Robust deep k-means: An effective and simple method for data clustering
•A novel robust deep model is proposed to perform k-means hierarchically, thus the hierarchical semantics of data can be explored in a layerwise way. As a result, data samples from the same class are effectively gathered closer layer by layer.•To solve the optimization problem of our model, the corr...
Gespeichert in:
| Veröffentlicht in: | Pattern recognition Jg. 117; S. 107996 |
|---|---|
| Hauptverfasser: | , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.09.2021
|
| Schlagworte: | |
| ISSN: | 0031-3203, 1873-5142 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •A novel robust deep model is proposed to perform k-means hierarchically, thus the hierarchical semantics of data can be explored in a layerwise way. As a result, data samples from the same class are effectively gathered closer layer by layer.•To solve the optimization problem of our model, the corresponding objective function is derived to a more trackable form and an alternative updating algorithm is presented to solve the optimization problem.•Experiments over 12 benchmark data sets are conducted and show promising results, compared to both classical and state-of-the-art methods.
Clustering aims to partition an input dataset into distinct groups according to some distance or similarity measurements. One of the most widely used clustering method nowadays is the k-means algorithm because of its simplicity and efficiency. In the last few decades, k-means and its various extensions have been formulated to solve the practical clustering problems. However, existing clustering methods are often presented in a single-layer formulation (i.e., shallow formulation). As a result, the mapping between the obtained low-level representation and the original input data may contain rather complex hierarchical information. To overcome the drawbacks of low-level features, deep learning techniques are adopted to extract deep representations and improve the clustering performance. In this paper, we propose a robust deep k-means model to learn the hidden representations associate with different implicit lower-level attributes. By using the deep structure to hierarchically perform k-means, the hierarchical semantics of data can be exploited in a layerwise way. Data samples from the same class are forced to be closer layer by layer, which is beneficial for clustering task. The objective function of our model is derived to a more trackable form such that the optimization problem can be tackled more easily and the final robust results can be obtained. Experimental results over 12 benchmark data sets substantiate that the proposed model achieves a breakthrough in clustering performance, compared with both classical and state-of-the-art methods. |
|---|---|
| AbstractList | •A novel robust deep model is proposed to perform k-means hierarchically, thus the hierarchical semantics of data can be explored in a layerwise way. As a result, data samples from the same class are effectively gathered closer layer by layer.•To solve the optimization problem of our model, the corresponding objective function is derived to a more trackable form and an alternative updating algorithm is presented to solve the optimization problem.•Experiments over 12 benchmark data sets are conducted and show promising results, compared to both classical and state-of-the-art methods.
Clustering aims to partition an input dataset into distinct groups according to some distance or similarity measurements. One of the most widely used clustering method nowadays is the k-means algorithm because of its simplicity and efficiency. In the last few decades, k-means and its various extensions have been formulated to solve the practical clustering problems. However, existing clustering methods are often presented in a single-layer formulation (i.e., shallow formulation). As a result, the mapping between the obtained low-level representation and the original input data may contain rather complex hierarchical information. To overcome the drawbacks of low-level features, deep learning techniques are adopted to extract deep representations and improve the clustering performance. In this paper, we propose a robust deep k-means model to learn the hidden representations associate with different implicit lower-level attributes. By using the deep structure to hierarchically perform k-means, the hierarchical semantics of data can be exploited in a layerwise way. Data samples from the same class are forced to be closer layer by layer, which is beneficial for clustering task. The objective function of our model is derived to a more trackable form such that the optimization problem can be tackled more easily and the final robust results can be obtained. Experimental results over 12 benchmark data sets substantiate that the proposed model achieves a breakthrough in clustering performance, compared with both classical and state-of-the-art methods. |
| ArticleNumber | 107996 |
| Author | Kang, Zhao Liu, Quanhui Huang, Shudong Xu, Zenglin |
| Author_xml | – sequence: 1 givenname: Shudong surname: Huang fullname: Huang, Shudong organization: College of Computer Science, Sichuan University, Chengdu 610065, China – sequence: 2 givenname: Zhao surname: Kang fullname: Kang, Zhao organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 3 givenname: Zenglin surname: Xu fullname: Xu, Zenglin organization: School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China – sequence: 4 givenname: Quanhui surname: Liu fullname: Liu, Quanhui email: quanhuiliu@scu.edu.cn organization: College of Computer Science, Sichuan University, Chengdu 610065, China |
| BookMark | eNqFkM1KAzEUhYNUsFXfwEVeYGp-5i9dCKVoFQqC6DpkkpuaOpMZkljw7Z0yrlzo6sK5fAfOt0Az33tA6IaSJSW0vD0sB5V0v18ywugYVUKUZ2hO64pnBc3ZDM0J4TTjjPALtIjxQAitxsccbV_65jMmbAAG_JF1oHxc4bXHYC3o5I6AlTc4um5oAXeQ3nuDbR-wUUlh3Y4sBOf3V-jcqjbC9c-9RG8P96-bx2z3vH3arHeZ5qRMWV1YludVUauqYU2lSkGErYWApimYKBvOLAjSgC4oN5oLVhgiqpyWjApFasEv0Wrq1aGPMYCV2iWVXO9TUK6VlMiTEnmQkxJ5UiInJSOc_4KH4DoVvv7D7iYMxmFHB0FG7cBrMC6MjqTp3d8F39ubfjM |
| CitedBy_id | crossref_primary_10_1371_journal_pone_0326145 crossref_primary_10_1016_j_engappai_2022_104743 crossref_primary_10_3390_app15158451 crossref_primary_10_1016_j_cam_2023_115219 crossref_primary_10_1016_j_neunet_2024_106295 crossref_primary_10_1016_j_patcog_2023_109469 crossref_primary_10_1002_widm_1568 crossref_primary_10_1371_journal_pone_0305241 crossref_primary_10_1109_ACCESS_2023_3306023 crossref_primary_10_1016_j_knosys_2022_109346 crossref_primary_10_1007_s10619_022_07421_x crossref_primary_10_1016_j_patcog_2022_109187 crossref_primary_10_1016_j_patcog_2023_109340 crossref_primary_10_3390_sym14051021 crossref_primary_10_1007_s10489_021_03020_y crossref_primary_10_1007_s10661_024_12816_7 crossref_primary_10_1016_j_mineng_2023_108352 crossref_primary_10_1016_j_patcog_2021_108339 crossref_primary_10_1002_cyto_a_24956 crossref_primary_10_1155_2022_6936335 crossref_primary_10_1007_s10479_022_04642_2 crossref_primary_10_1177_09544070231189910 crossref_primary_10_1016_j_patcog_2022_108817 crossref_primary_10_1007_s10115_024_02272_7 crossref_primary_10_1016_j_knosys_2021_107212 crossref_primary_10_1016_j_patcog_2024_111158 crossref_primary_10_1016_j_ins_2023_119659 crossref_primary_10_1109_TCYB_2022_3166975 crossref_primary_10_1016_j_ins_2023_03_012 crossref_primary_10_1109_TIP_2023_3243521 crossref_primary_10_1007_s11053_025_10504_y crossref_primary_10_1016_j_ins_2022_11_139 crossref_primary_10_1016_j_patcog_2025_111857 crossref_primary_10_1016_j_asoc_2024_112299 crossref_primary_10_1016_j_patcog_2022_108780 crossref_primary_10_1016_j_patcog_2022_109230 crossref_primary_10_1016_j_patcog_2024_110307 crossref_primary_10_1016_j_eswa_2022_118656 crossref_primary_10_3390_electronics14071353 crossref_primary_10_1007_s10489_022_03895_5 crossref_primary_10_1016_j_eswa_2023_119645 crossref_primary_10_1016_j_ins_2022_07_177 crossref_primary_10_1016_j_patcog_2022_108623 crossref_primary_10_1016_j_ins_2023_119374 crossref_primary_10_1016_j_knosys_2023_110893 crossref_primary_10_1016_j_compbiomed_2022_106184 crossref_primary_10_1063_5_0241138 crossref_primary_10_1109_TMI_2022_3195123 crossref_primary_10_1109_TNNLS_2024_3367322 crossref_primary_10_3390_sym16091208 crossref_primary_10_3390_ijms26104665 crossref_primary_10_1016_j_eswa_2025_127664 crossref_primary_10_1016_j_future_2024_107525 crossref_primary_10_1016_j_patcog_2022_109283 crossref_primary_10_1016_j_inffus_2023_102137 crossref_primary_10_1016_j_fss_2025_109575 crossref_primary_10_1016_j_patcog_2024_110639 crossref_primary_10_1109_TCE_2025_3525523 crossref_primary_10_1155_2022_3958423 crossref_primary_10_1016_j_cam_2025_116921 crossref_primary_10_1016_j_patcog_2022_108791 crossref_primary_10_32604_cmes_2024_056022 crossref_primary_10_1080_09537287_2025_2555924 crossref_primary_10_1109_ACCESS_2023_3312287 crossref_primary_10_1016_j_csda_2025_108226 crossref_primary_10_1038_s41598_025_96705_0 crossref_primary_10_1007_s12559_022_10060_0 crossref_primary_10_3390_app112311202 crossref_primary_10_1016_j_ins_2023_119634 crossref_primary_10_1109_TIM_2025_3593308 crossref_primary_10_1007_s00521_022_07326_x crossref_primary_10_1016_j_knosys_2023_110627 crossref_primary_10_1016_j_knosys_2023_111315 crossref_primary_10_3390_math11030548 crossref_primary_10_1016_j_patcog_2021_108223 crossref_primary_10_1016_j_bspc_2024_106647 crossref_primary_10_3390_math10244834 crossref_primary_10_14778_3746405_3746431 crossref_primary_10_1016_j_ins_2024_120191 crossref_primary_10_1109_TCE_2024_3440485 crossref_primary_10_1007_s10115_024_02322_0 crossref_primary_10_1016_j_patcog_2022_108768 crossref_primary_10_1007_s00521_024_10764_4 crossref_primary_10_3390_ijms241914690 crossref_primary_10_3390_s23156963 crossref_primary_10_1016_j_engappai_2025_111703 crossref_primary_10_1016_j_engappai_2023_106164 crossref_primary_10_1016_j_knosys_2024_112434 crossref_primary_10_1155_2022_1939796 crossref_primary_10_1007_s10994_021_06071_x |
| Cites_doi | 10.1016/j.knosys.2016.06.031 10.1016/j.patcog.2019.107015 10.1007/s10618-017-0543-9 10.1109/TPAMI.2008.277 10.1016/j.patrec.2009.09.011 10.1007/s10115-007-0114-2 10.1016/j.ins.2017.03.030 10.1162/NECO_a_00168 10.1561/2200000006 10.1016/j.patcog.2013.11.014 10.1016/j.ins.2017.07.036 10.1109/34.982897 10.1007/s10115-016-0988-y 10.1109/TPAMI.2016.2554555 10.1109/TIP.2018.2848470 10.1016/j.eswa.2016.09.025 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.patcog.2021.107996 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1873-5142 |
| ExternalDocumentID | 10_1016_j_patcog_2021_107996 S0031320321001837 |
| GroupedDBID | --K --M -D8 -DT -~X .DC .~1 0R~ 123 1B1 1RT 1~. 1~5 29O 4.4 457 4G. 53G 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABEFU ABFNM ABFRF ABHFT ABJNI ABMAC ABTAH ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADMXK ADTZH AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FD6 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q G8K GBLVA GBOLZ HLZ HVGLF HZ~ H~9 IHE J1W JJJVA KOM KZ1 LG9 LMP LY1 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SDS SES SEW SPC SPCBC SST SSV SSZ T5K TN5 UNMZH VOH WUQ XJE XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c306t-85f244758a7b2b7a6909f899ebb5296b32fe90bec513dc3925d097416219a0893 |
| ISICitedReferencesCount | 106 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000658967900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0031-3203 |
| IngestDate | Sat Nov 29 07:29:47 EST 2025 Tue Nov 18 21:45:30 EST 2025 Fri Feb 23 02:44:31 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Robust clustering Deep learning k-means algorithm |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c306t-85f244758a7b2b7a6909f899ebb5296b32fe90bec513dc3925d097416219a0893 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_patcog_2021_107996 crossref_primary_10_1016_j_patcog_2021_107996 elsevier_sciencedirect_doi_10_1016_j_patcog_2021_107996 |
| PublicationCentury | 2000 |
| PublicationDate | September 2021 2021-09-00 |
| PublicationDateYYYYMMDD | 2021-09-01 |
| PublicationDate_xml | – month: 09 year: 2021 text: September 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Pattern recognition |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ding, Li, Jordan (bib0038) 2010; 32 Trigeorgis, Bousmalis, Zafeiriou, Schuller (bib0034) 2017; 39 Zhou, Hou, Feng (bib0017) 2018 Peng, Zhu, Feng, Shen, Zhang, Zhou (bib0021) 2019 Zhang, Li, You, Qi, Zhang, Guo, Lin (bib0022) 2019 Cai, He, Han, Huang (bib0010) 2010; 33 Boyd, Parikh, Chu, Peleato, Eckstein (bib0035) 2011; 3 Févotte, Idier (bib0033) 2011; 23 Huang, Wang, Li, Li, Xu (bib0031) 2018; 32 Sun, Mazumder (bib0040) 2013 Capó, Pérez, Lozano (bib0028) 2017; 117 Guo, Gao, Liu, Yin (bib0018) 2017 Ji, Zhang, Li, Salzmann, Reid (bib0016) 2017 Banerjee, Merugu, Dhillon, Ghosh (bib0003) 2005; 6 Ghasedi Dizaji, Herandi, Deng, Cai, Huang (bib0019) 2017 Lee, Seung (bib0032) 2001 Peng, Feng, Xiao, Yau, Zhou, Yang (bib0020) 2018; 27 Kumar, Reddy (bib0026) 2017; 418 Gokcay, Principe (bib0011) 2002; 24 Zhao, Ding, Fu (bib0014) 2017 Ding, He (bib0023) 2004 Buchta, Kober, Feinerer, Hornik (bib0024) 2012; 50 Huang, Kang, Xu (bib0001) 2020 Huang, Tsang, Xu, Lv (bib0013) 2021 Chakraborty, Paul, Das, Xu (bib0027) 2020 Ault, Perez, Kimble, Wang (bib0005) 2018; 8 Khanmohammadi, Adibeig, Shanehbandy (bib0025) 2017; 67 Bengio (bib0029) 2009; 2 Ng, Jordan, Weiss (bib0009) 2002 Gullo, Ponti, Tagarelli, Greco (bib0012) 2017; 402 Kong, Ding, Huang (bib0036) 2011 Huang, Kang, Xu (bib0039) 2020; 97 Macqueen (bib0008) 1967 Ding, Li, Peng, Park (bib0030) 2006 Wang, Pan (bib0006) 2014; 47 Wu, Kumar, Quinlan, Ghosh, Yang, Motoda, McLachlan, Ng, Liu, Philip (bib0015) 2008; 14 Tunali, Bilgin, Camurcu (bib0004) 2016; 13 Ren, Domeniconi, Zhang, Yu (bib0007) 2017; 51 Gao, Nie, Cai, Huang (bib0037) 2015 Jain (bib0002) 2010; 31 Trigeorgis (10.1016/j.patcog.2021.107996_bib0034) 2017; 39 Peng (10.1016/j.patcog.2021.107996_bib0021) 2019 Ault (10.1016/j.patcog.2021.107996_bib0005) 2018; 8 Huang (10.1016/j.patcog.2021.107996_bib0013) 2021 Huang (10.1016/j.patcog.2021.107996_bib0001) 2020 Wu (10.1016/j.patcog.2021.107996_bib0015) 2008; 14 Lee (10.1016/j.patcog.2021.107996_bib0032) 2001 Boyd (10.1016/j.patcog.2021.107996_bib0035) 2011; 3 Tunali (10.1016/j.patcog.2021.107996_bib0004) 2016; 13 Ding (10.1016/j.patcog.2021.107996_bib0023) 2004 Gao (10.1016/j.patcog.2021.107996_bib0037) 2015 Peng (10.1016/j.patcog.2021.107996_bib0020) 2018; 27 Jain (10.1016/j.patcog.2021.107996_bib0002) 2010; 31 Guo (10.1016/j.patcog.2021.107996_bib0018) 2017 Huang (10.1016/j.patcog.2021.107996_bib0039) 2020; 97 Gullo (10.1016/j.patcog.2021.107996_bib0012) 2017; 402 Huang (10.1016/j.patcog.2021.107996_bib0031) 2018; 32 Macqueen (10.1016/j.patcog.2021.107996_bib0008) 1967 Ding (10.1016/j.patcog.2021.107996_bib0038) 2010; 32 Buchta (10.1016/j.patcog.2021.107996_bib0024) 2012; 50 Cai (10.1016/j.patcog.2021.107996_bib0010) 2010; 33 Zhang (10.1016/j.patcog.2021.107996_bib0022) 2019 Févotte (10.1016/j.patcog.2021.107996_bib0033) 2011; 23 Kong (10.1016/j.patcog.2021.107996_bib0036) 2011 Capó (10.1016/j.patcog.2021.107996_bib0028) 2017; 117 Banerjee (10.1016/j.patcog.2021.107996_bib0003) 2005; 6 Ji (10.1016/j.patcog.2021.107996_bib0016) 2017 Ren (10.1016/j.patcog.2021.107996_bib0007) 2017; 51 Chakraborty (10.1016/j.patcog.2021.107996_bib0027) 2020 Zhao (10.1016/j.patcog.2021.107996_bib0014) 2017 Ng (10.1016/j.patcog.2021.107996_bib0009) 2002 Zhou (10.1016/j.patcog.2021.107996_bib0017) 2018 Kumar (10.1016/j.patcog.2021.107996_bib0026) 2017; 418 Gokcay (10.1016/j.patcog.2021.107996_bib0011) 2002; 24 Bengio (10.1016/j.patcog.2021.107996_bib0029) 2009; 2 Ding (10.1016/j.patcog.2021.107996_bib0030) 2006 Wang (10.1016/j.patcog.2021.107996_bib0006) 2014; 47 Ghasedi Dizaji (10.1016/j.patcog.2021.107996_bib0019) 2017 Khanmohammadi (10.1016/j.patcog.2021.107996_bib0025) 2017; 67 Sun (10.1016/j.patcog.2021.107996_bib0040) 2013 |
| References_xml | – start-page: 272 year: 2020 end-page: 283 ident: bib0001 article-title: Deep publication-title: Proceedings of the International Conference on Neural Computing for Advanced Applications – start-page: 29 year: 2004 end-page: 37 ident: bib0023 article-title: K-means clustering via principal component analysis publication-title: Proceedings of the 21st International Conference on Machine Learning – volume: 50 start-page: 1 year: 2012 end-page: 22 ident: bib0024 article-title: Spherical publication-title: J. Stat. Softw. – start-page: 849 year: 2002 end-page: 856 ident: bib0009 article-title: On spectral clustering: analysis and an algorithm publication-title: Advances in Neural Information Processing Systems – start-page: 556 year: 2001 end-page: 562 ident: bib0032 article-title: Algorithms for non-negative matrix factorization publication-title: Advances in Neural Information Processing Systems – volume: 33 start-page: 1548 year: 2010 end-page: 1560 ident: bib0010 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 117 start-page: 56 year: 2017 end-page: 69 ident: bib0028 article-title: An efficient approximation to the publication-title: Knowledge-Based Syst. – volume: 39 start-page: 417 year: 2017 end-page: 429 ident: bib0034 article-title: A deep matrix factorization method for learning attribute representations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1 year: 2013 end-page: 6 ident: bib0040 article-title: Non-negative matrix completion for bandwidth extension: a convex optimization approach publication-title: Proceedings of the IEEE International Workshop on Machine Learning for Signal Processing – volume: 2 start-page: 1 year: 2009 end-page: 127 ident: bib0029 article-title: Learning deep architectures for AI publication-title: Found. Trends® Mach. Learn. – start-page: 1 year: 2021 end-page: 15 ident: bib0013 article-title: Measuring diversity in graph learning: a unified framework for structured multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. – start-page: 1 year: 2019 end-page: 12 ident: bib0021 article-title: Deep clustering with sample-assignment invariance prior publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 691 year: 2020 end-page: 701 ident: bib0027 article-title: Entropy weighted power publication-title: International Conference on Artificial Intelligence and Statistics – volume: 31 start-page: 651 year: 2010 end-page: 666 ident: bib0002 article-title: Data clustering: 50 years beyond publication-title: Pattern Recognit. Lett. – volume: 6 start-page: 1705 year: 2005 end-page: 1749 ident: bib0003 article-title: Clustering with Bregman divergences publication-title: J. Mach. Learn. Res. – volume: 418 start-page: 286 year: 2017 end-page: 301 ident: bib0026 article-title: An efficient publication-title: Inf. Sci. – volume: 97 start-page: 1 year: 2020 end-page: 11 ident: bib0039 article-title: Auto-weighted multi-view clustering via deep matrix decomposition publication-title: Pattern Recognit. – volume: 3 start-page: 1 year: 2011 end-page: 122 ident: bib0035 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends® Mach. learn. – volume: 51 start-page: 661 year: 2017 end-page: 689 ident: bib0007 article-title: Weighted-object ensemble clustering: methods and analysis publication-title: Knowl. Inf. Syst. – volume: 402 start-page: 199 year: 2017 end-page: 215 ident: bib0012 article-title: An information-theoretic approach to hierarchical clustering of uncertain data publication-title: Inf. Sci. – start-page: 5473 year: 2019 end-page: 5482 ident: bib0022 article-title: Self-supervised convolutional subspace clustering network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 13 year: 2016 ident: bib0004 article-title: An improved clustering algorithm for text mining: multi-cluster spherical publication-title: Int. Arab J. Inf. Technol. – start-page: 871 year: 2015 end-page: 880 ident: bib0037 article-title: Robust capped norm nonnegative matrix factorization: capped norm NMF publication-title: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management – start-page: 1596 year: 2018 end-page: 1604 ident: bib0017 article-title: Deep adversarial subspace clustering publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 47 start-page: 1917 year: 2014 end-page: 1925 ident: bib0006 article-title: Robust level set image segmentation via a local correntropy-based publication-title: Pattern Recognit. – volume: 32 start-page: 483 year: 2018 end-page: 503 ident: bib0031 article-title: Robust graph regularized nonnegative matrix factorization for clustering publication-title: Data Min. Knowl. Discov. – start-page: 673 year: 2011 end-page: 682 ident: bib0036 article-title: Robust nonnegative matrix factorization using l21-norm publication-title: Proceedings of the 20th ACM International Conference on Information and Knowledge Management – start-page: 281 year: 1967 end-page: 297 ident: bib0008 article-title: Some methods for classification and analysis of multivariate observations publication-title: Proceedings of Berkeley Symposium on Mathematical Statistics and Probability – volume: 67 start-page: 12 year: 2017 end-page: 18 ident: bib0025 article-title: An improved overlapping publication-title: Expert Syst. Appl. – start-page: 2921 year: 2017 end-page: 2927 ident: bib0014 article-title: Multi-view clustering via deep matrix factorization publication-title: Proceedings of the 21st AAAI Conference on Artificial Intelligence – start-page: 1753 year: 2017 end-page: 1759 ident: bib0018 article-title: Improved deep embedded clustering with local structure preservation publication-title: Proceedings of the 26th International Joint Conference on Artificial Intelligence – volume: 23 start-page: 2421 year: 2011 end-page: 2456 ident: bib0033 article-title: Algorithms for nonnegative matrix factorization with the publication-title: Neural Comput. – volume: 14 start-page: 1 year: 2008 end-page: 37 ident: bib0015 article-title: Top 10 algorithms in data mining publication-title: Knowl. Inf. Syst. – volume: 27 start-page: 5076 year: 2018 end-page: 5086 ident: bib0020 article-title: Structured autoencoders for subspace clustering publication-title: IEEE Trans. Image Process. – start-page: 24 year: 2017 end-page: 33 ident: bib0016 article-title: Deep subspace clustering networks publication-title: Advances in Neural Information Processing Systems – start-page: 5736 year: 2017 end-page: 5745 ident: bib0019 article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 32 start-page: 45 year: 2010 end-page: 55 ident: bib0038 article-title: Convex and semi-nonnegative matrix factorizations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 8 start-page: 518 year: 2018 end-page: 523 ident: bib0005 article-title: On speech recognition algorithms publication-title: Int. J. Mach. Learn. Comput. – start-page: 126 year: 2006 end-page: 135 ident: bib0030 article-title: Orthogonal nonnegative matrix publication-title: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining – volume: 24 start-page: 158 year: 2002 end-page: 171 ident: bib0011 article-title: Information theoretic clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 117 start-page: 56 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0028 article-title: An efficient approximation to the k-means clustering for massive data publication-title: Knowledge-Based Syst. doi: 10.1016/j.knosys.2016.06.031 – volume: 13 issue: 1 year: 2016 ident: 10.1016/j.patcog.2021.107996_bib0004 article-title: An improved clustering algorithm for text mining: multi-cluster spherical k-means publication-title: Int. Arab J. Inf. Technol. – volume: 97 start-page: 1 year: 2020 ident: 10.1016/j.patcog.2021.107996_bib0039 article-title: Auto-weighted multi-view clustering via deep matrix decomposition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107015 – start-page: 1753 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0018 article-title: Improved deep embedded clustering with local structure preservation – start-page: 29 year: 2004 ident: 10.1016/j.patcog.2021.107996_bib0023 article-title: K-means clustering via principal component analysis – start-page: 126 year: 2006 ident: 10.1016/j.patcog.2021.107996_bib0030 article-title: Orthogonal nonnegative matrix t-factorizations for clustering – volume: 32 start-page: 483 issue: 2 year: 2018 ident: 10.1016/j.patcog.2021.107996_bib0031 article-title: Robust graph regularized nonnegative matrix factorization for clustering publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-017-0543-9 – start-page: 24 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0016 article-title: Deep subspace clustering networks – volume: 6 start-page: 1705 year: 2005 ident: 10.1016/j.patcog.2021.107996_bib0003 article-title: Clustering with Bregman divergences publication-title: J. Mach. Learn. Res. – volume: 50 start-page: 1 issue: 10 year: 2012 ident: 10.1016/j.patcog.2021.107996_bib0024 article-title: Spherical k-means clustering publication-title: J. Stat. Softw. – volume: 33 start-page: 1548 issue: 8 year: 2010 ident: 10.1016/j.patcog.2021.107996_bib0010 article-title: Graph regularized nonnegative matrix factorization for data representation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 32 start-page: 45 issue: 1 year: 2010 ident: 10.1016/j.patcog.2021.107996_bib0038 article-title: Convex and semi-nonnegative matrix factorizations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2008.277 – volume: 8 start-page: 518 issue: 6 year: 2018 ident: 10.1016/j.patcog.2021.107996_bib0005 article-title: On speech recognition algorithms publication-title: Int. J. Mach. Learn. Comput. – volume: 31 start-page: 651 issue: 8 year: 2010 ident: 10.1016/j.patcog.2021.107996_bib0002 article-title: Data clustering: 50 years beyond k-means publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2009.09.011 – start-page: 849 year: 2002 ident: 10.1016/j.patcog.2021.107996_bib0009 article-title: On spectral clustering: analysis and an algorithm – start-page: 871 year: 2015 ident: 10.1016/j.patcog.2021.107996_bib0037 article-title: Robust capped norm nonnegative matrix factorization: capped norm NMF – start-page: 556 year: 2001 ident: 10.1016/j.patcog.2021.107996_bib0032 article-title: Algorithms for non-negative matrix factorization – volume: 3 start-page: 1 issue: 1 year: 2011 ident: 10.1016/j.patcog.2021.107996_bib0035 article-title: Distributed optimization and statistical learning via the alternating direction method of multipliers publication-title: Found. Trends® Mach. learn. – start-page: 1 year: 2019 ident: 10.1016/j.patcog.2021.107996_bib0021 article-title: Deep clustering with sample-assignment invariance prior publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 14 start-page: 1 issue: 1 year: 2008 ident: 10.1016/j.patcog.2021.107996_bib0015 article-title: Top 10 algorithms in data mining publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-007-0114-2 – volume: 402 start-page: 199 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0012 article-title: An information-theoretic approach to hierarchical clustering of uncertain data publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.03.030 – start-page: 1 year: 2013 ident: 10.1016/j.patcog.2021.107996_bib0040 article-title: Non-negative matrix completion for bandwidth extension: a convex optimization approach – volume: 23 start-page: 2421 issue: 9 year: 2011 ident: 10.1016/j.patcog.2021.107996_bib0033 article-title: Algorithms for nonnegative matrix factorization with the β-divergence publication-title: Neural Comput. doi: 10.1162/NECO_a_00168 – start-page: 1596 year: 2018 ident: 10.1016/j.patcog.2021.107996_bib0017 article-title: Deep adversarial subspace clustering – start-page: 1 year: 2021 ident: 10.1016/j.patcog.2021.107996_bib0013 article-title: Measuring diversity in graph learning: a unified framework for structured multi-view clustering publication-title: IEEE Trans. Knowl. Data Eng. – volume: 2 start-page: 1 issue: 1 year: 2009 ident: 10.1016/j.patcog.2021.107996_bib0029 article-title: Learning deep architectures for AI publication-title: Found. Trends® Mach. Learn. doi: 10.1561/2200000006 – start-page: 5736 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0019 article-title: Deep clustering via joint convolutional autoencoder embedding and relative entropy minimization – volume: 47 start-page: 1917 issue: 5 year: 2014 ident: 10.1016/j.patcog.2021.107996_bib0006 article-title: Robust level set image segmentation via a local correntropy-based k-means clustering publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2013.11.014 – volume: 418 start-page: 286 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0026 article-title: An efficient k-means clustering filtering algorithm using density based initial cluster centers publication-title: Inf. Sci. doi: 10.1016/j.ins.2017.07.036 – volume: 24 start-page: 158 issue: 2 year: 2002 ident: 10.1016/j.patcog.2021.107996_bib0011 article-title: Information theoretic clustering publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/34.982897 – start-page: 272 year: 2020 ident: 10.1016/j.patcog.2021.107996_bib0001 article-title: Deep k-means: a simple and effective method for data clustering – volume: 51 start-page: 661 issue: 2 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0007 article-title: Weighted-object ensemble clustering: methods and analysis publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-016-0988-y – start-page: 5473 year: 2019 ident: 10.1016/j.patcog.2021.107996_bib0022 article-title: Self-supervised convolutional subspace clustering network – start-page: 691 year: 2020 ident: 10.1016/j.patcog.2021.107996_bib0027 article-title: Entropy weighted power k-means clustering – start-page: 2921 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0014 article-title: Multi-view clustering via deep matrix factorization – start-page: 281 year: 1967 ident: 10.1016/j.patcog.2021.107996_bib0008 article-title: Some methods for classification and analysis of multivariate observations – volume: 39 start-page: 417 issue: 3 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0034 article-title: A deep matrix factorization method for learning attribute representations publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2016.2554555 – start-page: 673 year: 2011 ident: 10.1016/j.patcog.2021.107996_bib0036 article-title: Robust nonnegative matrix factorization using l21-norm – volume: 27 start-page: 5076 issue: 10 year: 2018 ident: 10.1016/j.patcog.2021.107996_bib0020 article-title: Structured autoencoders for subspace clustering publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2018.2848470 – volume: 67 start-page: 12 year: 2017 ident: 10.1016/j.patcog.2021.107996_bib0025 article-title: An improved overlapping k-means clustering method for medical applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2016.09.025 |
| SSID | ssj0017142 |
| Score | 2.6270792 |
| Snippet | •A novel robust deep model is proposed to perform k-means hierarchically, thus the hierarchical semantics of data can be explored in a layerwise way. As a... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 107996 |
| SubjectTerms | [formula omitted]-means algorithm Deep learning Robust clustering |
| Title | Robust deep k-means: An effective and simple method for data clustering |
| URI | https://dx.doi.org/10.1016/j.patcog.2021.107996 |
| Volume | 117 |
| WOSCitedRecordID | wos000658967900007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-5142 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017142 issn: 0031-3203 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Nb9MwFLfKyoHLGF9ig00-cItSpfmo490qVNRNqBqooIpLsBOXduuSamuq_vm8F9tJy6bBDlyi6Cl2rLxfnn-23wchH1LFJcwiwo25gAVKnPZcHsFdkE15xJgQoqrW8P0zG43iyYRftFo_bSzMesHyPN5s-PK_qhpkoGwMnX2EuutOQQD3oHS4gtrh-k-K_1rI8nblZEotnSvHvVZIlfX2n3beQF-hart8jpmBTQ3pyt0Q3UWddFFi8gQ7pRnielHl4cTYF-Nw1BzfD0u75zwrs8I0QxtuxD9morCySVlJFAYPN85A80r6BfqZlfPtfQi_Wzta1bY1ABX7XrBjW3VgprGOsNTkun7tHcOt9xAuO0uYgIpfHXxBp3l8N0_2H_NX7VVoHdYuE91Lgr0kupcnpO2ziIPda_fPBpPz-qSJdUOdUd6M3oZXVj6Ad0dzP33ZoiTjA7Jv1hK0rzHwgrRU_pI8t3U6qDHbr8hQQ4IiJOgV1ZA4pf2c1oCgAAiqAUE1ICgAgiIgaAOI1-Tbp8H449A1FTTcFJaCKzeOpj5mdIwFk75kosc9PoUVtpISz9tl4E8V9-A3jrpBlgJVjjKPI0eHeUx4QGXfkL28yNVbQnvArIG7YzmFLPS9XtwNmfJkJoSSYRCnhySwHyZJTXp5rHKySB5SyyFx61ZLnV7lL88z-80TQxE19UsASA-2PHrkm96RZw3K35O91U2pjsnTdL2a396cGBT9BgIjhkY |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+deep+k+-means%3A+An+effective+and+simple+method+for+data+clustering&rft.jtitle=Pattern+recognition&rft.au=Huang%2C+Shudong&rft.au=Kang%2C+Zhao&rft.au=Xu%2C+Zenglin&rft.au=Liu%2C+Quanhui&rft.date=2021-09-01&rft.issn=0031-3203&rft.volume=117&rft.spage=107996&rft_id=info:doi/10.1016%2Fj.patcog.2021.107996&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_patcog_2021_107996 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0031-3203&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0031-3203&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0031-3203&client=summon |