Optimizing 2-opt-based heuristics on GPU for solving the single-row facility layout problem

The optimization of most combinatorial problems is NP-hard, which can be solved by heuristic algorithms to obtain approximately optimal solutions, especially for large-scale problems. Many heuristic algorithms can apply the 2-opt local search to find better solutions. In complete 2-opt local search,...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Future generation computer systems Ročník 126; s. 91 - 109
Hlavní autori: Sun, Xue, Chou, Ping, Koong, Chorng-Shiuh, Wu, Chao-Chin, Chen, Liang-Rui
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.01.2022
Predmet:
ISSN:0167-739X, 1872-7115
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The optimization of most combinatorial problems is NP-hard, which can be solved by heuristic algorithms to obtain approximately optimal solutions, especially for large-scale problems. Many heuristic algorithms can apply the 2-opt local search to find better solutions. In complete 2-opt local search, every valid neighboring solutions of swapping mechanism will be compared, which is very time consuming especially when a sequential algorithm is adopted. Nowadays, graphic processing units (GPUs) have evolved into powerful and flexible parallel computation platforms that have been widely used to accelerate the solving of NP-hard problems. Therefore, in this study, we focus on how to use GPUs to solve the single-row facility layout problem (SRFLP) with the 2-opt-based simulated annealing (SA) heuristic algorithm. As far as we know, this study is the first to solve SRFLP by using a GPU. After analyzing the fitness function and the move gains calculation between parent and child solutions, we propose a prefix-sum formula table to eliminate a large amount of replicated computation. To calculate move gains for the 2-opt local search during each iteration, many GPU threads are created and they construct and lookup the table in parallel. According to experimental results, if the prefix-sum formula table is not adopted, the GPU version outperforms the sequential CPU counterpart with the best speedup of 123. However, if the table is used in the GPU version, the best speedup can reach up to 3208. Because the proposed parallelization approach with the prefix-sum formula table is based on the features of the 2-opt local search and the SRFLP fitness function, it can be applied to any 2-opt-based heuristic algorithm for solving SRFLP even though the SA algorithm is used in this study. •The 2-opt operation is often the performance bottleneck in many heuristics.•GPU is adopted to parallelize the 2-opt operations for a shorter execution time.•The single row facility layout problem is used to detail the proposed algorithm.•A prefix-sum formula table is constructed to eliminate the replicated computations.•The best speedup our approach can provide is 3208, compared with the CPU version.•Thanks to the proposed table, at best the GPU performance can be improved 129 times.
AbstractList The optimization of most combinatorial problems is NP-hard, which can be solved by heuristic algorithms to obtain approximately optimal solutions, especially for large-scale problems. Many heuristic algorithms can apply the 2-opt local search to find better solutions. In complete 2-opt local search, every valid neighboring solutions of swapping mechanism will be compared, which is very time consuming especially when a sequential algorithm is adopted. Nowadays, graphic processing units (GPUs) have evolved into powerful and flexible parallel computation platforms that have been widely used to accelerate the solving of NP-hard problems. Therefore, in this study, we focus on how to use GPUs to solve the single-row facility layout problem (SRFLP) with the 2-opt-based simulated annealing (SA) heuristic algorithm. As far as we know, this study is the first to solve SRFLP by using a GPU. After analyzing the fitness function and the move gains calculation between parent and child solutions, we propose a prefix-sum formula table to eliminate a large amount of replicated computation. To calculate move gains for the 2-opt local search during each iteration, many GPU threads are created and they construct and lookup the table in parallel. According to experimental results, if the prefix-sum formula table is not adopted, the GPU version outperforms the sequential CPU counterpart with the best speedup of 123. However, if the table is used in the GPU version, the best speedup can reach up to 3208. Because the proposed parallelization approach with the prefix-sum formula table is based on the features of the 2-opt local search and the SRFLP fitness function, it can be applied to any 2-opt-based heuristic algorithm for solving SRFLP even though the SA algorithm is used in this study. •The 2-opt operation is often the performance bottleneck in many heuristics.•GPU is adopted to parallelize the 2-opt operations for a shorter execution time.•The single row facility layout problem is used to detail the proposed algorithm.•A prefix-sum formula table is constructed to eliminate the replicated computations.•The best speedup our approach can provide is 3208, compared with the CPU version.•Thanks to the proposed table, at best the GPU performance can be improved 129 times.
Author Wu, Chao-Chin
Sun, Xue
Koong, Chorng-Shiuh
Chen, Liang-Rui
Chou, Ping
Author_xml – sequence: 1
  givenname: Xue
  surname: Sun
  fullname: Sun, Xue
  organization: College of Urban Rail Transit and Logistics, Joint Jiaotong College of Beijing Union University & Russian University of Transport, Beijing Union University, Beijing 100101, China
– sequence: 2
  givenname: Ping
  surname: Chou
  fullname: Chou, Ping
  organization: Department of Management Information Systems, National Chengchi University, Taipei 11605, Taiwan
– sequence: 3
  givenname: Chorng-Shiuh
  surname: Koong
  fullname: Koong, Chorng-Shiuh
  organization: Department of Computer Science, National Taichung University of Education, Taichung 40359, Taiwan
– sequence: 4
  givenname: Chao-Chin
  surname: Wu
  fullname: Wu, Chao-Chin
  email: ccwu@cc.ncue.edu.tw
  organization: Department of Computer Science and Information Engineering, National Changhua University of Education, Changhua 50007, Taiwan
– sequence: 5
  givenname: Liang-Rui
  surname: Chen
  fullname: Chen, Liang-Rui
  organization: Department of Electrical Engineering, National Changhua University of Education, Changhua 50007, Taiwan
BookMark eNqFkM1Kw0AURgepYFt9AxfzAhPnp80kLgQpWoVCXVgQXAyTyY2dkmbCzKQSn96UunKhm3vv4jsf3DNBo8Y1gNA1owmjLL3ZJVUXOw8Jp5wlVCaU8zM0ZpnkRDI2H6HxEJNEivztAk1C2FFKmRRsjN7XbbR7-2WbD8yJayMpdIASb6HzNkRrAnYNXr5scOU8Dq4-HJNxCzgMRw3Eu09caWNrG3tc6951EbfeFTXsL9F5pesAVz97ijaPD6-LJ7JaL58X9ytiBE0jyTJKU1PKeVHmMpvRXAudlqbUuWaZ5tRkICTPdV6JtOCFgEpoNgzDCkiHh8UU3Z56jXcheKiUsVFH65rota0Vo-qoSe3USZM6alJUqkHTAM9-wa23e-37_7C7EwbDYwcLXgVjoTFQWg8mqtLZvwu-AeauiDs
CitedBy_id crossref_primary_10_3390_su15065111
crossref_primary_10_1016_j_engappai_2025_111551
crossref_primary_10_1016_j_future_2025_107976
crossref_primary_10_3390_math10132174
crossref_primary_10_1016_j_amc_2024_129040
crossref_primary_10_1007_s40747_025_01865_1
crossref_primary_10_3390_app14156621
crossref_primary_10_1016_j_asoc_2023_110716
Cites_doi 10.1016/j.ejor.2004.12.021
10.1007/s10732-013-9234-x
10.1016/j.ejor.2012.07.037
10.1016/j.future.2016.02.009
10.1080/10556780902917735
10.1109/ACCESS.2019.2899601
10.1007/978-3-319-71147-8
10.1016/j.cie.2013.05.018
10.1007/s10589-012-9505-8
10.1080/00207543.2011.636386
10.1126/science.220.4598.671
10.1023/A:1008982420344
10.1016/j.ejor.2015.08.014
10.1016/j.ejor.2015.05.055
10.1287/opre.1080.0548
10.1016/j.future.2017.09.073
10.1016/j.cor.2019.02.009
10.1016/j.future.2018.03.020
10.1007/s10107-012-0533-z
10.1287/opre.6.6.791
10.1016/j.cie.2009.11.015
10.13053/cys-22-2-2956
10.1063/1.1699114
10.1016/j.future.2010.08.008
10.1016/0377-2217(91)90088-D
10.3390/app8091604
10.1007/s10898-012-9979-z
10.1111/itor.12001
10.1287/opre.29.2.371
10.1287/opre.17.5.812
10.1007/BF01594945
10.1287/ijoc.1080.0270
10.1016/j.ejor.2009.11.034
10.1016/j.cie.2016.09.026
10.1016/j.disopt.2005.03.001
10.1016/j.dam.2008.06.002
10.1007/s11227-017-2041-7
10.1016/0377-2217(92)90042-8
10.1007/s11590-012-0605-2
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.future.2021.07.022
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7115
EndPage 109
ExternalDocumentID 10_1016_j_future_2021_07_022
S0167739X21002843
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
AEBSH
AEKER
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ADNMO
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-88006cd75bd978409a3a6dcda9a18a20c8e3729a9f36b2b3ef3a1ef3c1be60213
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000701828000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 07:21:57 EST 2025
Tue Nov 18 22:25:03 EST 2025
Fri Feb 23 02:44:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Facility layout
Heuristic algorithm
2-opt local search
Graphic processing unit (GPU)
Simulated annealing
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-88006cd75bd978409a3a6dcda9a18a20c8e3729a9f36b2b3ef3a1ef3c1be60213
PageCount 19
ParticipantIDs crossref_citationtrail_10_1016_j_future_2021_07_022
crossref_primary_10_1016_j_future_2021_07_022
elsevier_sciencedirect_doi_10_1016_j_future_2021_07_022
PublicationCentury 2000
PublicationDate January 2022
2022-01-00
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: January 2022
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Palubeckis (b17) 2015; 246
Kothari, Ghosh (b40) 2014; 8
Sörensen (b8) 2015; 22
Kothari, Ghosh (b38) 2013; 224
Chang (b11) 2011; 27
Carastan-Santos, Martins Jr, Song, Rozante (b45) 2017; 67
Chang, Li (b5) 1973; 2
Kirkpatrick, Gelatt Jr, Vecchi (b26) 1983; 220
Picard, Queyranne (b14) 1981; 29
Amaral (b30) 2009; 157
Anjos, Vannelli (b33) 2008; 20
Hungerländer, Rendl (b34) 2013; 55
de Alvarenga, Negreiros-Gomes, Mestria (b35) 2000; 11
X. Gao, H. Du, M. Han, Combinatorial optimization and applications, in: Proc. COCOA 2017, Shanghai, China, 2017, pp. 10628.
Amaral (b32) 2008; 56
Abdel-Basset, Manogaran, El-Shahat, Mirjalili (b7) 2018; 85
Heragu, Kusiak (b28) 1991; 53
Ou-Yang, Utamima (b20) 2013; 66
Croes (b12) 1958; 6
Palubeckis (b16) 2017; 103
Brooks, Morgan (b23) 1995; 44
Ippoliti, Emiliano (b4) 2015
Amaral (b31) 2006; 173
Samarghandi, Eshghi (b39) 2010; 205
Anjos, Kennings, Vannelli (b47) 2005; 2
Sun, Lai, Chou, Chen, Wu (b10) 2018; 8
Utamima, Djunaidy, Adrian (b21) 2019
Guan, Lin (b43) 2016; 248
Heragu, Alfa (b36) 1992; 57
Zhou, Hou, Qiu (b44) 2018; 79
Ying, Lin, Huang, Liu, Lin (b6) 2019; 7
Ferreiro, García, López-Salas, Vázquez (b27) 2013; 57
Samarghandi, Jahantigh (b42) 2010; 58
Carastan-Santos, Martins Jr, Song, Rozante (b46) 2017; 67
Wei, Sun, Chu, Wu (b9) 2017; 73
Qiao, Créput (b13) 2018
Kumar, Singh (b37) 2019
Kothari, Ghosh (b19) 2014; 20
Singh, Singh, Singh, Prasad (b22) 2018; 22
Dekkers, Aarts (b24) 1991; 50
Williamson, Shomys (b2) 2011
Pearl (b3) 1983
Simmons (b15) 1969; 17
Amaral, Letchford (b29) 2013; 141
Metropolis, Rosenbluth, Rosenbluth, Teller, Teller (b25) 1953; 21
Ozcelik (b41) 2012; 50
Cravo, Amaral (b18) 2019; 106
Anjos, Yen (b48) 2009; 24
Kirkpatrick (10.1016/j.future.2021.07.022_b26) 1983; 220
Anjos (10.1016/j.future.2021.07.022_b33) 2008; 20
Utamima (10.1016/j.future.2021.07.022_b21) 2019
Amaral (10.1016/j.future.2021.07.022_b32) 2008; 56
Amaral (10.1016/j.future.2021.07.022_b30) 2009; 157
Carastan-Santos (10.1016/j.future.2021.07.022_b46) 2017; 67
Ou-Yang (10.1016/j.future.2021.07.022_b20) 2013; 66
Chang (10.1016/j.future.2021.07.022_b11) 2011; 27
Metropolis (10.1016/j.future.2021.07.022_b25) 1953; 21
Croes (10.1016/j.future.2021.07.022_b12) 1958; 6
Samarghandi (10.1016/j.future.2021.07.022_b42) 2010; 58
Sun (10.1016/j.future.2021.07.022_b10) 2018; 8
Chang (10.1016/j.future.2021.07.022_b5) 1973; 2
Ying (10.1016/j.future.2021.07.022_b6) 2019; 7
Simmons (10.1016/j.future.2021.07.022_b15) 1969; 17
10.1016/j.future.2021.07.022_b1
de Alvarenga (10.1016/j.future.2021.07.022_b35) 2000; 11
Anjos (10.1016/j.future.2021.07.022_b48) 2009; 24
Sörensen (10.1016/j.future.2021.07.022_b8) 2015; 22
Abdel-Basset (10.1016/j.future.2021.07.022_b7) 2018; 85
Carastan-Santos (10.1016/j.future.2021.07.022_b45) 2017; 67
Kumar (10.1016/j.future.2021.07.022_b37) 2019
Kothari (10.1016/j.future.2021.07.022_b38) 2013; 224
Picard (10.1016/j.future.2021.07.022_b14) 1981; 29
Singh (10.1016/j.future.2021.07.022_b22) 2018; 22
Brooks (10.1016/j.future.2021.07.022_b23) 1995; 44
Palubeckis (10.1016/j.future.2021.07.022_b17) 2015; 246
Kothari (10.1016/j.future.2021.07.022_b19) 2014; 20
Pearl (10.1016/j.future.2021.07.022_b3) 1983
Qiao (10.1016/j.future.2021.07.022_b13) 2018
Amaral (10.1016/j.future.2021.07.022_b31) 2006; 173
Heragu (10.1016/j.future.2021.07.022_b36) 1992; 57
Ferreiro (10.1016/j.future.2021.07.022_b27) 2013; 57
Dekkers (10.1016/j.future.2021.07.022_b24) 1991; 50
Heragu (10.1016/j.future.2021.07.022_b28) 1991; 53
Amaral (10.1016/j.future.2021.07.022_b29) 2013; 141
Samarghandi (10.1016/j.future.2021.07.022_b39) 2010; 205
Anjos (10.1016/j.future.2021.07.022_b47) 2005; 2
Kothari (10.1016/j.future.2021.07.022_b40) 2014; 8
Guan (10.1016/j.future.2021.07.022_b43) 2016; 248
Williamson (10.1016/j.future.2021.07.022_b2) 2011
Palubeckis (10.1016/j.future.2021.07.022_b16) 2017; 103
Wei (10.1016/j.future.2021.07.022_b9) 2017; 73
Ozcelik (10.1016/j.future.2021.07.022_b41) 2012; 50
Cravo (10.1016/j.future.2021.07.022_b18) 2019; 106
Hungerländer (10.1016/j.future.2021.07.022_b34) 2013; 55
Ippoliti (10.1016/j.future.2021.07.022_b4) 2015
Zhou (10.1016/j.future.2021.07.022_b44) 2018; 79
References_xml – start-page: 57
  year: 2019
  end-page: 68
  ident: b21
  article-title: Optimization of single row layout in construction site planning: A comparative study of heuristics algorithms
  publication-title: In Optimization of Design for Better Structural Capacity
– volume: 11
  start-page: 421
  year: 2000
  end-page: 430
  ident: b35
  article-title: Metaheuristic methods for a class of the facility layout problem
  publication-title: J. Intell. Manuf.
– volume: 85
  start-page: 129
  year: 2018
  end-page: 145
  ident: b7
  article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem
  publication-title: Future Gener. Comput. Syst.
– reference: X. Gao, H. Du, M. Han, Combinatorial optimization and applications, in: Proc. COCOA 2017, Shanghai, China, 2017, pp. 10628.
– volume: 27
  start-page: 419
  year: 2011
  end-page: 426
  ident: b11
  article-title: A simulated annealing feature extraction approach for hyperspectral images
  publication-title: Future Gener. Comput. Syst.
– volume: 22
  start-page: 3
  year: 2015
  end-page: 18
  ident: b8
  article-title: Metaheuristics—the metaphor exposed
  publication-title: Int. Trans. Oper. Res.
– volume: 56
  start-page: 1026
  year: 2008
  end-page: 1033
  ident: b32
  article-title: An exact approach to the one-dimensional facility layout problem
  publication-title: Oper. Res.
– start-page: 1
  year: 2015
  end-page: 2
  ident: b4
  article-title: Heuristic Reasoning: Studies in Applied Philosophy, Epistemology and Rational Ethics
– volume: 220
  start-page: 671
  year: 1983
  end-page: 680
  ident: b26
  article-title: Optimization by simulated annealing
  publication-title: Science
– start-page: 82
  year: 2018
  end-page: 97
  ident: b13
  article-title: Massive 2-opt and 3-opt moves with high performance GPU local search to large-scale traveling salesman problem
  publication-title: Proc. International Conference on Learning and Intelligent Optimization
– volume: 103
  start-page: 1
  year: 2017
  end-page: 16
  ident: b16
  article-title: Single row facility layout using multi-start simulated annealing
  publication-title: Comput. Ind. Eng.
– year: 1983
  ident: b3
  article-title: Heuristics: Intelligent Search Strategies for Computer Problem Solving
– volume: 50
  start-page: 5872
  year: 2012
  end-page: 5886
  ident: b41
  article-title: A hybrid genetic algorithm for the single row layout problem
  publication-title: Int. J. Prod. Res.
– volume: 20
  start-page: 611
  year: 2008
  end-page: 617
  ident: b33
  article-title: Computing globally optimal solutions for single row layout problems using semidefinite programming and cutting planes
  publication-title: INFORMS J. Comput.
– volume: 7
  start-page: 24192
  year: 2019
  end-page: 24203
  ident: b6
  article-title: Solving the mask data preparation scheduling problem using meta-heuristics
  publication-title: IEEE Access
– volume: 44
  start-page: 241
  year: 1995
  end-page: 257
  ident: b23
  article-title: Optimization using simulated annealing
  publication-title: J. Royal Statal Soc.
– volume: 141
  start-page: 453
  year: 2013
  end-page: 477
  ident: b29
  article-title: A polyhedral approach to the single row facility layout problem
  publication-title: Math. Program.
– volume: 17
  start-page: 812
  year: 1969
  end-page: 826
  ident: b15
  article-title: One-dimensional space allocation: An ordering algorithm
  publication-title: Oper. Res.
– volume: 57
  start-page: 190
  year: 1992
  end-page: 202
  ident: b36
  article-title: Experimental analysis of simulated annealing based algorithms for the layout problem
  publication-title: European J. Oper. Res.
– volume: 67
  start-page: 418
  year: 2017
  end-page: 429
  ident: b46
  article-title: Finding exact hitting set solutions for systems biology applications using heterogeneous GPU clusters
  publication-title: Future Gener. Comput. Syst.
– volume: 55
  start-page: 1
  year: 2013
  end-page: 20
  ident: b34
  article-title: A computational study and survey of methods for the single-row facility layout problem
  publication-title: Comput. Optim. Appl.
– volume: 157
  start-page: 183
  year: 2009
  end-page: 190
  ident: b30
  article-title: A new lower bound for the single row facility layout problem
  publication-title: Discrete Appl. Math.
– volume: 205
  start-page: 98
  year: 2010
  end-page: 105
  ident: b39
  article-title: An efficient tabu algorithm for the single row facility layout problem
  publication-title: European J. Oper. Res.
– volume: 29
  start-page: 371
  year: 1981
  end-page: 391
  ident: b14
  article-title: On the one-dimensional space allocation problem
  publication-title: Oper. Res.
– volume: 246
  start-page: 800
  year: 2015
  end-page: 814
  ident: b17
  article-title: Fast local search for single row facility layout
  publication-title: European J. Oper. Res.
– start-page: 19
  year: 2019
  end-page: 33
  ident: b37
  article-title: Modified SA algorithm for bi-objective robust stochastic cellular facility layout in cellular manufacturing systems
  publication-title: Proc. Advanced Computing and Communication Technologies
– volume: 58
  start-page: 529
  year: 2010
  end-page: 534
  ident: b42
  article-title: A particle swarm optimization for the single row facility layout problem
  publication-title: Comput. Ind. Eng.
– volume: 50
  start-page: 367
  year: 1991
  end-page: 393
  ident: b24
  article-title: Global optimization and simulated annealing
  publication-title: Math. Program.
– volume: 8
  year: 2018
  ident: b10
  article-title: On gpu implementation of the island model genetic algorithm for solving the unequal area facility layout problem
  publication-title: Appl. Sci.
– volume: 24
  start-page: 805
  year: 2009
  end-page: 817
  ident: b48
  article-title: Provably near-optimal solutions for very large single-row facility layout problems
  publication-title: Optim. Methods Softw.
– volume: 106
  start-page: 49
  year: 2019
  end-page: 61
  ident: b18
  article-title: A GRASP algorithm for solving large-scale single row facility layout problems
  publication-title: Comput. Oper. Res.
– volume: 53
  start-page: 1
  year: 1991
  end-page: 13
  ident: b28
  article-title: Efficient models for the facility layout problems
  publication-title: European J. Oper. Res.
– volume: 2
  start-page: 113
  year: 2005
  end-page: 122
  ident: b47
  article-title: A semidefinite optimization approach for the single-row layout problem with unequal dimensions
  publication-title: Discrete Optim.
– volume: 66
  start-page: 95
  year: 2013
  end-page: 103
  ident: b20
  article-title: Hybrid estimation of distribution algorithm for solving single row facility layout problem
  publication-title: Comput. Ind. Eng.
– volume: 57
  start-page: 863
  year: 2013
  end-page: 890
  ident: b27
  article-title: An efficient implementation of parallel simulated annealing algorithm in GPUs
  publication-title: J. Global Optim.
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b25
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– volume: 2
  start-page: 197
  year: 1973
  end-page: 200
  ident: b5
  article-title: A heuristic relaxation method for nonlinear mapping in cluster analysis
  publication-title: IEEE Transactions on Systems Man & Cybernetics
– volume: 6
  start-page: 791
  year: 1958
  end-page: 812
  ident: b12
  article-title: A method for solving traveling salesman problems
  publication-title: Oper. Res.
– volume: 20
  start-page: 125
  year: 2014
  end-page: 142b
  ident: b19
  article-title: A scatter search algorithm for the single row facility layout problem
  publication-title: J. Heuristics
– volume: 67
  start-page: 418
  year: 2017
  end-page: 429
  ident: b45
  article-title: Finding exact hitting set solutions for systems biology applications using heterogeneous GPU clusters
  publication-title: Future Gener. Comput. Syst.
– volume: 224
  start-page: 93
  year: 2013
  end-page: 100a
  ident: b38
  article-title: Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods
  publication-title: European J. Oper. Res.
– year: 2011
  ident: b2
  article-title: The Design of Approximation Algorithms
– volume: 79
  start-page: 473
  year: 2018
  end-page: 487
  ident: b44
  article-title: Parallel ant colony optimization on multi-core SIMD CPUs
  publication-title: Future Gener. Comput. Syst.
– volume: 248
  start-page: 899
  year: 2016
  end-page: 909
  ident: b43
  article-title: Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem
  publication-title: European J. Oper. Res.
– volume: 22
  year: 2018
  ident: b22
  article-title: Genetic algorithm for solving multiple traveling salesmen problem using a new crossover and population generation
  publication-title: Computación Y Sistemas
– volume: 173
  start-page: 508
  year: 2006
  end-page: 518
  ident: b31
  article-title: On the exact solution of a facility layout problem
  publication-title: European J. Oper. Res.
– volume: 73
  start-page: 1
  year: 2017
  end-page: 28
  ident: b9
  article-title: Reconstructing permutation table to improve the tabu search for the pfsp on gpu
  publication-title: J. Supercomput.
– volume: 8
  start-page: 679
  year: 2014
  end-page: 690
  ident: b40
  article-title: An efficient genetic algorithm for single row facility layout
  publication-title: Optim. Lett.
– volume: 173
  start-page: 508
  issue: 2
  year: 2006
  ident: 10.1016/j.future.2021.07.022_b31
  article-title: On the exact solution of a facility layout problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2004.12.021
– volume: 20
  start-page: 125
  issue: 2
  year: 2014
  ident: 10.1016/j.future.2021.07.022_b19
  article-title: A scatter search algorithm for the single row facility layout problem
  publication-title: J. Heuristics
  doi: 10.1007/s10732-013-9234-x
– volume: 224
  start-page: 93
  issue: 1
  year: 2013
  ident: 10.1016/j.future.2021.07.022_b38
  article-title: Tabu search for the single row facility layout problem using exhaustive 2-opt and insertion neighborhoods
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2012.07.037
– volume: 67
  start-page: 418
  year: 2017
  ident: 10.1016/j.future.2021.07.022_b46
  article-title: Finding exact hitting set solutions for systems biology applications using heterogeneous GPU clusters
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.02.009
– volume: 24
  start-page: 805
  issue: 4
  year: 2009
  ident: 10.1016/j.future.2021.07.022_b48
  article-title: Provably near-optimal solutions for very large single-row facility layout problems
  publication-title: Optim. Methods Softw.
  doi: 10.1080/10556780902917735
– start-page: 57
  year: 2019
  ident: 10.1016/j.future.2021.07.022_b21
  article-title: Optimization of single row layout in construction site planning: A comparative study of heuristics algorithms
– volume: 7
  start-page: 24192
  year: 2019
  ident: 10.1016/j.future.2021.07.022_b6
  article-title: Solving the mask data preparation scheduling problem using meta-heuristics
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2899601
– start-page: 19
  year: 2019
  ident: 10.1016/j.future.2021.07.022_b37
  article-title: Modified SA algorithm for bi-objective robust stochastic cellular facility layout in cellular manufacturing systems
– ident: 10.1016/j.future.2021.07.022_b1
  doi: 10.1007/978-3-319-71147-8
– volume: 66
  start-page: 95
  issue: 1
  year: 2013
  ident: 10.1016/j.future.2021.07.022_b20
  article-title: Hybrid estimation of distribution algorithm for solving single row facility layout problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2013.05.018
– volume: 55
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.future.2021.07.022_b34
  article-title: A computational study and survey of methods for the single-row facility layout problem
  publication-title: Comput. Optim. Appl.
  doi: 10.1007/s10589-012-9505-8
– volume: 50
  start-page: 5872
  issue: 20
  year: 2012
  ident: 10.1016/j.future.2021.07.022_b41
  article-title: A hybrid genetic algorithm for the single row layout problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2011.636386
– volume: 220
  start-page: 671
  issue: 4598
  year: 1983
  ident: 10.1016/j.future.2021.07.022_b26
  article-title: Optimization by simulated annealing
  publication-title: Science
  doi: 10.1126/science.220.4598.671
– volume: 11
  start-page: 421
  issue: 4
  year: 2000
  ident: 10.1016/j.future.2021.07.022_b35
  article-title: Metaheuristic methods for a class of the facility layout problem
  publication-title: J. Intell. Manuf.
  doi: 10.1023/A:1008982420344
– volume: 248
  start-page: 899
  issue: 3
  year: 2016
  ident: 10.1016/j.future.2021.07.022_b43
  article-title: Hybridizing variable neighborhood search with ant colony optimization for solving the single row facility layout problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.08.014
– volume: 246
  start-page: 800
  issue: 3
  year: 2015
  ident: 10.1016/j.future.2021.07.022_b17
  article-title: Fast local search for single row facility layout
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2015.05.055
– year: 1983
  ident: 10.1016/j.future.2021.07.022_b3
– start-page: 82
  year: 2018
  ident: 10.1016/j.future.2021.07.022_b13
  article-title: Massive 2-opt and 3-opt moves with high performance GPU local search to large-scale traveling salesman problem
– start-page: 1
  year: 2015
  ident: 10.1016/j.future.2021.07.022_b4
– volume: 56
  start-page: 1026
  issue: 4
  year: 2008
  ident: 10.1016/j.future.2021.07.022_b32
  article-title: An exact approach to the one-dimensional facility layout problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.1080.0548
– volume: 79
  start-page: 473
  year: 2018
  ident: 10.1016/j.future.2021.07.022_b44
  article-title: Parallel ant colony optimization on multi-core SIMD CPUs
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2017.09.073
– volume: 106
  start-page: 49
  year: 2019
  ident: 10.1016/j.future.2021.07.022_b18
  article-title: A GRASP algorithm for solving large-scale single row facility layout problems
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2019.02.009
– volume: 85
  start-page: 129
  year: 2018
  ident: 10.1016/j.future.2021.07.022_b7
  article-title: A hybrid whale optimization algorithm based on local search strategy for the permutation flow shop scheduling problem
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.03.020
– volume: 141
  start-page: 453
  issue: 1–2
  year: 2013
  ident: 10.1016/j.future.2021.07.022_b29
  article-title: A polyhedral approach to the single row facility layout problem
  publication-title: Math. Program.
  doi: 10.1007/s10107-012-0533-z
– volume: 6
  start-page: 791
  issue: 6
  year: 1958
  ident: 10.1016/j.future.2021.07.022_b12
  article-title: A method for solving traveling salesman problems
  publication-title: Oper. Res.
  doi: 10.1287/opre.6.6.791
– volume: 58
  start-page: 529
  issue: 4
  year: 2010
  ident: 10.1016/j.future.2021.07.022_b42
  article-title: A particle swarm optimization for the single row facility layout problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2009.11.015
– year: 2011
  ident: 10.1016/j.future.2021.07.022_b2
– volume: 22
  issue: 2
  year: 2018
  ident: 10.1016/j.future.2021.07.022_b22
  article-title: Genetic algorithm for solving multiple traveling salesmen problem using a new crossover and population generation
  publication-title: Computación Y Sistemas
  doi: 10.13053/cys-22-2-2956
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.future.2021.07.022_b25
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
– volume: 27
  start-page: 419
  issue: 4
  year: 2011
  ident: 10.1016/j.future.2021.07.022_b11
  article-title: A simulated annealing feature extraction approach for hyperspectral images
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2010.08.008
– volume: 53
  start-page: 1
  issue: 1
  year: 1991
  ident: 10.1016/j.future.2021.07.022_b28
  article-title: Efficient models for the facility layout problems
  publication-title: European J. Oper. Res.
  doi: 10.1016/0377-2217(91)90088-D
– volume: 8
  issue: 9
  year: 2018
  ident: 10.1016/j.future.2021.07.022_b10
  article-title: On gpu implementation of the island model genetic algorithm for solving the unequal area facility layout problem
  publication-title: Appl. Sci.
  doi: 10.3390/app8091604
– volume: 57
  start-page: 863
  issue: 3
  year: 2013
  ident: 10.1016/j.future.2021.07.022_b27
  article-title: An efficient implementation of parallel simulated annealing algorithm in GPUs
  publication-title: J. Global Optim.
  doi: 10.1007/s10898-012-9979-z
– volume: 22
  start-page: 3
  issue: 1
  year: 2015
  ident: 10.1016/j.future.2021.07.022_b8
  article-title: Metaheuristics—the metaphor exposed
  publication-title: Int. Trans. Oper. Res.
  doi: 10.1111/itor.12001
– volume: 44
  start-page: 241
  issue: 2
  year: 1995
  ident: 10.1016/j.future.2021.07.022_b23
  article-title: Optimization using simulated annealing
  publication-title: J. Royal Statal Soc.
– volume: 29
  start-page: 371
  issue: 2
  year: 1981
  ident: 10.1016/j.future.2021.07.022_b14
  article-title: On the one-dimensional space allocation problem
  publication-title: Oper. Res.
  doi: 10.1287/opre.29.2.371
– volume: 17
  start-page: 812
  issue: 5
  year: 1969
  ident: 10.1016/j.future.2021.07.022_b15
  article-title: One-dimensional space allocation: An ordering algorithm
  publication-title: Oper. Res.
  doi: 10.1287/opre.17.5.812
– volume: 50
  start-page: 367
  issue: 1
  year: 1991
  ident: 10.1016/j.future.2021.07.022_b24
  article-title: Global optimization and simulated annealing
  publication-title: Math. Program.
  doi: 10.1007/BF01594945
– volume: 20
  start-page: 611
  issue: 4
  year: 2008
  ident: 10.1016/j.future.2021.07.022_b33
  article-title: Computing globally optimal solutions for single row layout problems using semidefinite programming and cutting planes
  publication-title: INFORMS J. Comput.
  doi: 10.1287/ijoc.1080.0270
– volume: 205
  start-page: 98
  issue: 1
  year: 2010
  ident: 10.1016/j.future.2021.07.022_b39
  article-title: An efficient tabu algorithm for the single row facility layout problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/j.ejor.2009.11.034
– volume: 2
  start-page: 197
  year: 1973
  ident: 10.1016/j.future.2021.07.022_b5
  article-title: A heuristic relaxation method for nonlinear mapping in cluster analysis
– volume: 103
  start-page: 1
  year: 2017
  ident: 10.1016/j.future.2021.07.022_b16
  article-title: Single row facility layout using multi-start simulated annealing
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.09.026
– volume: 2
  start-page: 113
  issue: 2
  year: 2005
  ident: 10.1016/j.future.2021.07.022_b47
  article-title: A semidefinite optimization approach for the single-row layout problem with unequal dimensions
  publication-title: Discrete Optim.
  doi: 10.1016/j.disopt.2005.03.001
– volume: 157
  start-page: 183
  issue: 1
  year: 2009
  ident: 10.1016/j.future.2021.07.022_b30
  article-title: A new lower bound for the single row facility layout problem
  publication-title: Discrete Appl. Math.
  doi: 10.1016/j.dam.2008.06.002
– volume: 67
  start-page: 418
  year: 2017
  ident: 10.1016/j.future.2021.07.022_b45
  article-title: Finding exact hitting set solutions for systems biology applications using heterogeneous GPU clusters
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2016.02.009
– volume: 73
  start-page: 1
  issue: 11
  year: 2017
  ident: 10.1016/j.future.2021.07.022_b9
  article-title: Reconstructing permutation table to improve the tabu search for the pfsp on gpu
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2041-7
– volume: 57
  start-page: 190
  issue: 2
  year: 1992
  ident: 10.1016/j.future.2021.07.022_b36
  article-title: Experimental analysis of simulated annealing based algorithms for the layout problem
  publication-title: European J. Oper. Res.
  doi: 10.1016/0377-2217(92)90042-8
– volume: 8
  start-page: 679
  issue: 2
  year: 2014
  ident: 10.1016/j.future.2021.07.022_b40
  article-title: An efficient genetic algorithm for single row facility layout
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-012-0605-2
SSID ssj0001731
Score 2.3821626
Snippet The optimization of most combinatorial problems is NP-hard, which can be solved by heuristic algorithms to obtain approximately optimal solutions, especially...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 91
SubjectTerms 2-opt local search
Facility layout
Graphic processing unit (GPU)
Heuristic algorithm
Simulated annealing
Title Optimizing 2-opt-based heuristics on GPU for solving the single-row facility layout problem
URI https://dx.doi.org/10.1016/j.future.2021.07.022
Volume 126
WOSCitedRecordID wos000701828000009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7115
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001731
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3JbtswECXcpIdemnRDky7goVcGEmmJ4jEIEqQ9JAGcoAZ6EGiJahy4kuFaRtLv6Ad3hossxEU3oBfBkE2L4DzPDMec9wh5p0WaYiiBzC2GDQoghqmkMizSXCfDFBnlIis2Ic_OsvFYXQwG30MvzGom6zq7vVXz_2pquAfGxtbZvzB396VwA16D0eEKZofrHxn-HJzAl-k3LAFw1syXDANVCRlhG0iZkUjj4soeMISprELDFFYNZobBvhxVeKY2P5_pOzy47GVn-pnsiSUjQQVm40FUeIEIzw7dJeuj1nq2cdth6Oi6aW36GuKm7b3xh4PhzUX9mY2up21Xqv7Y-qMBDUPB736pgvN7pYrNHhpX0gRXLYUV1IWI5NxwJiHvj12jZ-ened_TOo0vH7NjS7GwGQ5cZeLmwPGzHMCcYkvV6lqh7xFtj3AmOBGOtLTZUDwg21wmCtz99uH74_GHLsLH0utc-pmHlkx7bnDzWT9PeXppzOUueez3H_TQ4eYJGZj6KdkJ2h7Uu_pn5NMaRrQHI7qGEW1qCjCiACPqYUQBRnQNIxpgRB2MqIfRc3J1cnx5dMq8EAcrYEe5ZODjo7QoZTIplcSKgBY6LYtSKx1nmkdFZvDfX60qkU74RJhK6BguRTwx6AnEC7JVN7V5SageKvD5kRGqzIZVJlWRpJpXEnYVEFtUukdEWKu88Cz1KJYyy8NxxJvcrXCOK5xHMocV3iOsGzV3LC2_-bwMZsh9pukyyByQ88uR-_888hV5tP5NvCZby0Vr3pCHxWo5_bp46yH2A9LLpb8
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+2-opt-based+heuristics+on+GPU+for+solving+the+single-row+facility+layout+problem&rft.jtitle=Future+generation+computer+systems&rft.au=Sun%2C+Xue&rft.au=Chou%2C+Ping&rft.au=Koong%2C+Chorng-Shiuh&rft.au=Wu%2C+Chao-Chin&rft.date=2022-01-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.eissn=1872-7115&rft.volume=126&rft.spage=91&rft.epage=109&rft_id=info:doi/10.1016%2Fj.future.2021.07.022&rft.externalDocID=S0167739X21002843
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon