Data-oriented distributed demand response optimization with global inequality constraints based on multi-agent system

•The data-driven inverse optimization corrects the DR execution online.•The proposed strategy is realized in a distributed manner and free of initialization.•This paper provides rigorous stability proof for the proposed optimization.•D-PPDS algorithm solves the DR optimization with global inequality...

Full description

Saved in:
Bibliographic Details
Published in:International journal of electrical power & energy systems Vol. 133; p. 107025
Main Authors: Hao, Ran, Lu, Tianguang, Ai, Qian, He, Hongyin
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.12.2021
Subjects:
ISSN:0142-0615
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •The data-driven inverse optimization corrects the DR execution online.•The proposed strategy is realized in a distributed manner and free of initialization.•This paper provides rigorous stability proof for the proposed optimization.•D-PPDS algorithm solves the DR optimization with global inequality constrain. This paper provides an insight into the demand response (DR) optimization in distribution markets consisting of a retailer and multiple demand response aggregators (DRA), where a retailer determines DR incentives based on power consumption profile. Conventional DR optimization with global states and constraints is intractable to be implemented in a distributed framework, which restricts the application feasibility and the potential profit of DR. To handle these limitations, we design a multi-agent architecture for distributed demand response (DDR). An online data-mining method is developed to identify the characteristics of DR. A leader–follower structure decomposes the original problem into a leader problem with global variables and aggregators of sub-problems, where discrete singular consensus is designed to broadcast the leader’s strategy to followers in real-time. The distributed perturbation primal–dual sub-gradient (D-PPDS) algorithm is proposed to solve the DDR problem with global inequality constraints in a completely distributed fashion. The proposed DDR strategy is tested by an actual case. The simulation results demonstrate that the asynchronous D-PPDS algorithm can obtain the near-optimal solution of the problem with global inequality constraints, and is robust against delay or plug-and-play.
AbstractList •The data-driven inverse optimization corrects the DR execution online.•The proposed strategy is realized in a distributed manner and free of initialization.•This paper provides rigorous stability proof for the proposed optimization.•D-PPDS algorithm solves the DR optimization with global inequality constrain. This paper provides an insight into the demand response (DR) optimization in distribution markets consisting of a retailer and multiple demand response aggregators (DRA), where a retailer determines DR incentives based on power consumption profile. Conventional DR optimization with global states and constraints is intractable to be implemented in a distributed framework, which restricts the application feasibility and the potential profit of DR. To handle these limitations, we design a multi-agent architecture for distributed demand response (DDR). An online data-mining method is developed to identify the characteristics of DR. A leader–follower structure decomposes the original problem into a leader problem with global variables and aggregators of sub-problems, where discrete singular consensus is designed to broadcast the leader’s strategy to followers in real-time. The distributed perturbation primal–dual sub-gradient (D-PPDS) algorithm is proposed to solve the DDR problem with global inequality constraints in a completely distributed fashion. The proposed DDR strategy is tested by an actual case. The simulation results demonstrate that the asynchronous D-PPDS algorithm can obtain the near-optimal solution of the problem with global inequality constraints, and is robust against delay or plug-and-play.
ArticleNumber 107025
Author He, Hongyin
Ai, Qian
Hao, Ran
Lu, Tianguang
Author_xml – sequence: 1
  givenname: Ran
  surname: Hao
  fullname: Hao, Ran
  organization: National Power Dispatching & Control Center, State Grid Corporation of China, Beijing 100031, China
– sequence: 2
  givenname: Tianguang
  surname: Lu
  fullname: Lu, Tianguang
  email: tlu@seas.harvard.edu
  organization: School of Electrical Engineering, Shandong University, Jinan 250061, China
– sequence: 3
  givenname: Qian
  surname: Ai
  fullname: Ai, Qian
  organization: School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
– sequence: 4
  givenname: Hongyin
  surname: He
  fullname: He, Hongyin
  organization: College of Electrical and Information Engineering, Hunan University, Changsha 410082, China
BookMark eNqFkM1OwzAQhH0oEm3hDTj4BVLs_IcDEiq_UiUuvVuOvSkbJU6wXVB5etyGEwc47Wo1M6v5FmRmBgOEXHG24ozn1-0KWxjBrWIW83AqWJzNyJzxNI5YzrNzsnCuZYwVVRrPyf5eehkNFsF40FSj8xbr_WmHXhpNLbhxMA7oMHrs8Ut6HAz9RP9Gd91Qy46igfe97NAfqApKbyUa72gtXUgJ2n7feYzkLryg7uA89BfkrJGdg8ufuSTbx4ft-jnavD69rO82kUpY7qOyrHhTsErlJTR1DEWqdFqned5kui4alhW60pWUPFU80TFPilKztGzyRGYx48mSpFOssoNzFhoxWuylPQjOxJGWaMVESxxpiYlWsN38sin0p9rHat1_5tvJDKHXB4IVTgW4CjRaUF7oAf8O-AZdTo_b
CitedBy_id crossref_primary_10_1049_gtd2_70019
crossref_primary_10_1016_j_enbuild_2024_115067
crossref_primary_10_1016_j_segan_2024_101443
crossref_primary_10_1109_ACCESS_2023_3237737
crossref_primary_10_1016_j_seta_2022_102023
crossref_primary_10_3390_electronics12234731
crossref_primary_10_1109_ACCESS_2023_3238685
Cites_doi 10.1109/59.119246
10.1109/TAC.2011.2167817
10.3390/en12152867
10.1109/TPWRS.2012.2207134
10.1109/TSG.2018.2873650
10.1109/TPWRS.2018.2846744
10.1109/TSG.2015.2422714
10.1109/TPWRS.2015.2406813
10.1109/TSG.2018.2805169
10.1016/j.apenergy.2020.115256
10.1109/TSG.2020.3027728
10.1016/j.apenergy.2015.10.179
10.1109/EEM.2014.6861241
10.1109/TAC.2016.2616646
10.1109/TSG.2018.2795007
10.1109/TSG.2017.2668767
10.1109/TII.2017.2703132
10.1038/s41467-020-18318-7
10.1109/TSG.2016.2536740
10.1016/j.epsr.2018.08.002
10.1109/TASE.2016.2621890
10.1109/TII.2015.2408455
10.4018/IJERTCS.2019010103
10.1109/TAC.2014.2308612
10.1109/ACCESS.2019.2908680
10.1109/TIE.2018.2881938
10.1109/TPWRS.2014.2359457
10.1109/TSG.2018.2834368
10.1109/TII.2017.2785366
10.1109/ACCESS.2019.2959727
10.1109/TAC.2010.2041686
10.1109/TSG.2016.2522923
10.1109/TSG.2015.2469669
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijepes.2021.107025
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_ijepes_2021_107025
S0142061521002659
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABTAH
ABWVN
ABXDB
ACDAQ
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
ADVLN
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
GROUPED_DOAJ
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SSR
SST
SSV
SSZ
T5K
VH1
WUQ
ZMT
ZY4
~02
~G-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c306t-8891f709c68efb2e74cd4b466f5db7f057d9d9aa14c13d21378d048f63a52013
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000685654900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0142-0615
IngestDate Tue Nov 18 22:37:12 EST 2025
Sat Nov 29 07:23:14 EST 2025
Sun Apr 06 06:53:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Distributed optimization
Demand response
Multi-agent system
Data-driven method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-8891f709c68efb2e74cd4b466f5db7f057d9d9aa14c13d21378d048f63a52013
ParticipantIDs crossref_primary_10_1016_j_ijepes_2021_107025
crossref_citationtrail_10_1016_j_ijepes_2021_107025
elsevier_sciencedirect_doi_10_1016_j_ijepes_2021_107025
PublicationCentury 2000
PublicationDate December 2021
2021-12-00
PublicationDateYYYYMMDD 2021-12-01
PublicationDate_xml – month: 12
  year: 2021
  text: December 2021
PublicationDecade 2020
PublicationTitle International journal of electrical power & energy systems
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Rwegasira, Dhaou, Kondoro (b0075) 2019; 10
Chen, Yang (b0125) 2018; 14
Hao, Ai, Zhu (b0180) 2018; 164
Li, Tao, Ao (b0185) 2018; 165
Hsu, Su (b0020) 1991; 6
Latifi, Khalili, Rastegarnia (b0080) 2017; 13
Margellos, Shmuel (b0145) 2016; 31
Xu, Sun, Dent (b0140) 2019; 10
Moghaddam, Leon-Garcia (b0115) 2018
Vukasovic M.D., Schavemaker P.H. Towards the European internal electricity market: An efficient cross-zonal redispatch cost-sharing methodology among European transmission system operators. In: 11th International Conference on the European Energy Market (EEM14), Krakow; 2014. p. 1–5.
Mhanna, Chapman, Verbič (b0095) 2016; 7
Tsai, Tseng, Chang (b0105) 2017; 8
Netto, Mili (b0030) 2018; 33
Wang, Paranjape, Chen (b0090) 2019; 12
Croce, Giuliano, Tinnirello (b0040) 2017; 14
Mhanna, Chapman, Verbič (b0100) 2016; 7
Lu, Wang, Wang (b0015) 2019; 10
Qin, Wan, Yu, Li, Li (b0065) 2019; 10
Morstyn, Savkin, Hredzak (b0135) 2018; 9
Meng, Dragicevic, Roldán-Pérez (b0160) 2016; 7
Chang, Nedić, Scaglione (b0175) 2014; 59
Xu J., Sun H., Dent C.J. ADMM-based distributed OPF problem meets stochastic communication delay. IEEE Trans Smart Grid. doi:10.1109/TSG.2018.2873650.
Liu Y., Zhang N., Wang Y., et al. Data-driven power flow linearization: a regression approach. IEEE Trans Smart Grid. doi:10.1109/TSG.2018.2805169.
Deng, Xiao, Lu (b0120) 2015; 11
Deng, Yang, Hou (b0110) 2015; 30
Lu, Sherman, Chen (b0005) 2020; 11
Zhu, Sonia (b0060) 2012; 57
Nedić, Asuman, Parrilo (b0165) 2010; 55
Yu, Hong (b0055) 2016; 7
Mateos-Núñez, Cortés (b0170) 2017; 62
Lv, Ai (b0045) 2016; 163
Lu, Chen, McElroy (b0035) 2021; 12
Hao, Lu, Ai (b0050) 2020; 274
Fallahi, Rosenberger, Chen (b0070) 2019; 7
Nguyen, Azuma, Sugie (b0085) 2019; 66
Yang, Tang, Nehorai (b0150) 2013; 28
Hao, Lu, Wu (b0010) 2019; 7
Hsu (10.1016/j.ijepes.2021.107025_b0020) 1991; 6
Croce (10.1016/j.ijepes.2021.107025_b0040) 2017; 14
Mhanna (10.1016/j.ijepes.2021.107025_b0095) 2016; 7
Hao (10.1016/j.ijepes.2021.107025_b0050) 2020; 274
Nguyen (10.1016/j.ijepes.2021.107025_b0085) 2019; 66
Nedić (10.1016/j.ijepes.2021.107025_b0165) 2010; 55
Xu (10.1016/j.ijepes.2021.107025_b0140) 2019; 10
Mhanna (10.1016/j.ijepes.2021.107025_b0100) 2016; 7
Wang (10.1016/j.ijepes.2021.107025_b0090) 2019; 12
Hao (10.1016/j.ijepes.2021.107025_b0180) 2018; 164
Netto (10.1016/j.ijepes.2021.107025_b0030) 2018; 33
Meng (10.1016/j.ijepes.2021.107025_b0160) 2016; 7
Deng (10.1016/j.ijepes.2021.107025_b0120) 2015; 11
Mateos-Núñez (10.1016/j.ijepes.2021.107025_b0170) 2017; 62
Chang (10.1016/j.ijepes.2021.107025_b0175) 2014; 59
10.1016/j.ijepes.2021.107025_b0130
Lv (10.1016/j.ijepes.2021.107025_b0045) 2016; 163
10.1016/j.ijepes.2021.107025_b0155
Latifi (10.1016/j.ijepes.2021.107025_b0080) 2017; 13
Chen (10.1016/j.ijepes.2021.107025_b0125) 2018; 14
Lu (10.1016/j.ijepes.2021.107025_b0015) 2019; 10
Deng (10.1016/j.ijepes.2021.107025_b0110) 2015; 30
Tsai (10.1016/j.ijepes.2021.107025_b0105) 2017; 8
Yang (10.1016/j.ijepes.2021.107025_b0150) 2013; 28
Qin (10.1016/j.ijepes.2021.107025_b0065) 2019; 10
Lu (10.1016/j.ijepes.2021.107025_b0005) 2020; 11
Fallahi (10.1016/j.ijepes.2021.107025_b0070) 2019; 7
Lu (10.1016/j.ijepes.2021.107025_b0035) 2021; 12
Margellos (10.1016/j.ijepes.2021.107025_b0145) 2016; 31
Li (10.1016/j.ijepes.2021.107025_b0185) 2018; 165
Moghaddam (10.1016/j.ijepes.2021.107025_b0115) 2018
Yu (10.1016/j.ijepes.2021.107025_b0055) 2016; 7
Rwegasira (10.1016/j.ijepes.2021.107025_b0075) 2019; 10
Zhu (10.1016/j.ijepes.2021.107025_b0060) 2012; 57
Morstyn (10.1016/j.ijepes.2021.107025_b0135) 2018; 9
Hao (10.1016/j.ijepes.2021.107025_b0010) 2019; 7
10.1016/j.ijepes.2021.107025_b0025
References_xml – volume: 31
  start-page: 706
  year: 2016
  end-page: 717
  ident: b0145
  article-title: Capacity controlled demand side management: a Stochastic pricing analysis
  publication-title: IEEE Trans Power Syst
– volume: 14
  start-page: 471
  year: 2017
  end-page: 481
  ident: b0040
  article-title: Overgrid: a fully distributed demand response architecture based on overlay networks
  publication-title: IEEE Trans Auto Sci Eng
– volume: 30
  start-page: 2364
  year: 2015
  end-page: 2374
  ident: b0110
  article-title: Distributed realtime demand response in multiseller-multibuyer smart distribution grid
  publication-title: IEEE Trans Power Syst
– volume: 62
  start-page: 2720
  year: 2017
  end-page: 2735
  ident: b0170
  article-title: Distributed Saddle-Point Sub-gradient Algorithms with Laplacian Averaging
  publication-title: IEEE Trans Automatic Control
– volume: 10
  start-page: 2345
  year: 2019
  end-page: 2357
  ident: b0015
  article-title: A data-driven Stackelberg market strategy for demand response-enabled distribution systems
  publication-title: IEEE Trans Smart Grid
– volume: 7
  start-page: 181479
  year: 2019
  end-page: 181490
  ident: b0070
  article-title: W. Linear programming for multi-agent demand response
  publication-title: IEEE Access
– volume: 11
  start-page: 1597
  year: 2015
  end-page: 1606
  ident: b0120
  article-title: Fast distributed demand response with spatially and temporally coupled constraints in smart grid
  publication-title: IEEE Trans Indust Infor
– volume: 7
  start-page: 45533
  year: 2019
  end-page: 45543
  ident: b0010
  article-title: Distributed piecewise approximation economic dispatch for regional power systems under non-ideal communication
  publication-title: IEEE Access
– volume: 164
  start-page: 230
  year: 2018
  end-page: 242
  ident: b0180
  article-title: Decentralized self-discipline scheduling strategy for multi-microgrids based on virtual leader agents
  publication-title: Electr Power Syst Res
– reference: Xu J., Sun H., Dent C.J. ADMM-based distributed OPF problem meets stochastic communication delay. IEEE Trans Smart Grid. doi:10.1109/TSG.2018.2873650.
– volume: 10
  start-page: 3709
  year: 2019
  end-page: 3719
  ident: b0065
  article-title: Consensus-based distributed coordination between economic dispatch and demand response
  publication-title: IEEE Trans Smart Grid
– volume: 7
  start-page: 1754
  year: 2016
  end-page: 1755
  ident: b0100
  article-title: A distributed algorithm for demand response with mixed-integer variables
  publication-title: IEEE Trans Smart Grid
– volume: 8
  start-page: 1085
  year: 2017
  end-page: 1095
  ident: b0105
  article-title: Communication-efficient distributed demand response: a randomized ADMM approach
  publication-title: IEEE Trans Smart Grid
– volume: 14
  start-page: 3892
  year: 2018
  end-page: 3903
  ident: b0125
  article-title: An ADMM-based distributed algorithm for economic dispatch in islanded microgrids
  publication-title: IEEE Trans Industrial Informatics
– volume: 28
  start-page: 884
  year: 2013
  end-page: 892
  ident: b0150
  article-title: A game-theoretic approach for optimal time-of-use electricity pricing
  publication-title: IEEE Trans Power Syst
– volume: 6
  start-page: 1056
  year: 1991
  end-page: 1061
  ident: b0020
  article-title: Dispatch of direct load control using dynamic programming
  publication-title: IEEE Trans Power Systs
– volume: 165
  start-page: 1220
  year: 2018
  end-page: 1227
  ident: b0185
  publication-title: Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition
– volume: 33
  start-page: 7228
  year: 2018
  end-page: 7237
  ident: b0030
  article-title: A robust data-driven Koopman Kalman filter for power systems dynamic state estimation
  publication-title: IEEE Trans Power Syst
– reference: Liu Y., Zhang N., Wang Y., et al. Data-driven power flow linearization: a regression approach. IEEE Trans Smart Grid. doi:10.1109/TSG.2018.2805169.
– volume: 13
  start-page: 2291
  year: 2017
  end-page: 2301
  ident: b0080
  article-title: Fully distributed demand response using the adaptive diffusion-Stackelberg algorithm
  publication-title: IEEE Trans Indust Infor
– volume: 66
  start-page: 7935
  year: 2019
  end-page: 7945
  ident: b0085
  article-title: Novel control approaches for demand response with real-time pricing using parallel and distributed consensus-based ADMM
  publication-title: IEEE Trans Indust Electr
– volume: 7
  start-page: 879
  year: 2016
  end-page: 888
  ident: b0055
  article-title: A real-time demand-response algorithm for smart grids: a Stackelberg game approach
  publication-title: IEEE Trans Smart Grid
– volume: 9
  start-page: 4735
  year: 2018
  end-page: 4743
  ident: b0135
  article-title: Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a DC microgrid
  publication-title: IEEE Trans Smart Grid
– volume: 55
  start-page: 922
  year: 2010
  end-page: 938
  ident: b0165
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans Automatic Control
– volume: 7
  start-page: 2094
  year: 2016
  end-page: 2107
  ident: b0095
  article-title: A fast distributed algorithm for large-scale demand response aggregation
  publication-title: IEEE Trans Smart Grid
– volume: 274
  year: 2020
  ident: b0050
  article-title: Distributed online learning and dynamic robust standby dispatch for networked microgrids
  publication-title: Appl Energy
– volume: 10
  start-page: 48
  year: 2019
  end-page: 62
  ident: b0075
  article-title: A demand-response scheme using multi agent system for smart DC microgrid
  publication-title: Int J Embedded Real-Time Commun Syst
– volume: 12
  start-page: 2867
  year: 2019
  end-page: 2881
  ident: b0090
  article-title: Multi-agent optimization for residential demand response under real-time pricing
  publication-title: Energies
– reference: Vukasovic M.D., Schavemaker P.H. Towards the European internal electricity market: An efficient cross-zonal redispatch cost-sharing methodology among European transmission system operators. In: 11th International Conference on the European Energy Market (EEM14), Krakow; 2014. p. 1–5.
– volume: 59
  start-page: 1524
  year: 2014
  end-page: 1538
  ident: b0175
  article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method
  publication-title: IEEE Trans Automatic Control
– volume: 11
  start-page: 1
  year: 2020
  end-page: 10
  ident: b0005
  article-title: India’s potential for integrating solar and on-and offshore wind power into its energy system
  publication-title: Nat Commun
– volume: 7
  start-page: 1504
  year: 2016
  end-page: 1515
  ident: b0160
  article-title: Modeling and sensitivity study of consensus algorithm-based distributed hierarchical control for DC microgrids
  publication-title: IEEE Trans Smart Grid
– volume: 12
  start-page: 2176
  year: 2021
  end-page: 2187
  ident: b0035
  article-title: A reinforcement learning-based decision system for electricity pricing plan selection by smart grid end users
  publication-title: IEEE Trans Smart Grid
– volume: 163
  start-page: 408
  year: 2016
  end-page: 422
  ident: b0045
  article-title: Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources
  publication-title: Appl Energy
– volume: 10
  start-page: 5046
  year: 2019
  end-page: 5056
  ident: b0140
  article-title: ADMM-based distributed OPF problem meets stochastic communication delay
  publication-title: IEEE Trans Smart Grid
– volume: 57
  start-page: 151
  year: 2012
  end-page: 164
  ident: b0060
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Automatic Control
– year: 2018
  ident: b0115
  article-title: On the performance of distributed and cloud-based demand response in smart grid
  publication-title: IEEE Trans Smart Grid
– volume: 6
  start-page: 1056
  issue: 3
  year: 1991
  ident: 10.1016/j.ijepes.2021.107025_b0020
  article-title: Dispatch of direct load control using dynamic programming
  publication-title: IEEE Trans Power Systs
  doi: 10.1109/59.119246
– volume: 57
  start-page: 151
  issue: 1
  year: 2012
  ident: 10.1016/j.ijepes.2021.107025_b0060
  article-title: On distributed convex optimization under inequality and equality constraints
  publication-title: IEEE Trans Automatic Control
  doi: 10.1109/TAC.2011.2167817
– volume: 12
  start-page: 2867
  issue: 15
  year: 2019
  ident: 10.1016/j.ijepes.2021.107025_b0090
  article-title: Multi-agent optimization for residential demand response under real-time pricing
  publication-title: Energies
  doi: 10.3390/en12152867
– volume: 28
  start-page: 884
  issue: 2
  year: 2013
  ident: 10.1016/j.ijepes.2021.107025_b0150
  article-title: A game-theoretic approach for optimal time-of-use electricity pricing
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2012.2207134
– ident: 10.1016/j.ijepes.2021.107025_b0130
  doi: 10.1109/TSG.2018.2873650
– volume: 33
  start-page: 7228
  issue: 6
  year: 2018
  ident: 10.1016/j.ijepes.2021.107025_b0030
  article-title: A robust data-driven Koopman Kalman filter for power systems dynamic state estimation
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2018.2846744
– volume: 7
  start-page: 1504
  issue: 3
  year: 2016
  ident: 10.1016/j.ijepes.2021.107025_b0160
  article-title: Modeling and sensitivity study of consensus algorithm-based distributed hierarchical control for DC microgrids
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2422714
– volume: 31
  start-page: 706
  issue: 1
  year: 2016
  ident: 10.1016/j.ijepes.2021.107025_b0145
  article-title: Capacity controlled demand side management: a Stochastic pricing analysis
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2015.2406813
– ident: 10.1016/j.ijepes.2021.107025_b0025
  doi: 10.1109/TSG.2018.2805169
– volume: 7
  start-page: 879
  issue: 2
  year: 2016
  ident: 10.1016/j.ijepes.2021.107025_b0055
  article-title: A real-time demand-response algorithm for smart grids: a Stackelberg game approach
  publication-title: IEEE Trans Smart Grid
– volume: 274
  year: 2020
  ident: 10.1016/j.ijepes.2021.107025_b0050
  article-title: Distributed online learning and dynamic robust standby dispatch for networked microgrids
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2020.115256
– volume: 12
  start-page: 2176
  issue: 3
  year: 2021
  ident: 10.1016/j.ijepes.2021.107025_b0035
  article-title: A reinforcement learning-based decision system for electricity pricing plan selection by smart grid end users
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2020.3027728
– volume: 163
  start-page: 408
  year: 2016
  ident: 10.1016/j.ijepes.2021.107025_b0045
  article-title: Interactive energy management of networked microgrids-based active distribution system considering large-scale integration of renewable energy resources
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2015.10.179
– ident: 10.1016/j.ijepes.2021.107025_b0155
  doi: 10.1109/EEM.2014.6861241
– volume: 62
  start-page: 2720
  issue: 6
  year: 2017
  ident: 10.1016/j.ijepes.2021.107025_b0170
  article-title: Distributed Saddle-Point Sub-gradient Algorithms with Laplacian Averaging
  publication-title: IEEE Trans Automatic Control
  doi: 10.1109/TAC.2016.2616646
– volume: 10
  start-page: 2345
  issue: 3
  year: 2019
  ident: 10.1016/j.ijepes.2021.107025_b0015
  article-title: A data-driven Stackelberg market strategy for demand response-enabled distribution systems
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2795007
– volume: 9
  start-page: 4735
  issue: 5
  year: 2018
  ident: 10.1016/j.ijepes.2021.107025_b0135
  article-title: Multi-agent sliding mode control for state of charge balancing between battery energy storage systems distributed in a DC microgrid
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2017.2668767
– volume: 13
  start-page: 2291
  issue: 5
  year: 2017
  ident: 10.1016/j.ijepes.2021.107025_b0080
  article-title: Fully distributed demand response using the adaptive diffusion-Stackelberg algorithm
  publication-title: IEEE Trans Indust Infor
  doi: 10.1109/TII.2017.2703132
– volume: 165
  start-page: 1220
  year: 2018
  ident: 10.1016/j.ijepes.2021.107025_b0185
  publication-title: Improving forecasting accuracy of daily enterprise electricity consumption using a random forest based on ensemble empirical mode decomposition
– year: 2018
  ident: 10.1016/j.ijepes.2021.107025_b0115
  article-title: On the performance of distributed and cloud-based demand response in smart grid
  publication-title: IEEE Trans Smart Grid
– volume: 11
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.ijepes.2021.107025_b0005
  article-title: India’s potential for integrating solar and on-and offshore wind power into its energy system
  publication-title: Nat Commun
  doi: 10.1038/s41467-020-18318-7
– volume: 7
  start-page: 2094
  issue: 4
  year: 2016
  ident: 10.1016/j.ijepes.2021.107025_b0095
  article-title: A fast distributed algorithm for large-scale demand response aggregation
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2536740
– volume: 164
  start-page: 230
  year: 2018
  ident: 10.1016/j.ijepes.2021.107025_b0180
  article-title: Decentralized self-discipline scheduling strategy for multi-microgrids based on virtual leader agents
  publication-title: Electr Power Syst Res
  doi: 10.1016/j.epsr.2018.08.002
– volume: 14
  start-page: 471
  issue: 2
  year: 2017
  ident: 10.1016/j.ijepes.2021.107025_b0040
  article-title: Overgrid: a fully distributed demand response architecture based on overlay networks
  publication-title: IEEE Trans Auto Sci Eng
  doi: 10.1109/TASE.2016.2621890
– volume: 11
  start-page: 1597
  issue: 6
  year: 2015
  ident: 10.1016/j.ijepes.2021.107025_b0120
  article-title: Fast distributed demand response with spatially and temporally coupled constraints in smart grid
  publication-title: IEEE Trans Indust Infor
  doi: 10.1109/TII.2015.2408455
– volume: 10
  start-page: 48
  issue: 1
  year: 2019
  ident: 10.1016/j.ijepes.2021.107025_b0075
  article-title: A demand-response scheme using multi agent system for smart DC microgrid
  publication-title: Int J Embedded Real-Time Commun Syst
  doi: 10.4018/IJERTCS.2019010103
– volume: 59
  start-page: 1524
  issue: 6
  year: 2014
  ident: 10.1016/j.ijepes.2021.107025_b0175
  article-title: Distributed constrained optimization by consensus-based primal-dual perturbation method
  publication-title: IEEE Trans Automatic Control
  doi: 10.1109/TAC.2014.2308612
– volume: 7
  start-page: 45533
  year: 2019
  ident: 10.1016/j.ijepes.2021.107025_b0010
  article-title: Distributed piecewise approximation economic dispatch for regional power systems under non-ideal communication
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2908680
– volume: 66
  start-page: 7935
  issue: 10
  year: 2019
  ident: 10.1016/j.ijepes.2021.107025_b0085
  article-title: Novel control approaches for demand response with real-time pricing using parallel and distributed consensus-based ADMM
  publication-title: IEEE Trans Indust Electr
  doi: 10.1109/TIE.2018.2881938
– volume: 30
  start-page: 2364
  issue: 5
  year: 2015
  ident: 10.1016/j.ijepes.2021.107025_b0110
  article-title: Distributed realtime demand response in multiseller-multibuyer smart distribution grid
  publication-title: IEEE Trans Power Syst
  doi: 10.1109/TPWRS.2014.2359457
– volume: 10
  start-page: 3709
  issue: 4
  year: 2019
  ident: 10.1016/j.ijepes.2021.107025_b0065
  article-title: Consensus-based distributed coordination between economic dispatch and demand response
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2834368
– volume: 14
  start-page: 3892
  issue: 9
  year: 2018
  ident: 10.1016/j.ijepes.2021.107025_b0125
  article-title: An ADMM-based distributed algorithm for economic dispatch in islanded microgrids
  publication-title: IEEE Trans Industrial Informatics
  doi: 10.1109/TII.2017.2785366
– volume: 7
  start-page: 181479
  year: 2019
  ident: 10.1016/j.ijepes.2021.107025_b0070
  article-title: W. Linear programming for multi-agent demand response
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2959727
– volume: 55
  start-page: 922
  issue: 4
  year: 2010
  ident: 10.1016/j.ijepes.2021.107025_b0165
  article-title: Constrained consensus and optimization in multi-agent networks
  publication-title: IEEE Trans Automatic Control
  doi: 10.1109/TAC.2010.2041686
– volume: 10
  start-page: 5046
  issue: 5
  year: 2019
  ident: 10.1016/j.ijepes.2021.107025_b0140
  article-title: ADMM-based distributed OPF problem meets stochastic communication delay
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2018.2873650
– volume: 7
  start-page: 1754
  issue: 3
  year: 2016
  ident: 10.1016/j.ijepes.2021.107025_b0100
  article-title: A distributed algorithm for demand response with mixed-integer variables
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2016.2522923
– volume: 8
  start-page: 1085
  issue: 3
  year: 2017
  ident: 10.1016/j.ijepes.2021.107025_b0105
  article-title: Communication-efficient distributed demand response: a randomized ADMM approach
  publication-title: IEEE Trans Smart Grid
  doi: 10.1109/TSG.2015.2469669
SSID ssj0007942
Score 2.361786
Snippet •The data-driven inverse optimization corrects the DR execution online.•The proposed strategy is realized in a distributed manner and free of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107025
SubjectTerms Data-driven method
Demand response
Distributed optimization
Multi-agent system
Title Data-oriented distributed demand response optimization with global inequality constraints based on multi-agent system
URI https://dx.doi.org/10.1016/j.ijepes.2021.107025
Volume 133
WOSCitedRecordID wos000685654900013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0142-0615
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0007942
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECZcp0M7FH0i6QscugUqJFISqTFoU7gdgrbw4E2gSKqIkchGLAfJr-hf7pFH2XRS9AV0EQRClAXeh-Px_N13hLyxOlepLorECGXggNK2CQSxLMm4ZaLhKuda-2YT4uREzmbV59Ho-1ALc3kmuk5eXVXL_2pqGANju9LZvzD35qUwAPdgdLiC2eH6R4Z_r3qVLJx8sQsmjRPGdT2t3L0992xypMXawwW4i_NQh4kJ2SAPApEnFlteO1b6yreR6FeHbscz7t8Fz0JMlKvKClLQcYy7m2SMpCmw5Y5HxdI1Z_Ows1h8uIqU071D9CncrxFjaI3Q8vnVsN06oHo2wpcI5BOfop0sum_XQVU8JDVYdoMgsqm22VKbMPnJXCeKYsd7o47GrZ0AkxLzt6dzu7ROl51lMChSLLO-obHtKG7MvZk5RdqyqO6QPSaKSo7J3tHH49mnzeYO7oshKxY_ZajG9JTB27_182gnimCmD8mDcPSgRwiZR2Rku8fkfiRI-YSsd8BDI_BQBA8dwENj8FAHHorgoVvw0Ag81IOHwrMReCha_SmZfjievpskoTFHouGE2SdSVlkr0kqX0rYNsyLXJm_ysmwL04gWjgCmMpVSWa4zbljGhTSwU7QlVwUEnPwZGXeLzu4TyrksOZNNltkyVyptpC1EZVUKrsMq3h4QPqxfrYNovfvus3pgJ85rXPXarXqNq35Aks2sJYq2_OZ5MZimDoEnBpQ1oOmXM5__88wX5N4W-C_JuL9Y21fkrr7sT1cXrwPsfgCA67He
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Data-oriented+distributed+demand+response+optimization+with+global+inequality+constraints+based+on+multi-agent+system&rft.jtitle=International+journal+of+electrical+power+%26+energy+systems&rft.au=Hao%2C+Ran&rft.au=Lu%2C+Tianguang&rft.au=Ai%2C+Qian&rft.au=He%2C+Hongyin&rft.date=2021-12-01&rft.pub=Elsevier+Ltd&rft.issn=0142-0615&rft.volume=133&rft_id=info:doi/10.1016%2Fj.ijepes.2021.107025&rft.externalDocID=S0142061521002659
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0142-0615&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0142-0615&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0142-0615&client=summon