossref_primary_10_1002_dac_70023
crossref_primary_10_1038_s41598_024_65693_y
crossref_primary_10_1109_TPAMI_2020_2983686
crossref_primary_10_1007_s11042_023_16461_z
crossref_primary_10_1016_j_isprsjprs_2023_10_020
crossref_primary_10_1007_s11831_021_09667_7
crossref_primary_10_1029_2019EA001040
crossref_primary_10_1109_ACCESS_2020_3005444
crossref_primary_10_1016_j_ultrasmedbio_2025_08_014
crossref_primary_10_1049_iet_its_2019_0409
crossref_primary_10_1007_s11063_024_11713_x
crossref_primary_10_3390_s22155492
crossref_primary_10_1016_j_engappai_2021_104587
crossref_primary_10_1007_s10044_021_00984_y
crossref_primary_10_1109_TIP_2025_3554408
crossref_primary_10_1016_j_patcog_2022_109023
crossref_primary_10_1007_s11263_020_01383_2
crossref_primary_10_1142_S0218213025500113
crossref_primary_10_3390_ijgi11050299
crossref_primary_10_1109_MITP_2020_3042379
crossref_primary_10_1007_s10489_021_02393_4
crossref_primary_10_1016_j_patcog_2025_111975
crossref_primary_10_1108_JHTT_04_2023_0098
crossref_primary_10_20965_jaciii_2023_p1096
crossref_primary_10_1007_s10489_021_02547_4
crossref_primary_10_1109_TPAMI_2020_3026069
crossref_primary_10_1371_journal_pone_0276278
crossref_primary_10_1038_s41598_025_89404_3
crossref_primary_10_1109_TSM_2025_3561919
crossref_primary_10_1089_3dp_2021_0231
crossref_primary_10_1109_JBHI_2024_3450013
crossref_primary_10_1371_journal_pone_0304017
crossref_primary_10_1038_s41467_025_56276_0
crossref_primary_10_1109_TGRS_2024_3394750
crossref_primary_10_1109_TITS_2022_3228042
crossref_primary_10_1161_JAHA_123_030377
crossref_primary_10_32604_cmc_2023_042074
crossref_primary_10_1016_j_cmpb_2023_107643
crossref_primary_10_1109_TIM_2025_3552868
crossref_primary_10_1016_j_bspc_2024_106279
crossref_primary_10_3390_electronics10040427
crossref_primary_10_1016_j_biosystemseng_2022_09_006
crossref_primary_10_3390_s22249834
crossref_primary_10_3390_sym17010055
crossref_primary_10_1109_TNNLS_2022_3230821
crossref_primary_10_1155_2022_9672254
crossref_primary_10_3390_s25030724
crossref_primary_10_1016_j_asoc_2024_111749
crossref_primary_10_1007_s00521_022_07328_9
crossref_primary_10_3390_plants11060768
crossref_primary_10_1016_j_patcog_2019_107038
crossref_primary_10_3390_min12040455
crossref_primary_10_1016_j_ecoinf_2022_101808
crossref_primary_10_1016_j_microc_2021_106545
crossref_primary_10_1038_s41598_025_09775_5
crossref_primary_10_1016_j_saa_2023_122686
crossref_primary_10_1007_s10489_022_04085_z
crossref_primary_10_1117_1_JEI_32_3_031803
crossref_primary_10_1016_j_microc_2024_111538
crossref_primary_10_32604_cmc_2022_024590
crossref_primary_10_1007_s00521_021_06651_x
crossref_primary_10_1016_j_engappai_2025_111100
crossref_primary_10_1016_j_patrec_2022_11_024
crossref_primary_10_1088_1361_6501_ad2969
crossref_primary_10_1016_j_lwt_2022_113490
crossref_primary_10_1109_JIOT_2023_3339722
crossref_primary_10_3390_info11030128
crossref_primary_10_1109_TNNLS_2020_3006524
crossref_primary_10_1049_gtd2_70104
crossref_primary_10_3390_agriculture11111126
crossref_primary_10_1007_s11042_021_10802_6
crossref_primary_10_1109_ACCESS_2022_3140341
crossref_primary_10_1007_s10773_024_05669_w
crossref_primary_10_1109_TIP_2022_3162101
crossref_primary_10_1111_exsy_13336
crossref_primary_10_1109_JSTARS_2022_3209967
crossref_primary_10_1109_TNNLS_2021_3107194
crossref_primary_10_1109_ACCESS_2021_3139850
crossref_primary_10_3233_JIFS_210569
crossref_primary_10_3390_s21144787
crossref_primary_10_1007_s11554_025_01709_8
crossref_primary_10_1016_j_knosys_2022_110220
crossref_primary_10_1155_2021_5527923
crossref_primary_10_1109_TPAMI_2024_3404422
crossref_primary_10_1007_s11676_021_01423_8
crossref_primary_10_1155_2022_4037625
crossref_primary_10_1007_s10044_021_01004_9
crossref_primary_10_1016_j_bspc_2025_108546
crossref_primary_10_1016_j_neucom_2024_127700
crossref_primary_10_1016_j_engappai_2025_111521
crossref_primary_10_1061_JCCEE5_CPENG_5065
crossref_primary_10_1016_j_flora_2025_152677
crossref_primary_10_1142_S0219691324500632
crossref_primary_10_1109_JBHI_2019_2912659
crossref_primary_10_1364_PRJ_527940
crossref_primary_10_3390_rs16132450
crossref_primary_10_1007_s44196_025_00772_0
crossref_primary_10_3233_MGS_210353
crossref_primary_10_1016_j_bspc_2025_108572
crossref_primary_10_1109_JSTARS_2022_3189052
crossref_primary_10_3390_w17060843
crossref_primary_10_1016_j_jocs_2021_101544
crossref_primary_10_2166_wqrj_2024_061
crossref_primary_10_1109_TIP_2025_3540265
crossref_primary_10_1016_j_neucom_2021_02_004
crossref_primary_10_1007_s11042_023_16441_3
crossref_primary_10_1007_s10462_022_10165_w
crossref_primary_10_1109_TPAMI_2021_3059968
crossref_primary_10_1186_s13677_025_00738_9
crossref_primary_10_1016_j_jvcir_2025_104404
crossref_primary_10_1038_s41598_024_66346_w
crossref_primary_10_3390_drones8110663
crossref_primary_10_1016_j_compag_2024_109071
crossref_primary_10_1016_j_csi_2022_103702
crossref_primary_10_1016_j_patcog_2021_107858
crossref_primary_10_1002_adma_202506367
crossref_primary_10_1016_j_patcog_2021_107851
crossref_primary_10_1007_s10462_022_10176_7
crossref_primary_10_1109_TAI_2022_3185179
crossref_primary_10_1088_2631_8695_ade7d1
crossref_primary_10_1155_2022_7512445
crossref_primary_10_3390_electronics12040791
crossref_primary_10_3390_su15108034
crossref_primary_10_3390_rs14236048
crossref_primary_10_1016_j_atech_2025_101027
crossref_primary_10_1016_j_jmapro_2023_09_053
crossref_primary_10_1155_2022_2836486
crossref_primary_10_3390_app151810013
crossref_primary_10_1109_LRA_2021_3062010
crossref_primary_10_1016_j_patcog_2020_107488
crossref_primary_10_3390_pr12010053
crossref_primary_10_1109_TIM_2025_3545166
crossref_primary_10_1016_j_asoc_2023_110315
crossref_primary_10_1109_TSC_2023_3304312
crossref_primary_10_1002_jrs_6466
crossref_primary_10_1109_TMM_2022_3152388
crossref_primary_10_3390_s25175294
crossref_primary_10_1109_ACCESS_2023_3289968
crossref_primary_10_1016_j_eswa_2023_122363
crossref_primary_10_1093_bib_bbaf166
crossref_primary_10_1109_TNNLS_2024_3373566
crossref_primary_10_1038_s41598_023_31564_1
crossref_primary_10_1177_18724981241291460
crossref_primary_10_1080_23311975_2025_2528161
crossref_primary_10_1016_j_patcog_2022_108902
crossref_primary_10_1080_02522667_2020_1715602
crossref_primary_10_1016_j_addma_2025_104887
crossref_primary_10_1080_02286203_2024_2389562
crossref_primary_10_1177_14759217251365856
crossref_primary_10_1016_j_engappai_2025_111849
crossref_primary_10_1016_j_compag_2023_108456
crossref_primary_10_1177_00207314211017469
crossref_primary_10_1016_j_neucom_2025_131131
crossref_primary_10_1016_j_isci_2025_112334
crossref_primary_10_3389_fgene_2023_1253934
crossref_primary_10_3390_s20236784
crossref_primary_10_1155_2022_7873300
crossref_primary_10_1109_TPAMI_2023_3273592
crossref_primary_10_1016_j_soildyn_2024_108896
crossref_primary_10_1109_ACCESS_2024_3510746
crossref_primary_10_3390_su14052869
crossref_primary_10_1109_TPAMI_2022_3168530
crossref_primary_10_3390_jimaging6090082
crossref_primary_10_7717_peerj_cs_1494
crossref_primary_10_1007_s00371_024_03386_3
crossref_primary_10_1177_14759217251324156
crossref_primary_10_1016_j_micron_2023_103448
crossref_primary_10_3390_diagnostics13020248
crossref_primary_10_1109_TPAMI_2021_3062772
crossref_primary_10_1016_j_patcog_2020_107475
crossref_primary_10_1088_1742_6596_2024_1_012011
crossref_primary_10_1016_j_aiig_2025_100107
crossref_primary_10_1109_ACCESS_2020_2968464
crossref_primary_10_1016_j_engappai_2020_103708
crossref_primary_10_1016_j_compbiomed_2023_107873
crossref_primary_10_3390_agronomy15061275
crossref_primary_10_1007_s13721_024_00450_9
crossref_primary_10_1155_2022_2309317
crossref_primary_10_1016_j_jfca_2023_105199
crossref_primary_10_3389_fmicb_2021_771428
crossref_primary_10_3390_agriculture14020217
crossref_primary_10_3389_fpls_2022_958940
crossref_primary_10_3390_electronics13020436
crossref_primary_10_1007_s00521_023_08826_0
crossref_primary_10_1016_j_energy_2024_132559
crossref_primary_10_3390_ijgi13100341
crossref_primary_10_1007_s11063_023_11214_3
crossref_primary_10_1080_10095020_2020_1785957
crossref_primary_10_1038_s41598_022_22264_3
crossref_primary_10_1109_TNNLS_2020_3043808
crossref_primary_10_1109_TCSVT_2024_3412996
crossref_primary_10_3390_plants13162277
crossref_primary_10_1109_TIM_2021_3106112
crossref_primary_10_1088_1402_4896_aceb9a
crossref_primary_10_32604_cmc_2025_059149
crossref_primary_10_1002_cav_2228
crossref_primary_10_1007_s11042_021_11478_8
crossref_primary_10_3390_rs17060995
crossref_primary_10_1007_s00521_022_06913_2
crossref_primary_10_3390_make5040085
crossref_primary_10_1186_s13634_023_01069_0
crossref_primary_10_32604_cmc_2021_016736
crossref_primary_10_1016_j_eswa_2025_128040
crossref_primary_10_3389_fgene_2025_1622899
crossref_primary_10_1016_j_patcog_2022_108953
crossref_primary_10_1109_ACCESS_2024_3387832
crossref_primary_10_1038_s41598_023_47706_4
crossref_primary_10_1109_TNNLS_2022_3214216
crossref_primary_10_1145_3534932
crossref_primary_10_3390_min14030275
crossref_primary_10_1016_j_patcog_2023_109557
crossref_primary_10_1016_j_imavis_2022_104504
crossref_primary_10_1016_j_asoc_2024_112074
crossref_primary_10_1016_j_patcog_2022_108962
crossref_primary_10_1002_ima_23116
crossref_primary_10_1007_s10845_024_02518_9
crossref_primary_10_1016_j_cmpb_2021_106043
crossref_primary_10_1007_s11263_025_02442_2
crossref_primary_10_3390_rs13224597
crossref_primary_10_1109_JSEN_2023_3235830
crossref_primary_10_3390_drones7050287
crossref_primary_10_1016_j_patcog_2022_108724
crossref_primary_10_1109_TCOMM_2022_3217777
crossref_primary_10_3390_atmos16091054
crossref_primary_10_3390_fractalfract9060390
crossref_primary_10_3934_fods_2022007
crossref_primary_10_1109_TGRS_2020_3042507
crossref_primary_10_1109_TITS_2025_3559098
crossref_primary_10_1016_j_neucom_2020_06_110
crossref_primary_10_1016_j_jenvman_2022_114560
crossref_primary_10_1007_s11051_024_06111_2
crossref_primary_10_1016_j_bspc_2024_106970
crossref_primary_10_1080_19498276_2023_2251982
crossref_primary_10_3390_rs16203817
crossref_primary_10_1109_JTEHM_2023_3289990
crossref_primary_10_1109_TIP_2019_2945867
crossref_primary_10_1007_s00530_025_01855_w
crossref_primary_10_1016_j_knosys_2025_113933
crossref_primary_10_1049_cit2_12356
crossref_primary_10_1109_TAFFC_2022_3205170
crossref_primary_10_1007_s00894_022_05271_z
crossref_primary_10_1002_advs_202503059
crossref_primary_10_3390_bios12030167
crossref_primary_10_1002_cpe_6767
crossref_primary_10_1109_TBME_2023_3239687
crossref_primary_10_1109_TGRS_2022_3223921
crossref_primary_10_1016_j_imavis_2022_104571
crossref_primary_10_1080_10408347_2023_2189477
crossref_primary_10_1038_s41598_025_00341_7
crossref_primary_10_3724_SP_J_1089_2022_18956
crossref_primary_10_1109_TGRS_2023_3290242
crossref_primary_10_1049_rsn2_12457
crossref_primary_10_1088_1361_6501_ad8811
crossref_primary_10_1109_TPAMI_2023_3289308
crossref_primary_10_1080_12460125_2021_1969722
crossref_primary_10_1155_2022_4868435
crossref_primary_10_1007_s00138_023_01374_6
crossref_primary_10_1007_s11042_020_09398_0
crossref_primary_10_1088_1741_2552_ace5dc
crossref_primary_10_1155_2023_6928871
crossref_primary_10_3390_s22239364
crossref_primary_10_1007_s42791_023_00049_7
crossref_primary_10_1038_s42256_021_00420_0
crossref_primary_10_1016_j_inffus_2024_102608
crossref_primary_10_1007_s11760_023_02754_1
crossref_primary_10_1007_s11432_021_3590_1
crossref_primary_10_1109_JSEN_2023_3304062
crossref_primary_10_1186_s40494_022_00644_2
crossref_primary_10_1016_j_compbiomed_2021_104608
crossref_primary_10_3390_rs13224712
crossref_primary_10_1016_j_measurement_2022_111003
crossref_primary_10_1109_TSMC_2022_3166397
crossref_primary_10_1155_2021_1991471
crossref_primary_10_1038_s41467_024_48747_7
crossref_primary_10_1016_j_chaos_2025_117098
crossref_primary_10_1109_TIP_2023_3343112
crossref_primary_10_3390_rs13010089
crossref_primary_10_1016_j_engappai_2024_109890
crossref_primary_10_1016_j_ress_2025_111347
crossref_primary_10_1016_j_neucom_2019_11_019
crossref_primary_10_3390_biology12010016
crossref_primary_10_3390_rs12060959
crossref_primary_10_1016_j_cmpb_2024_108280
crossref_primary_10_1016_j_rse_2023_113944
crossref_primary_10_1109_ACCESS_2020_2966497
crossref_primary_10_1371_journal_pone_0309126
crossref_primary_10_1007_s13369_025_10223_9
crossref_primary_10_3390_electronics12040918
crossref_primary_10_3390_rs15204906
crossref_primary_10_1016_j_patcog_2022_108777
crossref_primary_10_1016_j_neucom_2019_11_042
crossref_primary_10_1109_ACCESS_2025_3539930
crossref_primary_10_1016_j_optcom_2023_129263
crossref_primary_10_1109_LSP_2024_3391623
crossref_primary_10_1007_s11063_022_10927_1
crossref_primary_10_1088_1742_6596_1757_1_012063
crossref_primary_10_1109_ACCESS_2019_2907071
crossref_primary_10_1109_TIP_2020_2978339
crossref_primary_10_3390_fire6120446
crossref_primary_10_3390_electronics9010028
crossref_primary_10_1109_TDSC_2025_3568217
crossref_primary_10_3389_fpls_2023_1219983
crossref_primary_10_1109_TRO_2022_3197106
crossref_primary_10_1109_TPAMI_2021_3083269
crossref_primary_10_1016_j_jflm_2023_102619
crossref_primary_10_1109_JPROC_2023_3275192
crossref_primary_10_1155_2022_2545958
crossref_primary_10_1080_08839514_2021_2014188
crossref_primary_10_1109_LGRS_2024_3386193
crossref_primary_10_1007_s11227_023_05293_1
crossref_primary_10_1016_j_patcog_2024_111080
crossref_primary_10_1016_j_vibspec_2022_103404
crossref_primary_10_1016_j_istruc_2025_110085
crossref_primary_10_1016_j_indcrop_2025_121401
crossref_primary_10_3389_fnins_2024_1368733
crossref_primary_10_1007_s00500_023_09110_y
crossref_primary_10_1016_j_ijmedinf_2025_105806
crossref_primary_10_1016_j_bspc_2023_105374
crossref_primary_10_1109_ACCESS_2019_2956216
crossref_primary_10_32604_cmc_2024_047053
crossref_primary_10_3390_agriculture12091493
crossref_primary_10_1007_s11063_024_11459_6
crossref_primary_10_1016_j_cscm_2024_e03987
crossref_primary_10_1049_iet_cvi_2019_0289
crossref_primary_10_1016_j_jcrysgro_2022_126527
crossref_primary_10_1016_j_artmed_2020_101936
crossref_primary_10_1007_s11432_020_3065_4
crossref_primary_10_1007_s10489_025_06511_4
crossref_primary_10_1016_j_saa_2022_121137
crossref_primary_10_1109_TPAMI_2022_3209702
crossref_primary_10_1016_j_compenvurbsys_2023_101950
crossref_primary_10_1007_s11263_023_01919_2
crossref_primary_10_3390_plants13111581
crossref_primary_10_1109_TMM_2019_2918720
crossref_primary_10_3390_rs15020440
crossref_primary_10_1016_j_energy_2023_129698
crossref_primary_10_1109_TIM_2021_3113127
crossref_primary_10_1007_s11063_023_11408_9
crossref_primary_10_3390_app14031023
crossref_primary_10_3390_s24185900
crossref_primary_10_1016_j_compag_2024_109127
crossref_primary_10_1002_pca_3076
crossref_primary_10_3233_JIFS_201758
crossref_primary_10_1007_s40747_021_00529_0
crossref_primary_10_1155_2022_1828782
crossref_primary_10_1016_j_eswa_2022_118363
crossref_primary_10_1016_j_inffus_2023_101880
crossref_primary_10_1016_j_compmedimag_2023_102290
crossref_primary_10_1016_j_displa_2024_102834
crossref_primary_10_1016_j_ymssp_2024_112128
crossref_primary_10_1007_s11042_022_13710_5
crossref_primary_10_1109_TPAMI_2023_3301302
crossref_primary_10_3390_electronics12041055
crossref_primary_10_1007_s11227_023_05820_0
crossref_primary_10_1016_j_measurement_2022_111760
crossref_primary_10_1016_j_dsp_2024_104614
crossref_primary_10_1016_j_ejrad_2021_109878
crossref_primary_10_1016_j_jss_2023_07_017
crossref_primary_10_1109_TGRS_2022_3193458
crossref_primary_10_4018_IJIIT_383644
crossref_primary_10_1093_comjnl_bxae106
crossref_primary_10_1109_TIP_2024_3444190
crossref_primary_10_1109_TETCI_2021_3058672
crossref_primary_10_3390_rs15184517
crossref_primary_10_1016_j_neunet_2022_10_023
crossref_primary_10_1109_TITS_2020_2980426
crossref_primary_10_1007_s11760_024_03477_7
crossref_primary_10_3390_diagnostics11020315
crossref_primary_10_1016_j_artmed_2022_102374
crossref_primary_10_1109_ACCESS_2024_3377689
crossref_primary_10_1109_ACCESS_2021_3076074
crossref_primary_10_1109_JSEN_2024_3400519
crossref_primary_10_1016_j_neucom_2020_07_128
crossref_primary_10_1038_s41598_022_22204_1
crossref_primary_10_1109_TMM_2023_3326300
crossref_primary_10_1016_j_knosys_2021_107296
crossref_primary_10_1109_TGRS_2023_3344283
crossref_primary_10_1007_s13748_019_00203_0
crossref_primary_10_1007_s42835_021_00880_9
crossref_primary_10_1016_j_patcog_2020_107611
crossref_primary_10_1016_j_sna_2024_115521
crossref_primary_10_1007_s12243_024_01029_1
crossref_primary_10_1038_s41598_025_91293_5
crossref_primary_10_3390_app14135466
crossref_primary_10_1038_s40494_025_01929_y
crossref_primary_10_3390_app12104898
crossref_primary_10_1109_TGRS_2019_2951820
crossref_primary_10_1007_s11263_022_01590_z
crossref_primary_10_1007_s11263_025_02372_z
crossref_primary_10_1016_j_eswa_2023_122704
crossref_primary_10_3390_rs14040866
crossref_primary_10_1016_j_neucom_2022_07_069
crossref_primary_10_3390_diagnostics15091072
crossref_primary_10_1109_TCSVT_2020_3037234
crossref_primary_10_1016_j_patcog_2021_107903
crossref_primary_10_1007_s42979_023_01859_1
crossref_primary_10_3390_s22166249
crossref_primary_10_3390_s20061737
crossref_primary_10_1016_j_foodchem_2024_141529
crossref_primary_10_1109_TCSVT_2022_3227716
crossref_primary_10_1109_TPAMI_2024_3474094
crossref_primary_10_1007_s11760_025_03866_6
crossref_primary_10_1109_ACCESS_2023_3302353
crossref_primary_10_1038_s41598_024_69965_5
crossref_primary_10_1007_s13748_024_00354_9
crossref_primary_10_1016_j_neucom_2022_07_054
crossref_primary_10_1016_j_cmpb_2020_105766
crossref_primary_10_1109_TNNLS_2022_3169779
crossref_primary_10_1016_j_infrared_2022_104303
crossref_primary_10_1007_s13721_023_00435_0
crossref_primary_10_1007_s42979_020_00153_8
crossref_primary_10_1017_S0269888924000080
crossref_primary_10_1088_1361_6501_adc9d7
crossref_primary_10_1166_jmihi_2021_3865
crossref_primary_10_1049_iet_ipr_2020_0612
crossref_primary_10_1108_ECAM_06_2024_0821
crossref_primary_10_1016_j_rse_2023_113584
crossref_primary_10_1109_JSTARS_2020_3020733
crossref_primary_10_1016_j_autcon_2023_105098
crossref_primary_10_3390_electronics11050799
crossref_primary_10_1007_s10479_022_04833_x
crossref_primary_10_1016_j_isatra_2022_02_048
crossref_primary_10_1109_TNNLS_2022_3144003
crossref_primary_10_1016_j_knosys_2021_106843
crossref_primary_10_1109_TIM_2022_3221731
crossref_primary_10_1186_s13007_025_01366_9
crossref_primary_10_1109_TITS_2020_2984894
crossref_primary_10_1109_JSEN_2024_3409769
crossref_primary_10_1007_s11760_023_02629_5
crossref_primary_10_1109_TPAMI_2022_3218275
crossref_primary_10_1186_s13018_024_05265_y
crossref_primary_10_1007_s00521_025_11313_3
crossref_primary_10_1016_j_asoc_2024_111873
crossref_primary_10_1016_j_patcog_2020_107659
crossref_primary_10_3390_app12136423
crossref_primary_10_1021_acsnano_4c18377
crossref_primary_10_1080_19479832_2024_2330637
crossref_primary_10_1109_TGRS_2020_3009143
crossref_primary_10_1109_TGRS_2021_3088902
crossref_primary_10_3390_cancers15143604
crossref_primary_10_1016_j_envsoft_2025_106496
crossref_primary_10_1016_j_jvcir_2025_104576
crossref_primary_10_3390_electronics14061138
crossref_primary_10_1109_JIOT_2019_2940709
crossref_primary_10_1016_j_bspc_2022_104209
crossref_primary_10_1088_2058_6272_ace9af
crossref_primary_10_1007_s11831_024_10098_3
crossref_primary_10_1016_j_jss_2021_10_017
crossref_primary_10_1109_TGRS_2021_3085889
crossref_primary_10_1088_1742_6596_2078_1_012019
crossref_primary_10_1007_s40747_024_01678_8
crossref_primary_10_1088_1742_6596_1651_1_012125
crossref_primary_10_1016_j_eswa_2023_120579
crossref_primary_10_1016_j_jksuci_2023_101859
crossref_primary_10_1109_LSP_2024_3406472
crossref_primary_10_3389_fpls_2025_1648434
crossref_primary_10_1109_TGRS_2022_3224477
crossref_primary_10_1117_1_JEI_33_4_043012
crossref_primary_10_3390_sym17081344
crossref_primary_10_1016_j_patcog_2019_107147
crossref_primary_10_1002_cbdv_202401228
crossref_primary_10_1145_3508393
crossref_primary_10_1016_j_artmed_2025_103097
crossref_primary_10_1016_j_isprsjprs_2022_04_028
crossref_primary_10_1186_s12911_023_02289_y
crossref_primary_10_1111_jog_15788
crossref_primary_10_1016_j_neucom_2022_05_086
crossref_primary_10_1109_TGRS_2025_3583982
crossref_primary_10_1016_j_advengsoft_2024_103691
crossref_primary_10_1016_j_ymeth_2022_04_011
crossref_primary_10_3390_rs15051303
crossref_primary_10_1155_2021_7265644
crossref_primary_10_1016_j_bspc_2023_105826
crossref_primary_10_3390_app13179863
crossref_primary_10_1007_s11263_023_01796_9
crossref_primary_10_1088_1742_6596_1651_1_012184
crossref_primary_10_1109_TITS_2020_2995730
crossref_primary_10_1038_s41598_023_40581_z
crossref_primary_10_1155_2022_5485117
crossref_primary_10_1016_j_cageo_2023_105358
crossref_primary_10_1016_j_jvcir_2025_104538
crossref_primary_10_1007_s00202_023_01915_2
crossref_primary_10_1029_2023WR036869
crossref_primary_10_3390_f15010165
crossref_primary_10_3390_sym13071116
crossref_primary_10_1109_ACCESS_2023_3314188
crossref_primary_10_3389_fimmu_2024_1478201
crossref_primary_10_1016_j_ins_2024_121076
crossref_primary_10_1016_j_jmgm_2021_108083
crossref_primary_10_1016_j_compag_2023_107944
crossref_primary_10_7759_cureus_37349
crossref_primary_10_1109_ACCESS_2024_3350176
crossref_primary_10_1109_TPAMI_2021_3138337
crossref_primary_10_1016_j_patcog_2020_107671
crossref_primary_10_1089_cmb_2023_0102
crossref_primary_10_1016_j_heliyon_2025_e42433
crossref_primary_10_1002_cpe_7031
crossref_primary_10_1016_j_eswa_2021_115673
crossref_primary_10_7717_peerj_cs_2417
crossref_primary_10_1007_s11042_022_13062_0
crossref_primary_10_1109_TMI_2025_3541115
crossref_primary_10_3390_cancers17010121
crossref_primary_10_1109_ACCESS_2024_3363233
crossref_primary_10_1109_JIOT_2024_3362851
crossref_primary_10_1371_journal_pone_0317863
crossref_primary_10_3390_agronomy11010174
crossref_primary_10_3390_app13053095
crossref_primary_10_1109_TPAMI_2020_3007032
crossref_primary_10_19159_tutad_1696120
crossref_primary_10_3390_app15031004
crossref_primary_10_3390_electronics12122730
crossref_primary_10_1109_ACCESS_2020_2969442
crossref_primary_10_1002_aisy_202401093
crossref_primary_10_1016_j_patrec_2021_03_032
crossref_primary_10_1016_j_neunet_2024_106417
crossref_primary_10_1007_s10489_022_03613_1
crossref_primary_10_1016_j_fuel_2024_131722
crossref_primary_10_3390_s21124211
crossref_primary_10_1007_s40846_021_00656_6
crossref_primary_10_1109_ACCESS_2023_3288999
crossref_primary_10_1049_cvi2_12250
crossref_primary_10_1109_TITS_2022_3205477
crossref_primary_10_3389_fpls_2024_1508449
crossref_primary_10_1007_s42835_021_00701_z
crossref_primary_10_1007_s11432_019_2738_y
crossref_primary_10_1109_TNNLS_2021_3054769
crossref_primary_10_1016_j_bspc_2024_106222
crossref_primary_10_1016_j_compbiomed_2020_103757
crossref_primary_10_1109_ACCESS_2022_3214316
crossref_primary_10_1016_j_comcom_2022_05_035
crossref_primary_10_1109_TCSVT_2024_3471875
crossref_primary_10_1016_j_neucom_2023_03_031
crossref_primary_10_1016_j_conengprac_2025_106491
crossref_primary_10_3390_s20154320
crossref_primary_10_1007_s12020_025_04198_8
crossref_primary_10_1088_1361_6501_ace124
crossref_primary_10_1109_JSEN_2024_3382345
crossref_primary_10_1007_s00500_021_05987_9
crossref_primary_10_1049_iet_ipr_2018_6622
crossref_primary_10_1088_1361_6560_acaeee
crossref_primary_10_1109_TIP_2019_2957915
crossref_primary_10_1109_TPAMI_2021_3064837
crossref_primary_10_1007_s10489_024_05885_1
crossref_primary_10_1109_TCSVT_2023_3236432
crossref_primary_10_1016_j_rineng_2025_105524
crossref_primary_10_1016_j_apr_2021_101079
crossref_primary_10_1109_TIM_2024_3497168
crossref_primary_10_1109_ACCESS_2023_3266514
crossref_primary_10_3390_s20102907
crossref_primary_10_1109_TIP_2021_3136608
crossref_primary_10_3390_min12030380
crossref_primary_10_1016_j_rse_2024_114101
crossref_primary_10_1016_j_saa_2024_125421
crossref_primary_10_5194_jm_40_163_2021
crossref_primary_10_1007_s11760_025_04598_3
crossref_primary_10_1007_s11760_023_02677_x
crossref_primary_10_1007_s11760_021_01882_w
crossref_primary_10_1109_LGRS_2024_3365792
crossref_primary_10_3389_fnhum_2022_875201
crossref_primary_10_1016_j_compeleceng_2024_109310
crossref_primary_10_1109_ACCESS_2025_3581986
crossref_primary_10_1016_j_knosys_2021_106989
crossref_primary_10_1007_s10489_022_03383_w
crossref_primary_10_1016_j_asoc_2021_107511
crossref_primary_10_1016_j_neucom_2025_129396
crossref_primary_10_1016_j_compag_2023_108538
crossref_primary_10_1016_j_imavis_2021_104309
crossref_primary_10_1038_s41598_025_11394_z
crossref_primary_10_1016_j_ins_2020_06_023
crossref_primary_10_1088_1742_6596_2711_1_012020
crossref_primary_10_1109_TGRS_2024_3376577
crossref_primary_10_3390_foods11223568
crossref_primary_10_1016_j_procs_2020_01_067
crossref_primary_10_1109_TNNLS_2023_3269513
crossref_primary_10_3390_s23177390
crossref_primary_10_1007_s11227_024_06020_0
crossref_primary_10_1155_2022_8039281
crossref_primary_10_1111_mice_12836
crossref_primary_10_3390_sym14010175
crossref_primary_10_1007_s11694_024_02460_7
crossref_primary_10_2118_205376_PA
crossref_primary_10_1109_ACCESS_2022_3213670
crossref_primary_10_1016_j_ins_2021_11_066
crossref_primary_10_3389_fmed_2022_955765
crossref_primary_10_1016_j_asoc_2023_110014
crossref_primary_10_7717_peerj_cs_2029
crossref_primary_10_1016_j_measurement_2025_118610
crossref_primary_10_3390_agriculture13071381
crossref_primary_10_1016_j_eswa_2023_122268
crossref_primary_10_1016_j_neucom_2025_131204
crossref_primary_10_1016_j_petrol_2021_109694
crossref_primary_10_3390_s22218189
crossref_primary_10_1007_s10462_020_09854_1
crossref_primary_10_1016_j_heliyon_2023_e20467
crossref_primary_10_1109_ACCESS_2024_3353048
crossref_primary_10_1080_10298436_2021_1883016
crossref_primary_10_3390_healthcare10010166
crossref_primary_10_3390_rs14133196
crossref_primary_10_1016_j_ins_2020_07_038
crossref_primary_10_1016_j_compbiomed_2023_107313
crossref_primary_10_1109_ACCESS_2023_3320685
crossref_primary_10_1007_s11276_024_03717_1
crossref_primary_10_1007_s11263_024_02224_2
crossref_primary_10_3390_app10186507
crossref_primary_10_1007_s10489_023_04616_2
crossref_primary_10_1016_j_procs_2023_12_003
crossref_primary_10_1016_j_patcog_2023_109666
crossref_primary_10_3389_fninf_2023_1086634
crossref_primary_10_1016_j_compbiomed_2023_107327
crossref_primary_10_1016_j_istruc_2024_106685
crossref_primary_10_1016_j_ins_2023_119364
crossref_primary_10_1016_j_knosys_2024_112684
crossref_primary_10_1002_adpr_202300308
crossref_primary_10_1016_j_eswa_2024_125621
crossref_primary_10_1016_j_scitotenv_2023_169233
crossref_primary_10_1016_j_microc_2020_105731
crossref_primary_10_1080_17452759_2024_2429530
crossref_primary_10_1007_s11432_019_2718_7
crossref_primary_10_1016_j_asoc_2023_111133
crossref_primary_10_1002_jemt_23713
crossref_primary_10_1016_j_compbiomed_2023_107334
crossref_primary_10_1016_j_media_2022_102487
crossref_primary_10_37031_jt_v22i2_490
crossref_primary_10_1016_j_neucom_2019_11_118
crossref_primary_10_1007_s10994_024_06547_6
crossref_primary_10_1093_jcde_qwaf057
crossref_primary_10_1111_1750_3841_16989
crossref_primary_10_1155_2022_9414567
crossref_primary_10_3390_electronics11111800
crossref_primary_10_1016_j_asoc_2024_112163
crossref_primary_10_1016_j_neucom_2022_08_065
crossref_primary_10_1007_s12652_021_03253_2
crossref_primary_10_1109_JSAC_2024_3413961
crossref_primary_10_1038_s41598_024_64636_x
crossref_primary_10_4218_etrij_2024_0115
crossref_primary_10_1016_j_patcog_2021_108117
crossref_primary_10_1016_j_neucom_2022_07_022
crossref_primary_10_1007_s12650_024_00991_1
crossref_primary_10_1109_TBCAS_2022_3220758
crossref_primary_10_1016_j_compag_2020_105878
crossref_primary_10_1109_TNSRE_2021_3103210
crossref_primary_10_1016_j_nanoen_2022_108041
crossref_primary_10_1016_j_neucom_2021_08_157
crossref_primary_10_3390_molecules28135000
crossref_primary_10_1007_s11831_020_09471_9
crossref_primary_10_1007_s10618_024_01079_y
crossref_primary_10_1177_14759217231194222
crossref_primary_10_3390_mi14010217
crossref_primary_10_3390_e24091213
crossref_primary_10_1371_journal_pone_0272317
crossref_primary_10_1134_S1054661821040039
crossref_primary_10_1016_j_procs_2023_12_202
crossref_primary_10_1177_14759217231192058
crossref_primary_10_1016_j_neucom_2019_10_123
crossref_primary_10_32604_cmc_2024_047143
crossref_primary_10_1016_j_compbiomed_2021_104771
crossref_primary_10_1093_jmicro_dfad049
crossref_primary_10_1016_j_neucom_2023_01_055
crossref_primary_10_1109_TCSVT_2023_3341728
crossref_primary_10_3390_life13020399
crossref_primary_10_1016_j_marenvres_2022_105829
crossref_primary_10_1016_j_neucom_2025_129553
crossref_primary_10_1109_TAI_2022_3221688
crossref_primary_10_1051_epjconf_202532801050
crossref_primary_10_1016_j_ajo_2022_02_020
crossref_primary_10_1007_s10921_024_01143_z
crossref_primary_10_1016_j_cma_2025_117953
crossref_primary_10_1016_j_patcog_2022_108663
crossref_primary_10_1038_s41598_024_64621_4
crossref_primary_10_1016_j_engappai_2025_111089
crossref_primary_10_1038_s41598_023_41021_8
crossref_primary_10_1038_s41598_024_79206_4
crossref_primary_10_1002_mp_16093
crossref_primary_10_1016_j_cviu_2023_103795
crossref_primary_10_3390_s23010532
crossref_primary_10_1109_TCSVT_2024_3413778
crossref_primary_10_1016_j_neucom_2019_06_084
crossref_primary_10_1007_s11517_022_02673_2
crossref_primary_10_1088_1742_6596_1624_5_052011
crossref_primary_10_1155_2020_7490840
crossref_primary_10_1109_TPAMI_2020_2969421
crossref_primary_10_1109_ACCESS_2021_3108003
crossref_primary_10_1016_j_imavis_2022_104483
crossref_primary_10_1109_ACCESS_2021_3083577
crossref_primary_10_1186_s13636_024_00341_x
crossref_primary_10_1109_TLT_2025_3530457
crossref_primary_10_1016_j_compbiomed_2021_104765
crossref_primary_10_1007_s11042_024_18622_0
crossref_primary_10_1016_j_neucom_2019_05_060
crossref_primary_10_1016_j_jss_2024_112058
crossref_primary_10_1016_j_jnca_2020_102590
crossref_primary_10_1109_TNNLS_2021_3131813
crossref_primary_10_3390_machines12110744
crossref_primary_10_1016_j_jcp_2019_109120
crossref_primary_10_1109_TITS_2020_3044672
crossref_primary_10_1016_j_neucom_2025_130504
crossref_primary_10_1021_acssensors_5c01439
crossref_primary_10_3390_s20113153
Cites_doi 10.1016/j.patcog.2018.03.015
10.1109/TPAMI.2017.2699184
10.1109/TPAMI.2017.2708714
10.1016/j.patcog.2016.12.005
10.1016/j.cviu.2017.05.007
10.1007/s11263-014-0733-5
10.1016/j.patcog.2018.03.003
10.1007/s11263-015-0816-y
10.1109/TPAMI.2017.2723009
10.1109/TPAMI.2016.2572683
10.1109/TPAMI.2016.2577031
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2019.01.006
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
EndPage 133
ExternalDocumentID 10_1016_j_patcog_2019_01_006
S0031320319300135
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-8ca2198ae7d004b08ec8325ba53c3664772fa5a23f19f620797c91adef25c1933
ISICitedReferencesCount 1059
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000463130400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 03:52:23 EST 2025
Tue Nov 18 20:41:47 EST 2025
Fri Feb 23 02:25:26 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Semantic segmentation
Residual network
Image classification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-8ca2198ae7d004b08ec8325ba53c3664772fa5a23f19f620797c91adef25c1933
ORCID 0000-0002-0990-233X
PageCount 15
ParticipantIDs crossref_primary_10_1016_j_patcog_2019_01_006
crossref_citationtrail_10_1016_j_patcog_2019_01_006
elsevier_sciencedirect_doi_10_1016_j_patcog_2019_01_006
PublicationCentury 2000
PublicationDate June 2019
2019-06-00
PublicationDateYYYYMMDD 2019-06-01
PublicationDate_xml – month: 06
  year: 2019
  text: June 2019
PublicationDecade 2010
PublicationTitle Pattern recognition
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Bai, Shi, Zhang, Cai, Qi (bib0001) 2017; 66
Zhao, Shi, Qi, Wang, Jia (bib0009) 2017
Liu, Li, Luo, Loy, Tang (bib0035) 2015
Chen, Li, Li, Lin, Wang, Wang, Xiao, Xu, Zhang, Zhang (bib0022) 2016
Nair, Hinton (bib0018) 2010
Zhou, Zhao, Puig, Fidler, Barriuso, Torralba (bib0038) 2017
Ioffe, Szegedy (bib0017) 2015; 37
Krizhevsky, Sutskever, Hinton (bib0004) 2012
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0013) 2017; 40
Lin, Shen, van den Hengel, Reid (bib0036) 2017; 40
S. Gross, M. Wilber, Training and investigating residual nets, 2016, (http://torch.ch/blog/2016/02/04/resnets.html).
Everingham, Eslami, van Gool, Williams, Winn, Zisserman (bib0027) 2015; 111
J. Wu, C.-W. Xie, J.-H. Luo, Dense CNN learning with equivalent mappings, 2016, (CoRR abs/1605.07251).
He, Zhang, Ren, Sun (bib0005) 2016
Veit, Wilber, Belongie (bib0011) 2016
Shi, Sapkota, Xing, Liu, Cui, Yang (bib0002) 2018; 81
Zhou, Hu, Wang (bib0003) 2018; 80
Szegedy, Ioffe, Vanhoucke, Alemi (bib0008) 2017
Zhou, Khosla, Lapedriza, Torralba, Oliva (bib0031) 2018; 40
Peng, Xiao, Li, Jiang, Zhang, Jia, Yu, Sun (bib0019) 2018
Ghiasi, Fowlkes (bib0040) 2016
Cordts, Omran, Ramos, Rehfeld, Enzweiler, Benenson, Franke, Roth, Schiele (bib0037) 2016
He, Zhang, Ren, Sun (bib0007) 2016
Ren, He, Girshick, Sun (bib0021) 2015; 39
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0028) 2014; 15
Zheng, Jayasumana, Romera-Paredes, Vineet, Su, Du, Huang, Torr (bib0033) 2015
Yu, Koltun (bib0039) 2016
Hariharan, Arbeláez, Bourdev, Maji, Malik (bib0030) 2011
Dai, He, Sun (bib0012) 2016
Z. Wu, C. Shen, A. van den Hengel, Bridging category-level and instance-level semantic image segmentation, 2016, (CoRR abs/1605.06885).
Zagoruyko, Komodakis (bib0015) 2016
Lin, Maire, Belongie, Hays, Perona, Dollár, Zitnick (bib0020) 2014
L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, 2017, (CoRR abs/1706.05587).
Krizhevsky (bib0006) 2009
Dai, He, Sun (bib0042) 2015
Simonyan, Zisserman (bib0014) 2015
Long, Shelhamer, Darrell (bib0016) 2017; 39
Noh, Hong, Han (bib0034) 2015
Mottaghi, Chen, Liu, Cho, Lee, Fidler, Urtasun, Yuille (bib0041) 2014
Mishkin, Sergievskiy, Matas (bib0024) 2017; 161
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein, Berg, Fei-Fei (bib0010) 2015; 115
Chen, Papandreou, Kokkinos, Murphy, Yuille (bib0025) 2015
Ioffe (10.1016/j.patcog.2019.01.006_bib0017) 2015; 37
Lin (10.1016/j.patcog.2019.01.006_bib0036) 2017; 40
Chen (10.1016/j.patcog.2019.01.006_bib0022) 2016
Russakovsky (10.1016/j.patcog.2019.01.006_bib0010) 2015; 115
Krizhevsky (10.1016/j.patcog.2019.01.006_bib0004) 2012
Liu (10.1016/j.patcog.2019.01.006_bib0035) 2015
Noh (10.1016/j.patcog.2019.01.006_bib0034) 2015
He (10.1016/j.patcog.2019.01.006_bib0007) 2016
Zhao (10.1016/j.patcog.2019.01.006_bib0009) 2017
Dai (10.1016/j.patcog.2019.01.006_bib0012) 2016
Zheng (10.1016/j.patcog.2019.01.006_bib0033) 2015
Dai (10.1016/j.patcog.2019.01.006_bib0042) 2015
10.1016/j.patcog.2019.01.006_bib0032
Zagoruyko (10.1016/j.patcog.2019.01.006_bib0015) 2016
Cordts (10.1016/j.patcog.2019.01.006_bib0037) 2016
He (10.1016/j.patcog.2019.01.006_bib0005) 2016
Zhou (10.1016/j.patcog.2019.01.006_bib0003) 2018; 80
Mishkin (10.1016/j.patcog.2019.01.006_bib0024) 2017; 161
Ghiasi (10.1016/j.patcog.2019.01.006_bib0040) 2016
Mottaghi (10.1016/j.patcog.2019.01.006_bib0041) 2014
Krizhevsky (10.1016/j.patcog.2019.01.006_bib0006) 2009
Simonyan (10.1016/j.patcog.2019.01.006_bib0014) 2015
Yu (10.1016/j.patcog.2019.01.006_bib0039) 2016
Shi (10.1016/j.patcog.2019.01.006_bib0002) 2018; 81
Everingham (10.1016/j.patcog.2019.01.006_bib0027) 2015; 111
Zhou (10.1016/j.patcog.2019.01.006_bib0038) 2017
Hariharan (10.1016/j.patcog.2019.01.006_bib0030) 2011
Long (10.1016/j.patcog.2019.01.006_bib0016) 2017; 39
Veit (10.1016/j.patcog.2019.01.006_bib0011) 2016
Peng (10.1016/j.patcog.2019.01.006_bib0019) 2018
Zhou (10.1016/j.patcog.2019.01.006_bib0031) 2018; 40
Chen (10.1016/j.patcog.2019.01.006_bib0025) 2015
Chen (10.1016/j.patcog.2019.01.006_bib0013) 2017; 40
10.1016/j.patcog.2019.01.006_bib0023
Nair (10.1016/j.patcog.2019.01.006_bib0018) 2010
Ren (10.1016/j.patcog.2019.01.006_bib0021) 2015; 39
Srivastava (10.1016/j.patcog.2019.01.006_bib0028) 2014; 15
10.1016/j.patcog.2019.01.006_bib0026
Szegedy (10.1016/j.patcog.2019.01.006_bib0008) 2017
Bai (10.1016/j.patcog.2019.01.006_bib0001) 2017; 66
10.1016/j.patcog.2019.01.006_bib0029
Lin (10.1016/j.patcog.2019.01.006_bib0020) 2014
References_xml – volume: 37
  start-page: 448
  year: 2015
  end-page: 456
  ident: bib0017
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
  publication-title: Proc. Int. Conf. Mach. Learn.
– volume: 81
  start-page: 14
  year: 2018
  end-page: 22
  ident: bib0002
  article-title: Pairwise based deep ranking hashing for histopathology image classification and retrieval
  publication-title: Pattern Recogn.
– start-page: 3213
  year: 2016
  end-page: 3223
  ident: bib0037
  article-title: The Cityscapes dataset for semantic urban scene understanding
  publication-title: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
– start-page: 991
  year: 2011
  end-page: 998
  ident: bib0030
  article-title: Semantic contours from inverse detectors
  publication-title: Proc. IEEE Int. Conf. Comp. Vis.
– start-page: 1377
  year: 2015
  end-page: 1385
  ident: bib0035
  article-title: Semantic image segmentation via deep parsing network
  publication-title: Proc. IEEE Int. Conf. Comp. Vis.
– volume: 66
  start-page: 437
  year: 2017
  end-page: 446
  ident: bib0001
  article-title: Text/non-text image classification in the wild with convolutional neural networks
  publication-title: Pattern Recogn.
– volume: 115
  start-page: 211
  year: 2015
  end-page: 252
  ident: bib0010
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: Int. J. Comput. Vision
– volume: 40
  start-page: 834
  year: 2017
  end-page: 848
  ident: bib0013
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 111
  start-page: 98
  year: 2015
  end-page: 136
  ident: bib0027
  article-title: The PASCAL visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vision
– reference: S. Gross, M. Wilber, Training and investigating residual nets, 2016, (http://torch.ch/blog/2016/02/04/resnets.html).
– reference: L.-C. Chen, G. Papandreou, F. Schroff, H. Adam, Rethinking atrous convolution for semantic image segmentation, 2017, (CoRR abs/1706.05587).
– start-page: 550
  year: 2016
  end-page: 558
  ident: bib0011
  article-title: Residual networks behave like ensembles of relatively shallow networks
  publication-title: Proc. Advances in Neural Inf. Process. Syst.
– start-page: 1529
  year: 2015
  end-page: 1537
  ident: bib0033
  article-title: Conditional random fields as recurrent neural networks
  publication-title: Proc. IEEE Int. Conf. Comp. Vis.
– start-page: 891
  year: 2014
  end-page: 898
  ident: bib0041
  article-title: The role of context for object detection and semantic segmentation in the wild
  publication-title: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
– year: 2015
  ident: bib0014
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: Proc. Int. Conf. Learn. Representations
– year: 2015
  ident: bib0025
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
  publication-title: Proc. Int. Conf. Learn. Representations
– start-page: 6230
  year: 2017
  end-page: 6239
  ident: bib0009
  article-title: Pyramid scene parsing network
  publication-title: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
– year: 2018
  ident: bib0019
  article-title: MegDet: A large mini-batch object detector
  publication-title: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
– start-page: 1097
  year: 2012
  end-page: 1105
  ident: bib0004
  article-title: ImageNet classification with deep convolutional neural networks
  publication-title: Proc. Advances in Neural Inf. Process. Syst.
– volume: 40
  start-page: 1352
  year: 2017
  end-page: 1366
  ident: bib0036
  article-title: Exploring context with deep structured models for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 39
  start-page: 1137
  year: 2015
  end-page: 1149
  ident: bib0021
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 40
  start-page: 1452
  year: 2018
  end-page: 1464
  ident: bib0031
  article-title: Places: A 10 million image database for scene understanding
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 4278
  year: 2017
  end-page: 4284
  ident: bib0008
  article-title: Inception-v4, Inception-Resnet and the impact of residual connections on learning
  publication-title: Proc. AAAI Conf. on Artificial Intell.
– start-page: 3150
  year: 2016
  end-page: 3158
  ident: bib0012
  article-title: Instance-aware semantic segmentation via multi-task network cascades
  publication-title: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
– start-page: 740
  year: 2014
  end-page: 755
  ident: bib0020
  article-title: Microsoft COCO: Common objects in context
  publication-title: Proc. Eur. Conf. Comp. Vis.
– start-page: 1520
  year: 2015
  end-page: 1528
  ident: bib0034
  article-title: Learning deconvolution network for semantic segmentation
  publication-title: Proc. IEEE Int. Conf. Comp. Vis.
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0018
  article-title: Rectified linear units improve restricted boltzmann machines
  publication-title: Proc. Int. Conf. Mach. Learn.
– year: 2016
  ident: bib0039
  article-title: Multi-scale context aggregation by dilated convolutions
  publication-title: Proc. Int. Conf. Learn. Representations
– volume: 161
  start-page: 11
  year: 2017
  end-page: 19
  ident: bib0024
  article-title: Systematic evaluation of CNN advances on the ImageNet
  publication-title: Comp. Vis. Image Understanding
– reference: Z. Wu, C. Shen, A. van den Hengel, Bridging category-level and instance-level semantic image segmentation, 2016, (CoRR abs/1605.06885).
– start-page: 5122
  year: 2017
  end-page: 5130
  ident: bib0038
  article-title: Scene parsing through ADE20K dataset
  publication-title: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
– start-page: 519
  year: 2016
  end-page: 534
  ident: bib0040
  article-title: Laplacian pyramid reconstruction and refinement for semantic segmentation
  publication-title: Proc. Eur. Conf. Comp. Vis.
– volume: 39
  start-page: 640
  year: 2017
  end-page: 651
  ident: bib0016
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 630
  year: 2016
  end-page: 645
  ident: bib0007
  article-title: Identity mappings in deep residual networks
  publication-title: Proc. Eur. Conf. Comp. Vis.
– start-page: 87.1
  year: 2016
  end-page: 87.12
  ident: bib0015
  article-title: Wide residual networks
  publication-title: Proc. British Machine Vis. Conf.
– start-page: 1635
  year: 2015
  end-page: 1643
  ident: bib0042
  article-title: BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
  publication-title: Proc. IEEE Int. Conf. Comp. Vis.
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0028
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– volume: 80
  start-page: 118
  year: 2018
  end-page: 128
  ident: bib0003
  article-title: Deep super-class learning for long-tail distributed image classification
  publication-title: Pattern Recogn.
– reference: J. Wu, C.-W. Xie, J.-H. Luo, Dense CNN learning with equivalent mappings, 2016, (CoRR abs/1605.07251).
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0005
  article-title: Deep residual learning for image recognition
  publication-title: Proc. IEEE Conf. Comp. Vis. Patt. Recogn.
– year: 2016
  ident: bib0022
  article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems
  publication-title: Proc. Advances in Neural Inf. Process. Syst., Workshop on Mach. Learn. Syst.
– year: 2009
  ident: bib0006
  article-title: Learning multiple layers of features from tiny images
  publication-title: Technical Report
– volume: 37
  start-page: 448
  year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0017
  article-title: Batch normalization: Accelerating deep network training by reducing internal covariate shift
– start-page: 4278
  year: 2017
  ident: 10.1016/j.patcog.2019.01.006_bib0008
  article-title: Inception-v4, Inception-Resnet and the impact of residual connections on learning
– ident: 10.1016/j.patcog.2019.01.006_bib0029
– start-page: 1635
  year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0042
  article-title: BoxSup: Exploiting bounding boxes to supervise convolutional networks for semantic segmentation
– volume: 81
  start-page: 14
  year: 2018
  ident: 10.1016/j.patcog.2019.01.006_bib0002
  article-title: Pairwise based deep ranking hashing for histopathology image classification and retrieval
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.03.015
– start-page: 630
  year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0007
  article-title: Identity mappings in deep residual networks
– volume: 40
  start-page: 834
  issue: 4
  year: 2017
  ident: 10.1016/j.patcog.2019.01.006_bib0013
  article-title: Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2699184
– volume: 40
  start-page: 1352
  issue: 6
  year: 2017
  ident: 10.1016/j.patcog.2019.01.006_bib0036
  article-title: Exploring context with deep structured models for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2708714
– start-page: 550
  year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0011
  article-title: Residual networks behave like ensembles of relatively shallow networks
– year: 2018
  ident: 10.1016/j.patcog.2019.01.006_bib0019
  article-title: MegDet: A large mini-batch object detector
– start-page: 1097
  year: 2012
  ident: 10.1016/j.patcog.2019.01.006_bib0004
  article-title: ImageNet classification with deep convolutional neural networks
– volume: 66
  start-page: 437
  year: 2017
  ident: 10.1016/j.patcog.2019.01.006_bib0001
  article-title: Text/non-text image classification in the wild with convolutional neural networks
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2016.12.005
– volume: 161
  start-page: 11
  issue: C
  year: 2017
  ident: 10.1016/j.patcog.2019.01.006_bib0024
  article-title: Systematic evaluation of CNN advances on the ImageNet
  publication-title: Comp. Vis. Image Understanding
  doi: 10.1016/j.cviu.2017.05.007
– start-page: 1377
  year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0035
  article-title: Semantic image segmentation via deep parsing network
– year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0039
  article-title: Multi-scale context aggregation by dilated convolutions
– volume: 111
  start-page: 98
  issue: 1
  year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0027
  article-title: The PASCAL visual object classes challenge: A retrospective
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-014-0733-5
– start-page: 3213
  year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0037
  article-title: The Cityscapes dataset for semantic urban scene understanding
– year: 2009
  ident: 10.1016/j.patcog.2019.01.006_bib0006
  article-title: Learning multiple layers of features from tiny images
– start-page: 6230
  year: 2017
  ident: 10.1016/j.patcog.2019.01.006_bib0009
  article-title: Pyramid scene parsing network
– start-page: 807
  year: 2010
  ident: 10.1016/j.patcog.2019.01.006_bib0018
  article-title: Rectified linear units improve restricted boltzmann machines
– start-page: 5122
  year: 2017
  ident: 10.1016/j.patcog.2019.01.006_bib0038
  article-title: Scene parsing through ADE20K dataset
– volume: 80
  start-page: 118
  year: 2018
  ident: 10.1016/j.patcog.2019.01.006_bib0003
  article-title: Deep super-class learning for long-tail distributed image classification
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2018.03.003
– ident: 10.1016/j.patcog.2019.01.006_bib0023
– volume: 15
  start-page: 1929
  issue: 1
  year: 2014
  ident: 10.1016/j.patcog.2019.01.006_bib0028
  article-title: Dropout: A simple way to prevent neural networks from overfitting
  publication-title: J. Mach. Learn. Res.
– start-page: 87.1
  year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0015
  article-title: Wide residual networks
– start-page: 770
  year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0005
  article-title: Deep residual learning for image recognition
– start-page: 3150
  year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0012
  article-title: Instance-aware semantic segmentation via multi-task network cascades
– year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0022
  article-title: MXNet: A flexible and efficient machine learning library for heterogeneous distributed systems
– start-page: 1529
  year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0033
  article-title: Conditional random fields as recurrent neural networks
– year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0025
  article-title: Semantic image segmentation with deep convolutional nets and fully connected CRFs
– start-page: 891
  year: 2014
  ident: 10.1016/j.patcog.2019.01.006_bib0041
  article-title: The role of context for object detection and semantic segmentation in the wild
– year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0014
  article-title: Very deep convolutional networks for large-scale image recognition
– ident: 10.1016/j.patcog.2019.01.006_bib0032
– start-page: 1520
  year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0034
  article-title: Learning deconvolution network for semantic segmentation
– volume: 115
  start-page: 211
  issue: 3
  year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0010
  article-title: ImageNet Large Scale Visual Recognition Challenge
  publication-title: Int. J. Comput. Vision
  doi: 10.1007/s11263-015-0816-y
– volume: 40
  start-page: 1452
  issue: 6
  year: 2018
  ident: 10.1016/j.patcog.2019.01.006_bib0031
  article-title: Places: A 10 million image database for scene understanding
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2017.2723009
– volume: 39
  start-page: 640
  issue: 4
  year: 2017
  ident: 10.1016/j.patcog.2019.01.006_bib0016
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2572683
– volume: 39
  start-page: 1137
  issue: 6
  year: 2015
  ident: 10.1016/j.patcog.2019.01.006_bib0021
  article-title: Faster R-CNN: Towards real-time object detection with region proposal networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2577031
– start-page: 740
  year: 2014
  ident: 10.1016/j.patcog.2019.01.006_bib0020
  article-title: Microsoft COCO: Common objects in context
– start-page: 991
  year: 2011
  ident: 10.1016/j.patcog.2019.01.006_bib0030
  article-title: Semantic contours from inverse detectors
– ident: 10.1016/j.patcog.2019.01.006_bib0026
– start-page: 519
  year: 2016
  ident: 10.1016/j.patcog.2019.01.006_bib0040
  article-title: Laplacian pyramid reconstruction and refinement for semantic segmentation
SSID ssj0017142
Score 2.723963
Snippet •We further develop the unravelled view of ResNets, which helps us better understand their behaviours. We demonstrate this in the context of a training...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 119
SubjectTerms Image classification
Residual network
Semantic segmentation
Title Wider or Deeper: Revisiting the ResNet Model for Visual Recognition
URI https://dx.doi.org/10.1016/j.patcog.2019.01.006
Volume 90
WOSCitedRecordID wos000463130400011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLYm4MCFMTYE25h82A1lcuw4jrkhfmjjUKEJtt4ix3WgaEqrNp3483m2X0I3EIPDLlGVJk6b9-V7z_F73yPks1DK6lyKJDOZggmK1UmVVzapM5FlXHFTWxaaTajBoBgO9TmmNc9DOwHVNMXtrZ7-V1PDPjC2L519gbn7QWEHfAajwxbMDttnGf6nL6zzaebHzk3dLGa8-RLytquM-u7mA9eGNmihenH_x3geRfYxmQhNhTHreZDg9GUvf37tqXwRFjfGtUMHGMUecSF_0Vwvetb3dVLAceDnfBot6hbgSPjWwRc6ddlRHZOKNBGciWUmjY0_kQpTpMLoVdMod_GAsOO7g5svU3A8kyufaqeDjCp7RB_7L7_VZxN2iWo3ZRyl9KOULC2DFvsqV1ID360efjsZnvUrTCrNopI8_o-urDLk_j38NY-HLUuhyMUm2cA5BD2Mtn9DXrlmi7zu-nNQpOu35ChAgU5mNELhgN4DgQIQaAQCDUCgAAQagUCXgPCOXJ6eXBx9TbBpRmJh9tcmhTXghArj1AgeiooVzgJpy8pIYUXuy455baThok51nXOmNDysqRm5mksL0bzYJivNpHE7hFaCFyMmORyeZ3pkjJbM1FIa39i1ytkuEd09KS0qyvvGJr_KpyyyS5L-rGlUVPnH8aq73SVGhTHaKwFDT575_oVX-kDW76H-kay0s4XbI2v2dzuezz4hgO4AK6eC1w
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Wider+or+Deeper%3A+Revisiting+the+ResNet+Model+for+Visual+Recognition&rft.jtitle=Pattern+recognition&rft.au=Wu%2C+Zifeng&rft.au=Shen%2C+Chunhua&rft.au=van+den+Hengel%2C+Anton&rft.date=2019-06-01&rft.issn=0031-3203&rft.volume=90&rft.spage=119&rft.epage=133&rft_id=info:doi/10.1016%2Fj.patcog.2019.01.006&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2019_01_006
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon