Robust deep k-means: An effective and simple method for data clustering

•A novel robust deep model is proposed to perform k-means hierarchically, thus the hierarchical semantics of data can be explored in a layerwise way. As a result, data samples from the same class are effectively gathered closer layer by layer.•To solve the optimization problem of our model, the corr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Pattern recognition Jg. 117; S. 107996
Hauptverfasser: Huang, Shudong, Kang, Zhao, Xu, Zenglin, Liu, Quanhui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.09.2021
Schlagworte:
ISSN:0031-3203, 1873-5142
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •A novel robust deep model is proposed to perform k-means hierarchically, thus the hierarchical semantics of data can be explored in a layerwise way. As a result, data samples from the same class are effectively gathered closer layer by layer.•To solve the optimization problem of our model, the corresponding objective function is derived to a more trackable form and an alternative updating algorithm is presented to solve the optimization problem.•Experiments over 12 benchmark data sets are conducted and show promising results, compared to both classical and state-of-the-art methods. Clustering aims to partition an input dataset into distinct groups according to some distance or similarity measurements. One of the most widely used clustering method nowadays is the k-means algorithm because of its simplicity and efficiency. In the last few decades, k-means and its various extensions have been formulated to solve the practical clustering problems. However, existing clustering methods are often presented in a single-layer formulation (i.e., shallow formulation). As a result, the mapping between the obtained low-level representation and the original input data may contain rather complex hierarchical information. To overcome the drawbacks of low-level features, deep learning techniques are adopted to extract deep representations and improve the clustering performance. In this paper, we propose a robust deep k-means model to learn the hidden representations associate with different implicit lower-level attributes. By using the deep structure to hierarchically perform k-means, the hierarchical semantics of data can be exploited in a layerwise way. Data samples from the same class are forced to be closer layer by layer, which is beneficial for clustering task. The objective function of our model is derived to a more trackable form such that the optimization problem can be tackled more easily and the final robust results can be obtained. Experimental results over 12 benchmark data sets substantiate that the proposed model achieves a breakthrough in clustering performance, compared with both classical and state-of-the-art methods.
AbstractList •A novel robust deep model is proposed to perform k-means hierarchically, thus the hierarchical semantics of data can be explored in a layerwise way. As a result, data samples from the same class are effectively gathered closer layer by layer.•To solve the optimization problem of our model, the corresponding objective function is derived to a more trackable form and an alternative updating algorithm is presented to solve the optimization problem.•Experiments over 12 benchmark data sets are conducted and show promising results, compared to both classical and state-of-the-art methods. Clustering aims to partition an input dataset into distinct groups according to some distance or similarity measurements. One of the most widely used clustering method nowadays is the k-means algorithm because of its simplicity and efficiency. In the last few decades, k-means and its various extensions have been formulated to solve the practical clustering problems. However, existing clustering methods are often presented in a single-layer formulation (i.e., shallow formulation). As a result, the mapping between the obtained low-level representation and the original input data may contain rather complex hierarchical information. To overcome the drawbacks of low-level features, deep learning techniques are adopted to extract deep representations and improve the clustering performance. In this paper, we propose a robust deep k-means model to learn the hidden representations associate with different implicit lower-level attributes. By using the deep structure to hierarchically perform k-means, the hierarchical semantics of data can be exploited in a layerwise way. Data samples from the same class are forced to be closer layer by layer, which is beneficial for clustering task. The objective function of our model is derived to a more trackable form such that the optimization problem can be tackled more easily and the final robust results can be obtained. Experimental results over 12 benchmark data sets substantiate that the proposed model achieves a breakthrough in clustering performance, compared with both classical and state-of-the-art methods.
ArticleNumber 107996
Author Kang, Zhao
Liu, Quanhui
Huang, Shudong
Xu, Zenglin
Author_xml – sequence: 1
  givenname: Shudong
  surname: Huang
  fullname: Huang, Shudong
  organization: College of Computer Science, Sichuan University, Chengdu 610065, China
– sequence: 2
  givenname: Zhao
  surname: Kang
  fullname: Kang, Zhao
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 3
  givenname: Zenglin
  surname: Xu
  fullname: Xu, Zenglin
  organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China
– sequence: 4
  givenname: Quanhui
  surname: Liu
  fullname: Liu, Quanhui
  email: quanhuiliu@scu.edu.cn
  organization: College of Computer Science, Sichuan University, Chengdu 610065, China
BookMark eNqFkM1KAzEUhYNUsFXfwEVeYGp-5i9dCKVoFQqC6DpkkpuaOpMZkljw7Z0yrlzo6sK5fAfOt0Az33tA6IaSJSW0vD0sB5V0v18ywugYVUKUZ2hO64pnBc3ZDM0J4TTjjPALtIjxQAitxsccbV_65jMmbAAG_JF1oHxc4bXHYC3o5I6AlTc4um5oAXeQ3nuDbR-wUUlh3Y4sBOf3V-jcqjbC9c-9RG8P96-bx2z3vH3arHeZ5qRMWV1YludVUauqYU2lSkGErYWApimYKBvOLAjSgC4oN5oLVhgiqpyWjApFasEv0Wrq1aGPMYCV2iWVXO9TUK6VlMiTEnmQkxJ5UiInJSOc_4KH4DoVvv7D7iYMxmFHB0FG7cBrMC6MjqTp3d8F39ubfjM
CitedBy_id crossref_primary_10_1371_journal_pone_0326145
crossref_primary_10_1016_j_engappai_2022_104743
crossref_primary_10_3390_app15158451
crossref_primary_10_1016_j_cam_2023_115219
crossref_primary_10_1016_j_neunet_2024_106295
crossref_primary_10_1016_j_patcog_2023_109469
crossref_primary_10_1002_widm_1568
crossref_primary_10_1371_journal_pone_0305241
crossref_primary_10_1109_ACCESS_2023_3306023
crossref_primary_10_1016_j_knosys_2022_109346
crossref_primary_10_1007_s10619_022_07421_x
crossref_primary_10_1016_j_patcog_2022_109187
crossref_primary_10_1016_j_patcog_2023_109340
crossref_primary_10_3390_sym14051021
crossref_primary_10_1007_s10489_021_03020_y
crossref_primary_10_1007_s10661_024_12816_7
crossref_primary_10_1016_j_mineng_2023_108352
crossref_primary_10_1016_j_patcog_2021_108339
crossref_primary_10_1002_cyto_a_24956
crossref_primary_10_1155_2022_6936335
crossref_primary_10_1007_s10479_022_04642_2
crossref_primary_10_1177_09544070231189910
crossref_primary_10_1016_j_patcog_2022_108817
crossref_primary_10_1007_s10115_024_02272_7
crossref_primary_10_1016_j_knosys_2021_107212
crossref_primary_10_1016_j_patcog_2024_111158
crossref_primary_10_1016_j_ins_2023_119659
crossref_primary_10_1109_TCYB_2022_3166975
crossref_primary_10_1016_j_ins_2023_03_012
crossref_primary_10_1109_TIP_2023_3243521
crossref_primary_10_1007_s11053_025_10504_y
crossref_primary_10_1016_j_ins_2022_11_139
crossref_primary_10_1016_j_patcog_2025_111857
crossref_primary_10_1016_j_asoc_2024_112299
crossref_primary_10_1016_j_patcog_2022_108780
crossref_primary_10_1016_j_patcog_2022_109230
crossref_primary_10_1016_j_patcog_2024_110307
crossref_primary_10_1016_j_eswa_2022_118656
crossref_primary_10_3390_electronics14071353
crossref_primary_10_1007_s10489_022_03895_5
crossref_primary_10_1016_j_eswa_2023_119645
crossref_primary_10_1016_j_ins_2022_07_177
crossref_primary_10_1016_j_patcog_2022_108623
crossref_primary_10_1016_j_ins_2023_119374
crossref_primary_10_1016_j_knosys_2023_110893
crossref_primary_10_1016_j_compbiomed_2022_106184
crossref_primary_10_1063_5_0241138
crossref_primary_10_1109_TMI_2022_3195123
crossref_primary_10_1109_TNNLS_2024_3367322
crossref_primary_10_3390_sym16091208
crossref_primary_10_3390_ijms26104665
crossref_primary_10_1016_j_eswa_2025_127664
crossref_primary_10_1016_j_future_2024_107525
crossref_primary_10_1016_j_patcog_2022_109283
crossref_primary_10_1016_j_inffus_2023_102137
crossref_primary_10_1016_j_fss_2025_109575
crossref_primary_10_1016_j_patcog_2024_110639
crossref_primary_10_1109_TCE_2025_3525523
crossref_primary_10_1155_2022_3958423
crossref_primary_10_1016_j_cam_2025_116921
crossref_primary_10_1016_j_patcog_2022_108791
crossref_primary_10_32604_cmes_2024_056022
crossref_primary_10_1080_09537287_2025_2555924
crossref_primary_10_1109_ACCESS_2023_3312287
crossref_primary_10_1016_j_csda_2025_108226
crossref_primary_10_1038_s41598_025_96705_0
crossref_primary_10_1007_s12559_022_10060_0
crossref_primary_10_3390_app112311202
crossref_primary_10_1016_j_ins_2023_119634
crossref_primary_10_1109_TIM_2025_3593308
crossref_primary_10_1007_s00521_022_07326_x
crossref_primary_10_1016_j_knosys_2023_110627
crossref_primary_10_1016_j_knosys_2023_111315
crossref_primary_10_3390_math11030548
crossref_primary_10_1016_j_patcog_2021_108223
crossref_primary_10_1016_j_bspc_2024_106647
crossref_primary_10_3390_math10244834
crossref_primary_10_14778_3746405_3746431
crossref_primary_10_1016_j_ins_2024_120191
crossref_primary_10_1109_TCE_2024_3440485
crossref_primary_10_1007_s10115_024_02322_0
crossref_primary_10_1016_j_patcog_2022_108768
crossref_primary_10_1007_s00521_024_10764_4
crossref_primary_10_3390_ijms241914690
crossref_primary_10_3390_s23156963
crossref_primary_10_1016_j_engappai_2025_111703
crossref_primary_10_1016_j_engappai_2023_106164
crossref_primary_10_1016_j_knosys_2024_112434
crossref_primary_10_1155_2022_1939796
crossref_primary_10_1007_s10994_021_06071_x
Cites_doi 10.1016/j.knosys.2016.06.031
10.1016/j.patcog.2019.107015
10.1007/s10618-017-0543-9
10.1109/TPAMI.2008.277
10.1016/j.patrec.2009.09.011
10.1007/s10115-007-0114-2
10.1016/j.ins.2017.03.030
10.1162/NECO_a_00168
10.1561/2200000006
10.1016/j.patcog.2013.11.014
10.1016/j.ins.2017.07.036
10.1109/34.982897
10.1007/s10115-016-0988-y
10.1109/TPAMI.2016.2554555
10.1109/TIP.2018.2848470
10.1016/j.eswa.2016.09.025
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.patcog.2021.107996
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1873-5142
ExternalDocumentID 10_1016_j_patcog_2021_107996
S0031320321001837
GroupedDBID --K
--M
-D8
-DT
-~X
.DC
.~1
0R~
123
1B1
1RT
1~.
1~5
29O
4.4
457
4G.
53G
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABFRF
ABHFT
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADMXK
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FD6
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
KZ1
LG9
LMP
LY1
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TN5
UNMZH
VOH
WUQ
XJE
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c306t-85f244758a7b2b7a6909f899ebb5296b32fe90bec513dc3925d097416219a0893
ISICitedReferencesCount 106
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658967900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0031-3203
IngestDate Sat Nov 29 07:29:47 EST 2025
Tue Nov 18 21:45:30 EST 2025
Fri Feb 23 02:44:31 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Robust clustering
Deep learning
k-means algorithm
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c306t-85f244758a7b2b7a6909f899ebb5296b32fe90bec513dc3925d097416219a0893
ParticipantIDs crossref_citationtrail_10_1016_j_patcog_2021_107996
crossref_primary_10_1016_j_patcog_2021_107996
elsevier_sciencedirect_doi_10_1016_j_patcog_2021_107996
PublicationCentury 2000
PublicationDate September 2021
2021-09-00
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: September 2021
PublicationDecade 2020
PublicationTitle Pattern recognition
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ding, Li, Jordan (bib0038) 2010; 32
Trigeorgis, Bousmalis, Zafeiriou, Schuller (bib0034) 2017; 39
Zhou, Hou, Feng (bib0017) 2018
Peng, Zhu, Feng, Shen, Zhang, Zhou (bib0021) 2019
Zhang, Li, You, Qi, Zhang, Guo, Lin (bib0022) 2019
Cai, He, Han, Huang (bib0010) 2010; 33
Boyd, Parikh, Chu, Peleato, Eckstein (bib0035) 2011; 3
Févotte, Idier (bib0033) 2011; 23
Huang, Wang, Li, Li, Xu (bib0031) 2018; 32
Sun, Mazumder (bib0040) 2013
Capó, Pérez, Lozano (bib0028) 2017; 117
Guo, Gao, Liu, Yin (bib0018) 2017
Ji, Zhang, Li, Salzmann, Reid (bib0016) 2017
Banerjee, Merugu, Dhillon, Ghosh (bib0003) 2005; 6
Ghasedi Dizaji, Herandi, Deng, Cai, Huang (bib0019) 2017
Lee, Seung (bib0032) 2001
Peng, Feng, Xiao, Yau, Zhou, Yang (bib0020) 2018; 27
Kumar, Reddy (bib0026) 2017; 418
Gokcay, Principe (bib0011) 2002; 24
Zhao, Ding, Fu (bib0014) 2017
Ding, He (bib0023) 2004
Buchta, Kober, Feinerer, Hornik (bib0024) 2012; 50
Huang, Kang, Xu (bib0001) 2020
Huang, Tsang, Xu, Lv (bib0013) 2021
Chakraborty, Paul, Das, Xu (bib0027) 2020
Ault, Perez, Kimble, Wang (bib0005) 2018; 8
Khanmohammadi, Adibeig, Shanehbandy (bib0025) 2017; 67
Bengio (bib0029) 2009; 2
Ng, Jordan, Weiss (bib0009) 2002
Gullo, Ponti, Tagarelli, Greco (bib0012) 2017; 402
Kong, Ding, Huang (bib0036) 2011
Huang, Kang, Xu (bib0039) 2020; 97
Macqueen (bib0008) 1967
Ding, Li, Peng, Park (bib0030) 2006
Wang, Pan (bib0006) 2014; 47
Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Philip (bib0015) 2008; 14
Tunali, Bilgin, Camurcu (bib0004) 2016; 13
Ren, Domeniconi, Zhang, Yu (bib0007) 2017; 51
Gao, Nie, Cai, Huang (bib0037) 2015
Jain (bib0002) 2010; 31
Trigeorgis (10.1016/j.patcog.2021.107996_bib0034) 2017; 39
Peng (10.1016/j.patcog.2021.107996_bib0021) 2019
Ault (10.1016/j.patcog.2021.107996_bib0005) 2018; 8
Huang (10.1016/j.patcog.2021.107996_bib0013) 2021
Huang (10.1016/j.patcog.2021.107996_bib0001) 2020
Wu (10.1016/j.patcog.2021.107996_bib0015) 2008; 14
Lee (10.1016/j.patcog.2021.107996_bib0032) 2001
Boyd (10.1016/j.patcog.2021.107996_bib0035) 2011; 3
Tunali (10.1016/j.patcog.2021.107996_bib0004) 2016; 13
Ding (10.1016/j.patcog.2021.107996_bib0023) 2004
Gao (10.1016/j.patcog.2021.107996_bib0037) 2015
Peng (10.1016/j.patcog.2021.107996_bib0020) 2018; 27
Jain (10.1016/j.patcog.2021.107996_bib0002) 2010; 31
Guo (10.1016/j.patcog.2021.107996_bib0018) 2017
Huang (10.1016/j.patcog.2021.107996_bib0039) 2020; 97
Gullo (10.1016/j.patcog.2021.107996_bib0012) 2017; 402
Huang (10.1016/j.patcog.2021.107996_bib0031) 2018; 32
Macqueen (10.1016/j.patcog.2021.107996_bib0008) 1967
Ding (10.1016/j.patcog.2021.107996_bib0038) 2010; 32
Buchta (10.1016/j.patcog.2021.107996_bib0024) 2012; 50
Cai (10.1016/j.patcog.2021.107996_bib0010) 2010; 33
Zhang (10.1016/j.patcog.2021.107996_bib0022) 2019
Févotte (10.1016/j.patcog.2021.107996_bib0033) 2011; 23
Kong (10.1016/j.patcog.2021.107996_bib0036) 2011
Capó (10.1016/j.patcog.2021.107996_bib0028) 2017; 117
Banerjee (10.1016/j.patcog.2021.107996_bib0003) 2005; 6
Ji (10.1016/j.patcog.2021.107996_bib0016) 2017
Ren (10.1016/j.patcog.2021.107996_bib0007) 2017; 51
Chakraborty (10.1016/j.patcog.2021.107996_bib0027) 2020
Zhao (10.1016/j.patcog.2021.107996_bib0014) 2017
Ng (10.1016/j.patcog.2021.107996_bib0009) 2002
Zhou (10.1016/j.patcog.2021.107996_bib0017) 2018
Kumar (10.1016/j.patcog.2021.107996_bib0026) 2017; 418
Gokcay (10.1016/j.patcog.2021.107996_bib0011) 2002; 24
Bengio (10.1016/j.patcog.2021.107996_bib0029) 2009; 2
Ding (10.1016/j.patcog.2021.107996_bib0030) 2006
Wang (10.1016/j.patcog.2021.107996_bib0006) 2014; 47
Ghasedi Dizaji (10.1016/j.patcog.2021.107996_bib0019) 2017
Khanmohammadi (10.1016/j.patcog.2021.107996_bib0025) 2017; 67
Sun (10.1016/j.patcog.2021.107996_bib0040) 2013
References_xml – start-page: 272
  year: 2020
  end-page: 283
  ident: bib0001
  article-title: Deep
  publication-title: Proceedings of the International Conference on Neural Computing for Advanced Applications
– start-page: 29
  year: 2004
  end-page: 37
  ident: bib0023
  article-title: K-means clustering via principal component analysis
  publication-title: Proceedings of the 21st International Conference on Machine Learning
– volume: 50
  start-page: 1
  year: 2012
  end-page: 22
  ident: bib0024
  article-title: Spherical
  publication-title: J. Stat. Softw.
– start-page: 849
  year: 2002
  end-page: 856
  ident: bib0009
  article-title: On spectral clustering: analysis and an algorithm
  publication-title: Advances in Neural Information Processing Systems
– start-page: 556
  year: 2001
  end-page: 562
  ident: bib0032
  article-title: Algorithms for non-negative matrix factorization
  publication-title: Advances in Neural Information Processing Systems
– volume: 33
  start-page: 1548
  year: 2010
  end-page: 1560
  ident: bib0010
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 117
  start-page: 56
  year: 2017
  end-page: 69
  ident: bib0028
  article-title: An efficient approximation to the
  publication-title: Knowledge-Based Syst.
– volume: 39
  start-page: 417
  year: 2017
  end-page: 429
  ident: bib0034
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1
  year: 2013
  end-page: 6
  ident: bib0040
  article-title: Non-negative matrix completion for bandwidth extension: a convex optimization approach
  publication-title: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing
– volume: 2
  start-page: 1
  year: 2009
  end-page: 127
  ident: bib0029
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends® Mach. Learn.
– start-page: 1
  year: 2021
  end-page: 15
  ident: bib0013
  article-title: Measuring diversity in graph learning: a unified framework for structured multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 1
  year: 2019
  end-page: 12
  ident: bib0021
  article-title: Deep clustering with sample-assignment invariance prior
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 691
  year: 2020
  end-page: 701
  ident: bib0027
  article-title: Entropy weighted power
  publication-title: International Conference on Artificial Intelligence and Statistics
– volume: 31
  start-page: 651
  year: 2010
  end-page: 666
  ident: bib0002
  article-title: Data clustering: 50 years beyond
  publication-title: Pattern Recognit. Lett.
– volume: 6
  start-page: 1705
  year: 2005
  end-page: 1749
  ident: bib0003
  article-title: Clustering with Bregman divergences
  publication-title: J. Mach. Learn. Res.
– volume: 418
  start-page: 286
  year: 2017
  end-page: 301
  ident: bib0026
  article-title: An efficient
  publication-title: Inf. Sci.
– volume: 97
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib0039
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recognit.
– volume: 3
  start-page: 1
  year: 2011
  end-page: 122
  ident: bib0035
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends® Mach. learn.
– volume: 51
  start-page: 661
  year: 2017
  end-page: 689
  ident: bib0007
  article-title: Weighted-object ensemble clustering: methods and analysis
  publication-title: Knowl. Inf. Syst.
– volume: 402
  start-page: 199
  year: 2017
  end-page: 215
  ident: bib0012
  article-title: An information-theoretic approach to hierarchical clustering of uncertain data
  publication-title: Inf. Sci.
– start-page: 5473
  year: 2019
  end-page: 5482
  ident: bib0022
  article-title: Self-supervised convolutional subspace clustering network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 13
  year: 2016
  ident: bib0004
  article-title: An improved clustering algorithm for text mining: multi-cluster spherical
  publication-title: Int. Arab J. Inf. Technol.
– start-page: 871
  year: 2015
  end-page: 880
  ident: bib0037
  article-title: Robust capped norm nonnegative matrix factorization: capped norm NMF
  publication-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management
– start-page: 1596
  year: 2018
  end-page: 1604
  ident: bib0017
  article-title: Deep adversarial subspace clustering
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 47
  start-page: 1917
  year: 2014
  end-page: 1925
  ident: bib0006
  article-title: Robust level set image segmentation via a local correntropy-based
  publication-title: Pattern Recognit.
– volume: 32
  start-page: 483
  year: 2018
  end-page: 503
  ident: bib0031
  article-title: Robust graph regularized nonnegative matrix factorization for clustering
  publication-title: Data Min. Knowl. Discov.
– start-page: 673
  year: 2011
  end-page: 682
  ident: bib0036
  article-title: Robust nonnegative matrix factorization using l21-norm
  publication-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management
– start-page: 281
  year: 1967
  end-page: 297
  ident: bib0008
  article-title: Some methods for classification and analysis of multivariate observations
  publication-title: Proceedings of Berkeley Symposium on Mathematical Statistics and Probability
– volume: 67
  start-page: 12
  year: 2017
  end-page: 18
  ident: bib0025
  article-title: An improved overlapping
  publication-title: Expert Syst. Appl.
– start-page: 2921
  year: 2017
  end-page: 2927
  ident: bib0014
  article-title: Multi-view clustering via deep matrix factorization
  publication-title: Proceedings of the 21st AAAI Conference on Artificial Intelligence
– start-page: 1753
  year: 2017
  end-page: 1759
  ident: bib0018
  article-title: Improved deep embedded clustering with local structure preservation
  publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence
– volume: 23
  start-page: 2421
  year: 2011
  end-page: 2456
  ident: bib0033
  article-title: Algorithms for nonnegative matrix factorization with the
  publication-title: Neural Comput.
– volume: 14
  start-page: 1
  year: 2008
  end-page: 37
  ident: bib0015
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
– volume: 27
  start-page: 5076
  year: 2018
  end-page: 5086
  ident: bib0020
  article-title: Structured autoencoders for subspace clustering
  publication-title: IEEE Trans. Image Process.
– start-page: 24
  year: 2017
  end-page: 33
  ident: bib0016
  article-title: Deep subspace clustering networks
  publication-title: Advances in Neural Information Processing Systems
– start-page: 5736
  year: 2017
  end-page: 5745
  ident: bib0019
  article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 32
  start-page: 45
  year: 2010
  end-page: 55
  ident: bib0038
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 8
  start-page: 518
  year: 2018
  end-page: 523
  ident: bib0005
  article-title: On speech recognition algorithms
  publication-title: Int. J. Mach. Learn. Comput.
– start-page: 126
  year: 2006
  end-page: 135
  ident: bib0030
  article-title: Orthogonal nonnegative matrix
  publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
– volume: 24
  start-page: 158
  year: 2002
  end-page: 171
  ident: bib0011
  article-title: Information theoretic clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 117
  start-page: 56
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0028
  article-title: An efficient approximation to the k-means clustering for massive data
  publication-title: Knowledge-Based Syst.
  doi: 10.1016/j.knosys.2016.06.031
– volume: 13
  issue: 1
  year: 2016
  ident: 10.1016/j.patcog.2021.107996_bib0004
  article-title: An improved clustering algorithm for text mining: multi-cluster spherical k-means
  publication-title: Int. Arab J. Inf. Technol.
– volume: 97
  start-page: 1
  year: 2020
  ident: 10.1016/j.patcog.2021.107996_bib0039
  article-title: Auto-weighted multi-view clustering via deep matrix decomposition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107015
– start-page: 1753
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0018
  article-title: Improved deep embedded clustering with local structure preservation
– start-page: 29
  year: 2004
  ident: 10.1016/j.patcog.2021.107996_bib0023
  article-title: K-means clustering via principal component analysis
– start-page: 126
  year: 2006
  ident: 10.1016/j.patcog.2021.107996_bib0030
  article-title: Orthogonal nonnegative matrix t-factorizations for clustering
– volume: 32
  start-page: 483
  issue: 2
  year: 2018
  ident: 10.1016/j.patcog.2021.107996_bib0031
  article-title: Robust graph regularized nonnegative matrix factorization for clustering
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-017-0543-9
– start-page: 24
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0016
  article-title: Deep subspace clustering networks
– volume: 6
  start-page: 1705
  year: 2005
  ident: 10.1016/j.patcog.2021.107996_bib0003
  article-title: Clustering with Bregman divergences
  publication-title: J. Mach. Learn. Res.
– volume: 50
  start-page: 1
  issue: 10
  year: 2012
  ident: 10.1016/j.patcog.2021.107996_bib0024
  article-title: Spherical k-means clustering
  publication-title: J. Stat. Softw.
– volume: 33
  start-page: 1548
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2021.107996_bib0010
  article-title: Graph regularized nonnegative matrix factorization for data representation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 32
  start-page: 45
  issue: 1
  year: 2010
  ident: 10.1016/j.patcog.2021.107996_bib0038
  article-title: Convex and semi-nonnegative matrix factorizations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2008.277
– volume: 8
  start-page: 518
  issue: 6
  year: 2018
  ident: 10.1016/j.patcog.2021.107996_bib0005
  article-title: On speech recognition algorithms
  publication-title: Int. J. Mach. Learn. Comput.
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  ident: 10.1016/j.patcog.2021.107996_bib0002
  article-title: Data clustering: 50 years beyond k-means
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2009.09.011
– start-page: 849
  year: 2002
  ident: 10.1016/j.patcog.2021.107996_bib0009
  article-title: On spectral clustering: analysis and an algorithm
– start-page: 871
  year: 2015
  ident: 10.1016/j.patcog.2021.107996_bib0037
  article-title: Robust capped norm nonnegative matrix factorization: capped norm NMF
– start-page: 556
  year: 2001
  ident: 10.1016/j.patcog.2021.107996_bib0032
  article-title: Algorithms for non-negative matrix factorization
– volume: 3
  start-page: 1
  issue: 1
  year: 2011
  ident: 10.1016/j.patcog.2021.107996_bib0035
  article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers
  publication-title: Found. Trends® Mach. learn.
– start-page: 1
  year: 2019
  ident: 10.1016/j.patcog.2021.107996_bib0021
  article-title: Deep clustering with sample-assignment invariance prior
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 14
  start-page: 1
  issue: 1
  year: 2008
  ident: 10.1016/j.patcog.2021.107996_bib0015
  article-title: Top 10 algorithms in data mining
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-007-0114-2
– volume: 402
  start-page: 199
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0012
  article-title: An information-theoretic approach to hierarchical clustering of uncertain data
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.03.030
– start-page: 1
  year: 2013
  ident: 10.1016/j.patcog.2021.107996_bib0040
  article-title: Non-negative matrix completion for bandwidth extension: a convex optimization approach
– volume: 23
  start-page: 2421
  issue: 9
  year: 2011
  ident: 10.1016/j.patcog.2021.107996_bib0033
  article-title: Algorithms for nonnegative matrix factorization with the β-divergence
  publication-title: Neural Comput.
  doi: 10.1162/NECO_a_00168
– start-page: 1596
  year: 2018
  ident: 10.1016/j.patcog.2021.107996_bib0017
  article-title: Deep adversarial subspace clustering
– start-page: 1
  year: 2021
  ident: 10.1016/j.patcog.2021.107996_bib0013
  article-title: Measuring diversity in graph learning: a unified framework for structured multi-view clustering
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 2
  start-page: 1
  issue: 1
  year: 2009
  ident: 10.1016/j.patcog.2021.107996_bib0029
  article-title: Learning deep architectures for AI
  publication-title: Found. Trends® Mach. Learn.
  doi: 10.1561/2200000006
– start-page: 5736
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0019
  article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization
– volume: 47
  start-page: 1917
  issue: 5
  year: 2014
  ident: 10.1016/j.patcog.2021.107996_bib0006
  article-title: Robust level set image segmentation via a local correntropy-based k-means clustering
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2013.11.014
– volume: 418
  start-page: 286
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0026
  article-title: An efficient k-means clustering filtering algorithm using density based initial cluster centers
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2017.07.036
– volume: 24
  start-page: 158
  issue: 2
  year: 2002
  ident: 10.1016/j.patcog.2021.107996_bib0011
  article-title: Information theoretic clustering
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.982897
– start-page: 272
  year: 2020
  ident: 10.1016/j.patcog.2021.107996_bib0001
  article-title: Deep k-means: a simple and effective method for data clustering
– volume: 51
  start-page: 661
  issue: 2
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0007
  article-title: Weighted-object ensemble clustering: methods and analysis
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-016-0988-y
– start-page: 5473
  year: 2019
  ident: 10.1016/j.patcog.2021.107996_bib0022
  article-title: Self-supervised convolutional subspace clustering network
– start-page: 691
  year: 2020
  ident: 10.1016/j.patcog.2021.107996_bib0027
  article-title: Entropy weighted power k-means clustering
– start-page: 2921
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0014
  article-title: Multi-view clustering via deep matrix factorization
– start-page: 281
  year: 1967
  ident: 10.1016/j.patcog.2021.107996_bib0008
  article-title: Some methods for classification and analysis of multivariate observations
– volume: 39
  start-page: 417
  issue: 3
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0034
  article-title: A deep matrix factorization method for learning attribute representations
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2016.2554555
– start-page: 673
  year: 2011
  ident: 10.1016/j.patcog.2021.107996_bib0036
  article-title: Robust nonnegative matrix factorization using l21-norm
– volume: 27
  start-page: 5076
  issue: 10
  year: 2018
  ident: 10.1016/j.patcog.2021.107996_bib0020
  article-title: Structured autoencoders for subspace clustering
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2018.2848470
– volume: 67
  start-page: 12
  year: 2017
  ident: 10.1016/j.patcog.2021.107996_bib0025
  article-title: An improved overlapping k-means clustering method for medical applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2016.09.025
SSID ssj0017142
Score 2.6270792
Snippet •A novel robust deep model is proposed to perform k-means hierarchically, thus the hierarchical semantics of data can be explored in a layerwise way. As a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107996
SubjectTerms [formula omitted]-means algorithm
Deep learning
Robust clustering
Title Robust deep k-means: An effective and simple method for data clustering
URI https://dx.doi.org/10.1016/j.patcog.2021.107996
Volume 117
WOSCitedRecordID wos000658967900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5142
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017142
  issn: 0031-3203
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKyoHLGF9ig00-cItSpfmo490qVNRNqBqooIpLsBOXduuSamuq_vm8F9tJy6bBDlyi6Cl2rLxfnn-23wchH1LFJcwiwo25gAVKnPZcHsFdkE15xJgQoqrW8P0zG43iyYRftFo_bSzMesHyPN5s-PK_qhpkoGwMnX2EuutOQQD3oHS4gtrh-k-K_1rI8nblZEotnSvHvVZIlfX2n3beQF-hart8jpmBTQ3pyt0Q3UWddFFi8gQ7pRnielHl4cTYF-Nw1BzfD0u75zwrs8I0QxtuxD9morCySVlJFAYPN85A80r6BfqZlfPtfQi_Wzta1bY1ABX7XrBjW3VgprGOsNTkun7tHcOt9xAuO0uYgIpfHXxBp3l8N0_2H_NX7VVoHdYuE91Lgr0kupcnpO2ziIPda_fPBpPz-qSJdUOdUd6M3oZXVj6Ad0dzP33ZoiTjA7Jv1hK0rzHwgrRU_pI8t3U6qDHbr8hQQ4IiJOgV1ZA4pf2c1oCgAAiqAUE1ICgAgiIgaAOI1-Tbp8H449A1FTTcFJaCKzeOpj5mdIwFk75kosc9PoUVtpISz9tl4E8V9-A3jrpBlgJVjjKPI0eHeUx4QGXfkL28yNVbQnvArIG7YzmFLPS9XtwNmfJkJoSSYRCnhySwHyZJTXp5rHKySB5SyyFx61ZLnV7lL88z-80TQxE19UsASA-2PHrkm96RZw3K35O91U2pjsnTdL2a396cGBT9BgIjhkY
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+deep+k+-means%3A+An+effective+and+simple+method+for+data+clustering&rft.jtitle=Pattern+recognition&rft.au=Huang%2C+Shudong&rft.au=Kang%2C+Zhao&rft.au=Xu%2C+Zenglin&rft.au=Liu%2C+Quanhui&rft.date=2021-09-01&rft.issn=0031-3203&rft.volume=117&rft.spage=107996&rft_id=info:doi/10.1016%2Fj.patcog.2021.107996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_107996
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon